Multibody Analysis and Design Optimization of a Full-Scale Biped-Wheeled Exoskeleton

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 120))

Included in the following conference series:

  • 1480 Accesses

Abstract

This work presents the design optimization of the HANDSHAKE multibody model, a full-scale biped-wheeled exoskeleton, conceived in previous works. The ambition of the HANDSHAKE biped-wheeled exoskeleton is to give new locomotion perspectives at people with reduced mobility or people with complete paralysis of the lower body. In this paper, a critical analysis of the multibody simulation of the latest version of the model, performed using MATLABĀ® and SimulinkĀ®, allowed to design and optimize the new multibody model. A comparison of multibody simulation during the walking gait between the new and the latest version of the HANDSHAKE model underlined a reduction of motor torques and power supply in the new model. These results confirm the innovative solution proposed with the HANDSHAKE biped-wheeled exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herr, H.: Exoskeletons and orthoses: classification, design challenges and future directions. J. Neuroeng. Rehabil. 6(1), 1ā€“9 (2009)

    ArticleĀ  Google ScholarĀ 

  2. Panero, E., Muscolo, G.G., Pastorelli, S., Gastaldi, L.: Influence of hinge positioning on human joint torque in industrial trunk exoskeleton. In: Uhl, T. (eds.) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol. 73, pp. 133ā€“142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20131-9_14

  3. Mizen, N.J., Inventor, Calspan Corp., Assignee: Powered exoskeletal apparatus for amplifying human strength in response to normal body movements. United States patent US 3,449,769. 1969 June 17

    Google ScholarĀ 

  4. Bogue, R.: Exoskeletons and robotic prosthetics: a review of recent developments. Ind. Robot Int. J. 36(5), 421ā€“427 (2009)

    Google ScholarĀ 

  5. Magnetti Gisolo, S., Muscolo, G.G., Paterna, M., De Benedictis, C., Ferraresi, C.: Feasibility study of a passive pneumatic exoskeleton for upper limbs based on a mckibben artificial muscle. In: Zeghloul, S., Laribi, M.A., Sandoval, J. (eds.) RAAD 2021. MMS, vol. 102, pp. 208ā€“217. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75259-0_23

    ChapterĀ  Google ScholarĀ 

  6. Kelley, L.C.: Inventor. Pedomotor. United States Patent US 1,308,675. 1 July 1919

    Google ScholarĀ 

  7. Chen, G., Chan, C.K., Guo, Z., Yu, H.: A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit. Rev. Biomed. Eng. 41(4ā€“5) (2013)

    Google ScholarĀ 

  8. Pons, J.L.: Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. 29(3), 57ā€“63 (2010)

    ArticleĀ  Google ScholarĀ 

  9. Vukobratovic, M.K.: When were active exoskeletons actually born? Int. J. Humanoid Rob. 4(03), 459ā€“486 (2007)

    ArticleĀ  Google ScholarĀ 

  10. Ekso Bionics: Webpage visited on March 2022. https://eksobionics.com/eksonr/

  11. Parker Huffin Corporation: Webpage visited on March 2022. https://www.indego.com/indego/us/en/home

  12. Cyberdyne. Webpage visited on March 2022. https://www.cyberdyne.jp

  13. Koseki, K., et al.: Gait training using the Honda Walking Assist DeviceĀ® for individuals with transfemoral amputation: a report of two cases. J Back Musculoskelet Rehabil. 33(2), 339ā€“344 (2020). https://doi.org/10.3233/BMR-191726.PMID:31929139;PMCID:PMC7175943

    ArticleĀ  Google ScholarĀ 

  14. Muscolo, G.G.: HANDSHAKE: HANDling system for human autonomous KEe**. Int. J. Humanoid Robot. 18(01), 2150003 (2021). https://doi.org/10.1142/S0219843621500031

  15. Zoccali, A., Muscolo, G.G.: Comfort perception analysis of human models interfacing with novel biped-wheeled-exoskeletons. In: Rauter, G., Cattin, P.C., Zam, A., Riener, R., Carbone, G., Pisla, D. (eds.) MESROB 2020. MMS, vol. 93, pp. 21ā€“28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58104-6_3

    ChapterĀ  Google ScholarĀ 

  16. Trono, G.; NicolƬ, A.; Muscolo, G.G.: Sustainable compliant physical interaction in a biped-wheeled wearable machine. Front. Mech. Eng. 6, 581626 (2020). https://doi.org/10.3389/fmech.2020.581626

  17. Loschi, A., Smerchinich, A., Muscolo, G.G.: New sustainable biped-wheeled exoskeleton prototypes. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds.) I4SDG 2021. MMS, vol. 108, pp. 158ā€“165. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87383-7_17

    ChapterĀ  Google ScholarĀ 

  18. Muscolo, G.G., Recchiuto, C.T.: Flexible structure and wheeled feet to simplify biped locomotion of humanoid robots. Int. J. Humanoid Rob. 14(01), 1650030 (2017)

    ArticleĀ  Google ScholarĀ 

  19. Lisitano, D., Bonisoli, E., Recchiuto, C.T., Muscolo, G.G.: Dynamic balance of the head in a flexible legged robot for efficient biped locomotion. MDPI Appl. Sci. 11(7), 2945, 1ā€“19 (2021). https://doi.org/10.3390/app11072945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gerardo Muscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nigido, G., Bonisoli, E., Muscolo, G.G. (2022). Multibody Analysis and Design Optimization of a Full-Scale Biped-Wheeled Exoskeleton. In: MĆ¼ller, A., Brandstƶtter, M. (eds) Advances in Service and Industrial Robotics. RAAD 2022. Mechanisms and Machine Science, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-031-04870-8_37

Download citation

Publish with us

Policies and ethics

Navigation