Phytoremediation of Xenobiotics: Principles and Applications in Environmental Pollution Removal

  • Chapter
  • First Online:
Xenobiotics in Urban Ecosystems

Abstract

Pollution of the environment in urban ecosystems such as land and water with pesticides, organic pollutants, heavy metals, fertilizers, and radionuclides has become a major concern due to present intensive agricultural methods and industrialization. In order to immobilize, absorb, lessen, or stabilize toxicity or decompose the substances that are released into the urban areas from various sources, a process known as phytoremediation employs plants. Studies have demonstrated that plants can be used for the remediation of heavy metals, organic pollutants, radionuclides, antibiotics, and pesticides. Despite being used for many years, the technology of phytoremediation is still somewhat young. This chapter summarizes information on plant varieties that can be employed in phytoremediation in urban ecosystems using a variety of techniques, tools that can increase the effectiveness of phytoremediation processes, and advantages and disadvantages associated with the use of these methods. Different plants remove various contaminants at varying rates using one or more methods. The limits of phytoremediation can be overcome with the use of a variety of tools, including genetic engineering, natural microbial stimulation, and chemical and natural additives. Phytoremediation can be a dependable option for sustainable and affordable remediation of water and soil from inorganic and organic pollutants due to its low cost compared to traditional technologies and sustainability linked using vegetation and renewable energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams N, Carroll D, Madalinski K, Rock S, Wilson T, Pivetz B (2000) Introduction to phytoremediation. National Risk Management Research Laboratory. Office of Research and Development. US EPA, Cincinnati

    Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud T, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11(76):14036–14043

    CAS  Google Scholar 

  • Alagić SČ, Jovanović VPS, Mitić VD, Cvetković JS, Petrović GM, Stojanović GS (2016) Bioaccumulation of HMW PAHs in the roots of wild blackberry from the Bor region (Serbia): phytoremediation and biomonitoring aspects. Sci Total Environ 562:561–570

    Article  Google Scholar 

  • Al-Alawy AF, Al-Ameri MK (2017) Treatment of simulated oily wastewater by ultrafiltration and nanofiltration processes. Iraqi J Chem Pet Eng 18(1):71–85

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Anton A, Mathe-Gaspar G (2005) Factors affecting heavy metal uptake in plant selection for phytoremediation. Z Naturforsch C J Biosci 60(3–4):244–246

    CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  • Babau A, Micle V, Damian G, Sur I (2020) Preliminary investigations regarding the potential of Robinia pseudoacacia L. (leguminosae) in the phytoremediation of sterile dumps. J Environ Prot Ecol 21(1):46–55

    CAS  Google Scholar 

  • Banuelos G, Ajwa H, Mackey B, Wu L, Cook C, Akohoue S, Zambruzuski S (1997a) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Article  CAS  Google Scholar 

  • Banuelos G, Ajwa H, Terry N, Zayed A (1997b) Phytoremediation of selenium laden soils: a new technology. J Soil Water Conserv 52(6):426–430

    Google Scholar 

  • Barlow R, Bryant N, Andersland J, Sahi S (2000) Lead hyperaccumulation by Sesbania drummondii. Paper presented at the proceedings of the 2000 conference on hazardous waste research

    Google Scholar 

  • Basta N, Gradwohl R (1998) Remediation of heavy metal-contaminated soil using rock phosphate. Better Crops 82(4):29–31

    Google Scholar 

  • Benjamin MM, Leckie JO (1981) Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 79(1):209–221

    Article  CAS  Google Scholar 

  • Bing H (2002) Sedum alfredii: a new lead accumulating ecotype. J Integr Plant Biol 44(11):1365

    Google Scholar 

  • Brümmer G, Herms U (1983) Influence of soil reaction and organic matter on the solubility of heavy metals in soils. In: Effects of accumulation of air pollutants in forest ecosystems. Springer, pp 233–243

    Chapter  Google Scholar 

  • Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation 20(4):384–397

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31(5):1399–1406

    Article  CAS  Google Scholar 

  • Castro S, Davis LC, Erickson LE (2003) Phytotransformation of benzotriazoles. Int J Phytoremediation 5(3):245–265

    Article  CAS  Google Scholar 

  • Chang S-W, Lee S-J, Je C-H (2005) Phytoremediation of atrazine by poplar trees: toxicity, uptake, and transformation. J Environ Sci Health B 40(6):801–811

