General Data on Clay Science, Crystallochemistry and Systematics of Clay Minerals, Clay Typologies, and Clay Properties and Applications

  • Chapter
  • First Online:
Minerals latu sensu and Human Health

Abstract

Clay and clay minerals are ubiquitous constituents of the Earth’s crust, and they are being used by man for therapeutic, cosmetic and many other basic purposes, for instance, in pottery and construction, since prehistoric times. Clay and clay minerals are unique within all other minerals, and as, natural and fine-grained materials they are characterized by singular specific properties such as plasticity and absorption. Also, they are the main constituents of clayey soils and edible clays object of geophagy practices, and of healing mud and peloids used in mud therapy and pelotherapy. This chapter is initiated with relevant information, mainly on clay science, clay and clay minerals’ definition, clay typologies, crystallochemical characteristics and properties of clay minerals’ species as well as clay typology. Clay minerals’ specific properties, such as electric charge (cationic and anionic clay minerals), active sites and functional groups in clay mineral surfaces, basic structural units, planar and non-planar structures and systematic of clay minerals are presented and discussed. The unique properties of certain clays and clay minerals justify their uses for both internal and external applications, in medicines, pharmaceuticals and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad I (2003) Physical meaning and application of the illite Kubler index: measuring reaction progress in low-grade metamorphism. Seminarios SEM (Sociedad Española de Mineralogia) 3, 53, 12 pp

    Google Scholar 

  • Abad I, Mata MP, Nieto F, Velilla N (2001) The phyllosilicates in diagenetic-metamorhic rocks of the south Portuguese zone, southwestern of Portugal. Can Mineral 39:1571–1589

    Google Scholar 

  • Adamo P, Violante P, Wilson MJ (2001) Tubular and spheroidal halloysite in pyroclastic deposits in the area of Roccamonfina volcano, Southern Italy. Geoderma 99:295–316

    Article  Google Scholar 

  • Al-Ani T, Sarapaa O (2008) Clay and clay mineralogy: physical-chemical properties and industrial uses

    Google Scholar 

  • Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) The use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36

    Article  Google Scholar 

  • Aguzzi C, Sandri G, Derezo P, Carazo E, Viseras C (2016) Health medical application of tubular clay minerals. In: Yuan P, Thill A, Bergaya F (eds) Nanosized tubular clay minerals., Elsevier

    Google Scholar 

  • Ambre AH, Katti KS, Katti DR (2010) Nanoclay based composite scaffolds for bone tissue engineering applications. J Nanotechnol Eng Med 1:031013

    Article  Google Scholar 

  • Ambrogi V, Nocchetti M, Latterini L (2014) Promethazine-montmorillonite inclusion complex to enhance drug photostability. Langmuir 30:14612–14620

    Article  Google Scholar 

  • Askenasy PE, Dixon JB, Mckee TR (1973) Spheroidal halloysite in Guatemalan soil. Soil Sci Soc Am Proc 37:799–803

    Article  Google Scholar 

  • Aufreiter S, Hancock RGV, Mahaney WC, Stambolic-Robb A, Sanmugadas K (1997) Geochemistry and mineralogy of soils eaten by humans. Int J Food Sci Nutr 48:293–305

    Article  Google Scholar 

  • Awad M, López-Galindo A, Setti M, El-Rahmany MM, Viseras C (2017) Kaolinite in pharmaceuticals and biomedicine. Int J Pharm 533:34–48

    Article  Google Scholar 

  • Azeredo HMCD (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  Google Scholar 

  • Babu SS, Kalarikkal N, Thomas S, Radhakrishnam EK (2018) Enhanced antimicrobial performance of cloisite 30B/poly (caprolactone) over cloisite 30B/poly (lctic acid) as evidenced by structural features. Appl Clay Sci 153:198–204

    Article  Google Scholar 

  • Bailey SW (1977) Report of the IMA-IUCr Joint Committee on Nomenclature. Am Mineral 62:411–415

    Google Scholar 

  • Bailey SW (1980a) Structure of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 1–123

    Google Scholar 

  • Bailey SW (1980b) Summary of recommendations of AIPEA Nomenclature Committee for 1977-1978. Clays Clay Miner 28:73–78.; Clay Miner 15: 85–93