    Article  Google Scholar 

  • Chen Y, Tang X, Cheema SA, Liu W, Shen C (2010) β-Cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. J Environ Monit 12(7):1482–1489

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr-B[a]P-co-contaminated soil. Environ Sci Pollut Res 20(12):8955–8963

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90(10):2542–2548

    Article  CAS  Google Scholar 

  • Cofield N, Banks MK, Schwab AP (2008) Lability of polycyclic aromatic hydrocarbons in the rhizosphere. Chemosphere 70(9):1644–1652

    Article  CAS  Google Scholar 

  • Compton HR, Prince GR, Fredericks SC, Gussman CD (2003) Phytoremediation of dissolved phase organic compounds: optimal site considerations relative to field case studies. Remediation 13(3):21–37

    Article  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    Article  Google Scholar 

  • Cunningham SD, Berti WR (2020) Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue. In: Phytoremediation of contaminated soil and water. CRC Press, pp 359–376

    Chapter  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu F (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56(1):55–114

    Article  CAS  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Dary M, Chamber-Pérez M, Palomares A, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    Article  CAS  Google Scholar 

  • Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158(5):1980–1983

    Article  CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32(11–12):639–650

    Article  CAS  Google Scholar 

  • de Farias V, Maranho LT, de Vasconcelos EC, da Silva Carvalho Filho MA, Lacerda LG, Azevedo JAM et al (2009) Phytodegradation potential of Erythrina crista-galli L., Fabaceae, in petroleum-contaminated soil. Appl Biochem Biotechnol 157(1):10–22

    Article  Google Scholar 

  • Denys S, Rollin C, Guillot F, Baroudi H (2006) In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment. Water Air Soil Pollut Focus 6(3):299–315

    Article  CAS  Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017) Recent advances in phytoremediation technology. In: Advances in environmental biotechnology. Springer, Singapore, pp 227–241

    Chapter  Google Scholar 

  • Diab EA (2008) Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in a polluted desert soil, with special reference to the biodegradation of the carcinogenic PAHs. Aust J Basic Appl Sci 2(3):757–762

    CAS  Google Scholar 

  • Dobler R, Saner M, Bachofen R (2000) Population changes of soil microbial communities induced by hydrocarbon and heavy metal contamination. Biorem J 4(1):41–56

    Article  CAS  Google Scholar 

  • dos Santos Barbosa JM, Ré-Poppi N, Santiago-Silva M (2006) Polycyclic aromatic hydrocarbons from wood pyrolyis in charcoal production furnaces. Environ Res 101(3):304–311

    Article  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala. Water Res 37(2):441–449

    Article  CAS  Google Scholar 

  • Favas PJ, Pratas J, Prasad M (2012) Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397

    Article  CAS  Google Scholar 

  • Fiorentino N, Mori M, Cenvinzo V, Duri LG, Gioia L, Visconti D, Fagnano M (2018) Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital J Agron 13(1S):34–44

    Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p,p‘-DDT and the enantiomers of o,p‘-DDT. Environ Sci Technol 34(9):1663–1670

    Article  CAS  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  Google Scholar 

  • Gerritse R, Van Driel W (1984) The relationship between adsorption of trace metals, organic matter, and pH in temperate soils. J Environ Qual 13:197–204

    Article  CAS  Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Sharma I, Kazi AG, Ahmad P (2016) Phytoextraction: the use of plants to remove heavy metals from soil. In: Plant metal interaction. Elsevier, pp 385–409

    Chapter  Google Scholar 

  • Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Chen S, Wang R et al (2019) Biochar facilitated the phytoremediation of cadmium contaminated sediments: metal behavior, plant toxicity, and microbial activity. Sci Total Environ 666:1126–1133

    Article  CAS  Google Scholar 

  • González H, Fernández-Fuego D, Bertrand A, González A (2019) Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization. Environ Sci Pollut Res 26(25):26242–26253

    Article  Google Scholar 

  • Greenberg BM (2001) Environmental toxicology and risk assessment: science, policy, and standardization, implications for environmental decisions, tenth volume, vol 10. ASTM International

    Google Scholar 

  • Guidi Nissim W, Palm E, Mancuso S, Azzarello E (2018) Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate. Environ Sci Pollut Res 25(9):9114–9131

    Article  CAS  Google Scholar 

  • Gupta DK, Srivastava A, Singh V (2008) EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. J Environ Biol 29(6):903–906

    CAS  Google Scholar 

  • Gutiérrez-Ginés M, Hernández A, Pérez-Leblic M, Pastor J, Vangronsveld J (2014) Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria. J Environ Manag 143:197–207

    Article  Google Scholar 

  • Hall JÁ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  • Haq S, Bhatti AA, Dar ZA, Bhat SA (2020) Phytoremediation of heavy metals: an eco-friendly and sustainable approach. In: Bioremediation and biotechnology. Springer, pp 215–231

    Chapter  Google Scholar 

  • Hasan MM, Uddin MN, Ara-Sharmeen I, Alharby HF, Alzahrani Y, Hakeem KR, Zhang L (2019) Assisting phytoremediation of heavy metals using chemical amendments. Plan Theory 8(9):295

    CAS  Google Scholar 

  • He S, He Z, Yang X, Baligar VC (2012) Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Adv Agron 117:117–189

    Article  CAS  Google Scholar 

  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ (2015) Heavy metal contamination of soils: sources, indicators and assessment. J Environ Indic 9:17–18

    Google Scholar 

  • He Y, Langenhoff AA, Sutton NB, Rijnaarts HH, Blokland MH, Chen F et al (2017) Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environ Sci Technol 51(8):4576–4584

    Article  CAS  Google Scholar 

  • He X, Zhang J, Ren Y, Sun C, Deng X, Qian M et al (2019) Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. Chemosphere 237:124483

    Article  CAS  Google Scholar 

  • Headley JV, Peru KM, Du J-L, Gurprasad N, Mcmartin DW (2008) Evaluation of the apparent phytodegradation of pentachlorophenol by Chlorella pyrenoidosa. J Environ Sci Health A 43(4):361–364

    Article  CAS  Google Scholar 

  • Herath I, Vithanage M (2015) Phytoremediation in constructed wetlands. In: Phytoremediation. Springer, pp 243–263

    Chapter  Google Scholar 

  • Hernández A, Loera N, Contreras M, Fischer L, Sánchez D (2019) Comparison between Lactuca sativa L. and Lolium perenne: phytoextraction capacity of Ni, Fe, and Co from galvanoplastic industry. In: Energy technology 2019. Springer, pp 137–147

    Chapter  Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2):367

    CAS  Google Scholar 

  • Hou F, Milke M, Leung D, MacPherson D (2001) Variations in phytoremediation performance with diesel-contaminated soil. Environ Technol 22(2):215–222

    Article  CAS  Google Scholar 

  • Huang H, Zhang D, Zhao Z, Zhang P, Gao F (2017) Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation. J Clean Prod 141:429–438

    Article  CAS  Google Scholar 

  • Huang X, Luo D, Chen X, Wei L, Liu Y, Wu Q et al (2019) Insights into heavy metals leakage in chelator-induced phytoextraction of Pb-and Tl-contaminated soil. Int J Environ Res Public Health 16(8):1328

    Article  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S, Schöftner P, Yousaf S, Wang A et al (2018) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219

    Article  CAS  Google Scholar 

  • Hwang S, Cutright T (2002) Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemosphere 47(9):891–899

    Article  CAS  Google Scholar 

  • Islam MS, Hosen MML, Uddin MN (2019) Phytodesalination of saline water using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens. Int J Environ Sci Technol 16(2):965–972

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7(5):547–558

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar M (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Jakovljević T, Radojčić-Redovniković I, Laslo A (2016) Phytoremediation of heavy metals: applications and experiences in Croatia abstract. Zaštita Materijala 57(3):496–501

    Article  Google Scholar 

  • Jiang LY, Yang X, He Z (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55(9):1179–1187

    Article  CAS  Google Scholar 

  • Johnson D, Maguire K, Anderson D, McGrath S (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 36(1):33–38

    Article  CAS  Google Scholar 

  • Kagalkar AN, Jadhav MU, Bapat VA, Govindwar SP (2011) Phytodegradation of the triphenylmethane dye Malachite green mediated by cell suspension cultures of Blumea malcolmii Hook. Bioresour Technol 102(22):10312–10318

    Article  CAS  Google Scholar 

  • Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55(1–2):110–119

    Article  CAS  Google Scholar 

  • Kotoky R, Pandey P (2020) Rhizosphere mediated biodegradation of benzo(A)pyrene by surfactin producing soil bacilli applied through Melia azedarach rhizosphere. Int J Phytoremediation 22(4):363–372