    Google Scholar 

  • Bailey SW (1981) A system of nomenclature for regular interstratifications. Can Mineral 19:651–655

    Google Scholar 

  • Bailey SW (1989) Report of the AIPEA Nomenclature Committee. AIPEA Newslett 26:17–18

    Google Scholar 

  • Bailey SW, Brindley GW, Johns WD, Martin RT, Ross M (1971a) Summary of national and international recommendations on clay minerals nomenclature, 1969-1970. Clays Clay Miner 19:129–132

    Article  Google Scholar 

  • Bailey SW, Brindley GW, Johns WD, Martin RT, Ross M (1971b) Clay Mineral Society, Report of Nomenclature Committee 1969-1970. Clays Clay Miner 19:132–133

    Article  Google Scholar 

  • Bailey SW, Brindley GW, Kodama H, Martin RT (1979) Report of Clay Minerals Society Nomenclature Committee for 1977-1978. Clays Clay Miner 27:238–239

    Article  Google Scholar 

  • Bailey SW, Alietti A, Formoso MLL, Konta J, Koster HM, Mackenzie RC, Morgan DJ, Mumpton FA, Nagasawa K, Paquet H, Raussell-Colom JA, Zvyagin BB (1986) Report of the AIPEA Nomenclature Committee, AIPEA Newslett 22(Supplement February)

    Google Scholar 

  • Bardossy G (1982) Karst Bauxites: Bauxite deposits on carbonate rocks. In: Developments in economic geology, vol 14. Elsevier Science, 441 pp

    Google Scholar 

  • Bergaya F, Lagaly G (2001) Surface modification of clay minerals. Appl Clay Sci 19(1-6):1–3

    Article  Google Scholar 

  • Bergaya F, Lagaly G (2006) Chapter 7: Introduction to pure clay minerals. In: Bergaya F, BKG T, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1. Elsevier, Amsterdam, pp 717–741

    Google Scholar 

  • Bergaya F, Lagaly G (2007) Clay minerals properties responsible for clay-based polymer nanocomposite (CPN) performance. In: Carrado KA, Bergaya F (eds) Clay Based Polymer Nanocomposites (CPN). CMS workshop lectures, vol 15, 61–97

    Google Scholar 

  • Bergaya F, Lagaly G, Beneke K (2006) Chapter 15: History of clay science: a young discipline. In: Bergaya F, BKG T, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1, pp 1163–1181

    Chapter  Google Scholar 

  • Bergaya F, Jaber M, Lambert JF (2011) Chapter 2: Organophilic clay minerals. In: Galimberti M (ed) Rubber clay nanocomposites, Science, technology, and applications. Wiley, Chichester, pp 45–86

    Chapter  Google Scholar 

  • Bergaya F, Lagaly G, Vayer M (2013) Chapter 2.11: Cation and anion exchange. Developments in clay science, vol 5B, pp 333–359

    Google Scholar 

  • Betega de Paiva L, Morales AR, Valenzuela Diaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1–2):8–24

    Article  Google Scholar 

  • Bhattacharyya KG, SenGupta S, Sarma GK (2014) Interactions of the dye, rhodamine B with kaolinite and montmorillonite in water. Appl Clay Sci 99:7–17

    Article  Google Scholar 

  • Bovey J, Kooli F, Jones W (1996) Preparation and characterization of Ti-pillared acid activated clay catalyst. Clay Miner 31:501–506

    Article  Google Scholar 

  • Bradley WF (1940) The structural scheme of attapulgite. Am Miner 25:405–413

    Google Scholar 

  • Bragg R, Jansen A, Coetzee M, van der Westhuizen W, Boucher C (2014) Bacterial resistance to quaternary ammonium compounds (QAC) disinfectants. Adv Exp Med Biol 808:1–13

    Article  Google Scholar 

  • Brauner K, Preissinger A (1956) Struktur und entstehung des Sepioliths. Min Petr Mitteil 6:120–140

    Article  Google Scholar 

  • Brigatti F, Guggenheim S (2002) Mica structure chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Rev Mineral Geochem 46(1):1–97