    Article  CAS  Google Scholar 

  • Kowalchuk G, Buma DS, De Boer W, Klinkhamer PG, Van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81(1):509–520

    Article  Google Scholar 

  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12(1):1–14

    Article  Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer Science & Business Media

    Google Scholar 

  • Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. World Acad Sci Eng Technol 55(6):458–468

    Google Scholar 

  • Lai H-Y, Chen Z-S (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55(3):421–430

    Article  CAS  Google Scholar 

  • Leguizamo MAO, Gómez WDF, Sarmiento MCG (2017) Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—a review. Chemosphere 168:1230–1247

    Article  Google Scholar 

  • Levchuk I, Màrquez JJR, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange–a review. Chemosphere 192:90–104

    Article  CAS  Google Scholar 

  • Li J, Liao B, Dai Z, Zhu R, Shu W (2009) Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76(9):1233–1239

    Article  CAS  Google Scholar 

  • Li Y, Zhang J, Zhu G, Liu Y, Wu B, Ng WJ et al (2016) Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland. Water Res 102:294–304

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Wang X, Cui Z (2019) Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol Environ Saf 180:517–525

    Article  CAS  Google Scholar 

  • Liao S-W, Chang W-L (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manag 42:60–68

    Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643

    Article  CAS  Google Scholar 

  • Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368(2–3):814–822

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Kremer RJ, Garrett HE (2011) Stimulated rhizodegradation of atrazine by selected plant species. J Environ Qual 40(4):1113–1121

    Article  CAS  Google Scholar 

  • Liu S, Yang B, Liang Y, **ao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res 27(14):16069–16085

    Article  CAS  Google Scholar 

  • Lu H, Zhang Y, Liu B, Liu J, Ye J, Yan C (2011) Rhizodegradation gradients of phenanthrene and pyrene in sediment of mangrove (Kandelia candel (L.) Druce). J Hazard Mater 196:263–269

    Article  CAS  Google Scholar 

  • Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M (2017) Agrochemicals and soil microbes: interaction for soil health. In: Xenobiotics in the soil environment. Springer, pp 139–152

    Chapter  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14

    Article  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660

    Article  CAS  Google Scholar 

  • Manzoor M, Gul I, Ahmed I, Zeeshan M, Hashmi I, Amin BAZ et al (2019) Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere 227:561–569

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    Article  CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press

    Google Scholar 

  • Maslin P, Maier RM (2000) Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Biorem J 4(4):295–308

    Article  CAS  Google Scholar 

  • Matsodoum Nguemté P, Djumyom Wafo G, Djocgoue P, Kengne Noumsi I, Wanko Ngnien A (2018) Potentialities of six plant species on phytoremediation attempts of fuel oil-contaminated soils. Water Air Soil Pollut 229(3):1–18

    Article  Google Scholar 

  • McCutcheon S, Schnoor J (2003) Overview of phytotransformation and control of wastes. In: Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 1–58

    Chapter  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel J-P, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10(6):1039–1070

    Article  CAS  Google Scholar 

  • Midhat L, Ouazzani N, Hejjaj A, Ouhammou A, Mandi L (2019) Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicol Environ Saf 169:150–160

    Article  CAS  Google Scholar 

  • Miller RR (1996) Phytoremediation, technology overview report. Ground-Water Remediation Technologies Analysis Center, Series O TO-96-03, pp 1–26

    Google Scholar 

  • Mózner Z, Tabi A, Csutora M (2012) Modifying the yield factor based on more efficient use of fertilizer—the environmental impacts of intensive and extensive agricultural practices. Ecol Indic 16:58–66

    Article  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34(11):1527–1536

    Article  CAS  Google Scholar 

  • Nedjimi B (2020) Germination characteristics of Peganum harmala L. (Nitrariaceae) subjected to heavy metals: implications for the use in polluted dryland restoration. Int J Environ Sci Technol 17(4):2113–2122

    Article  CAS  Google Scholar 

  • Neuhauser E, Kreitinger J, Nakles D, Hawthorne S, Doherty F, Ghosh U et al (2006) Bioavailability and toxicity of PAHs at MGP sites. Land Contam Reclam. EPP Publications 14(2):261–266

    Article  Google Scholar 

  • Newman L (1997) Removal of trichloroethylene from a simulated aquifer using poplar. Paper presented at the the 4th international in situ and on-site bioremediation symposium

    Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9(37):6010–6016

    CAS  Google Scholar 

  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EA, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon–contaminated soil. J Environ Qual 36(5):1461–1469

    Article  CAS  Google Scholar 

  • Pilon-Smits E, De Souza M, Hong G, Amini A, Bravo R, Payabyab S, Terry N (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28(3):1101–1018

    Article  Google Scholar 

  • Plant JA, Raiswell R (1983) Principles of environmental geochemistry. In: Applied environmental geochemistry. Academic Press, London, pp 1–39, 8 fig, 16 tab, 27 ref

    Google Scholar 

  • Pratas J, Favas PJ, Paulo C, Rodrigues N, Prasad M (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytoremediation 14(3):221–234

    Article  CAS  Google Scholar 

  • Pusz A, Wiśniewska M, Rogalski D (2021) Assessment of the accumulation ability of Festuca rubra L. and Alyssum saxatile L. tested on soils contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 10(5):46

    Article  Google Scholar 

  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro H-W, Ranieri A et al (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101(17):6822–6828

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley

    Google Scholar 

  • Ravindran K, Venkatesan K, Balakrishnan V, Chellappan K, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39(10):2661–2664

    Article  CAS  Google Scholar 

  • Robinson B, Anderson C (2007) Phytoremediation in New Zealand and Australia. In: Phytoremediation. Springer, pp 455–468

    Chapter  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203(1):47–56

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BR (1997) Sources of fine organic aerosol. 8. Boilers burning No. 2 distillate fuel oil. Environ Sci Technol 31(10):2731–2737

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  Google Scholar 

  • Ruppert L, Lin Z-Q, Dixon R, Johnson K (2013) Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant–soil system. J Hazard Mater 262:1230–1236

    Article  CAS  Google Scholar 

  • Saha A, Basak B (2020) Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind Crop Prod 145:111979

    Article  CAS  Google Scholar 

  • Saleem MH, Ali S, Kamran M, Iqbal N, Azeem M, Tariq Javed M et al (2020a) Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilities. Plan Theory 9(6):756

    CAS  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Rana MS, Rizwan M, Kamran M et al (2020b) Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 248:126032

    Article  CAS  Google Scholar 

  • Salt DE, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49(1):643–668

    Article  CAS  Google Scholar 

  • San Miguel A, Ravanel P, Raveton M (2013) A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J Hazard Mater 244:60–69

    Article  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2(4):178–191

    Google Scholar 

  • Sharma R, Bhardwaj R, Gautam V, Bali S, Kaur R, Kaur P et al (2018) Phytoremediation in waste management: hyperaccumulation diversity and techniques. In: Plants under metal and metalloid stress. Springer, pp 277–302

    Chapter  Google Scholar 

  • Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8(1):1–11

    Google Scholar 

  • Singh R, Ahirwar NK, Tiwari J, Pathak J (2018) Review on sources and effect of heavy metal in soil: its bioremediation. Int J Res Appl Nat Soc Sci 2018:1–22

    CAS  Google Scholar 

  • Singh V, Pandey B, Suthar S (2019) Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicol Environ Saf 179:88–95

    Article  CAS  Google Scholar 

  • Singh VK, Singh R, Rajput VD, Singh VK (2023) Halophytes for the sustainable remediation of heavy metal-contaminated sites: recent developments and future perspectives. Chemosphere 313:137524

    Article  CAS  Google Scholar 

  • Sinha S, Mishra R, Sinam G, Mallick S, Gupta A (2013) Comparative evaluation of metal phytoremediation potential of trees, grasses, and flowering plants from tannery-wastewater-contaminated soil in relation with physicochemical properties. Soil Sediment Contam Int J 22(8):958–983

    Article  Google Scholar 

  • Song W-Y, Ju Sohn E, Martinoia E, Jik Lee Y, Yang Y-Y, Jasinski M et al (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914–919

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  • Tang Z, Zhang L, Huang Q, Yang Y, Nie Z, Cheng J et al (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol Environ Saf 122:343–351

    Article  Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):1–11

    Article  Google Scholar 

  • Tordoff G, Baker A, Willis A (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1–2):219–228

    Article  CAS  Google Scholar 

  • Tripathi S, Singh VK, Srivastava P, Singh R, Devi RS, Kumar A, Bhadouria R (2020) Phytoremediation of organic pollutants: current status and future directions. In: Abatement of environmental pollutants. Elsevier, pp 81–105

    Chapter  Google Scholar 

  • Tully K, Ryals R (2017) Nutrient cycling in agroecosystems: balancing food and environmental objectives. Agroecol Sustain Food Syst 41(7):761–798

    Article  Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM et al (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236

    Article  Google Scholar 

  • Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776

    Article  CAS  Google Scholar 

  • Verma P, Rawat S (2021) Rhizoremediation of heavy metal-and xenobiotic-contaminated soil: an eco-friendly approach. In: Removal of emerging contaminants through microbial processes. Springer, pp 95–113

    Chapter  Google Scholar 

  • Wang Q, Cui J (2011) Perspectives and utilization technologies of chicory (Cichorium intybus L.): a review. Afr J Biotechnol 10(11):1966–1977

    CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, McIntosh M (2006) Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38(6):1451–1461

    Article  CAS  Google Scholar 

  • Werner P (2003) The contribution of natural attenuation processes for the remediation of contaminated sites. Paper presented at the groundwater engineering-recent advances. Proceedings of the international symposium on groundwater problems related to the geo-environment, Okayama. AA Balkema, Lisse

    Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  Google Scholar 

  • Wiessner A, Kappelmeyer U, Kaestner M, Schultze-Nobre L, Kuschk P (2013) Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands. Water Res 47(13):4265–4273

    Article  CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1–3):1–8

    Article  CAS  Google Scholar 

  • Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R (2011) Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediation 13(8):788–804

    Article  Google Scholar 

  • Wu Q, Zhou H, Tam NF, Tian Y, Tan Y, Zhou S et al (2016) Contamination, toxicity and speciation of heavy metals in an industrialized urban river: implications for the dispersal of heavy metals. Mar Pollut Bull 104(1–2):153–161

    Article  CAS  Google Scholar 

  • Xu Q, Renault S, Yuan Q (2019) Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. Int J Phytoremediation 21(9):831–839

    Article  CAS  Google Scholar 

  • Yan K, Xu H, Zhao S, Shan J, Chen X (2016) Saline soil desalination by honeysuckle (Lonicera japonica Thunb.) depends on salt resistance mechanism. Ecol Eng 88:226–231

    Article  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu T-Y, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6(1):1–14

    Google Scholar 

  • Yang Y, Ge Y, Tu P, Zeng H, Zhou X, Zou D et al (2019a) Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass. J Hazard Mater 363:385–393

    Article  CAS  Google Scholar 

  • Yang W, Yang Y, Ding Z, Yang X, Zhao F, Zhu Z (2019b) Uptake and accumulation of cadmium in flooded versus non-flooded Salix genotypes: implications for phytoremediation. Ecol Eng 136:79–88

    Article  Google Scholar 

  • Yifru DD, Nzengung VA (2008) Organic carbon biostimulates rapid rhizodegradation of perchlorate. Environ Toxicol Chem Int J 27(12):2419–2426

    Article  CAS  Google Scholar 

  • Zhang H, Dang Z, Yi X, Yang C, Zheng L, Lu G (2009a) Evaluation of dissipation mechanisms for pyrene by maize (Zea mays L.) in cadmium co-contaminated soil. Global NEST J 11:487–496

    Google Scholar 

  • Zhang H, Dang Z, Zheng L, Yi X (2009b) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6(2):249–258

    Article  Google Scholar 

  • Zhang X, **a H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101(6):2063–2066

    Article  CAS  Google Scholar 

  • Zhang Z, Rengel Z, Meney K, Pantelic L, Tomanovic R (2011) Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater 189(1–2):119–126

    Article  CAS  Google Scholar 

  • Zhou M, Ghnaya T, Dailly H, Cui G, Vanpee B, Han R, Lutts S (2019) The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere 233:954–965

    Article  CAS  Google Scholar 

  • Zhu Y, Zayed A, Qian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22(1):299–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Ben Seghir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hemmami, H. et al. (2023). Phytoremediation of Xenobiotics: Principles and Applications in Environmental Pollution Removal. In: Singh, R., Singh, P., Tripathi, S., Chandra, K.K., Bhadouria, R. (eds) Xenobiotics in Urban Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-35775-6_13

Download citation

Publish with us

Policies and ethics

Navigation