    Google Scholar 

  • Brigatti MF, Galán E, Theng BKG (2006) Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1. Elsevier, Amsterdam, pp 19–86

    Chapter  Google Scholar 

  • Brigatti MF, Malferrari D, Laurora A, Elmi C (2011) Structure and mineralogy of layer silicates: recent perspectives and new trends. In: Brigatti MF, Mottana A (eds) Layered mineral structures and their applications in advanced technologies, EMU notes in mineralogy, vol 11. Mineralogical Society, London, pp 1–71

    Google Scholar 

  • Brigatti MF, Galán E, Theng BKG (2013) Structure and mineralogy of clay minerals. Developments in clay science, vol 5A, Elsevier, pp 21–81

    Google Scholar 

  • Brindley GW (1959) X-ray and electron diffraction data for sepiolite. Am Miner 44(5–6):495–500

    Google Scholar 

  • Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-Ray identification. Mineralogical Society Monograph, n°5, London

    Google Scholar 

  • Brindley GW, Pedro G (1970) Report of the AIPEA nomenclature committee. AIPEA Newslett 7:8–13

    Google Scholar 

  • Brindley GW, Pedro G (1976) Meeting of the Nomenclature Committee of AIPEA, Mexico City, July 21, 1975. AIPEA Newslett 12:5–6

    Google Scholar 

  • Brunet de Courssou L (2002) 5th WHO Advisory Group meeting on Buruli ulcer. Study Group Report on Buruli Ulcer Treatment with Clay, Geneva, Switzerland

    Google Scholar 

  • Bujdáková H, Bujdáková V, Májeková-Koscova H, Gaálová B, Bizovshá V, Bohác P, Bujdák J (2018) Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite. Appl Clay Sci 158:21–28

    Article  Google Scholar 

  • Caillère S, Hénin S, Esquevin J (1953) Synthèses à basse température de phyllite ferrifère. Comptes Rendus de l’Académie des Sciences, Paris vol 237, pp 1724–1726

    Google Scholar 

  • Caillère S, Oberlin A, Hénin S (1954) Étude au microscope électronique de quelques silicates phylliteux obtenus par synthèses à basse températue. Clay Miner Bull 2:146–156

    Google Scholar 

  • Caillère S, Hénin S, Esquevin J (1955) Synthèses à basse température de quelque minéraux ferrifère (silicates et oxydes). Bull de la Société Française de Minéralogie et Cristallographie 78:227–241

    Google Scholar 

  • Caillère S, Hénin S, Rautureau M (1982) Minéralogie des Argiles. I: Structure et Propriétés Physico-Chimiques, 184 pp, II: Classification et Nomenclature. Masson, Paris, 189 pp

    Google Scholar 

  • Caillère S, Hénin S, Rautureau M (1989) Les Argiles. Septima (ed.), Paris, 126 pp

    Google Scholar 

  • Calvo JP, Pozo M (2013) Geology of magnesium clays in sedimentary and non-sedimentary environments. In: Pozo M, Galán E (eds) Magnesium clays: characterization, origin and applications. Aipea Educational Series, vol 2, 63–123–174

    Google Scholar 

  • Carrado KA, Bergaya F (2007) Clay-Based polymer nano-composites. CMS workshop Lectures Series, vol 15, Clay Minerals Society, Chantilly, Virginia, 278 pp

    Google Scholar 

  • Carrado KA, Komadel P (2009) Acid activation of bentonites and polymer-clay nano-composites. Elements 5:111–115

    Article  Google Scholar 

  • Carrado KA, Decarreau A, Petit S, Bergaya F, Lagaly G (2006) Chapter 4: Synthetic clay minerals and purification of natural clays. Developments in clay science 1, pp 115–139

    Google Scholar 

  • Carretero MI (2002) Clay minerals and their beneficial effects upon human health: a review. Appl Clay Sci 21(3–4):155–163

    Article  Google Scholar 

  • Carretero MI, Pozo M (2007) Mineralogía aplicada: salud y medio ambiente. Thomson, Madrid, 464 pp

    Google Scholar 

  • Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry: Part I – Excipients and medical applications. Appl Clay Sci 46:73–80

    Article  Google Scholar 

  • Carretero MI, Pozo M (2010) Clay and non-clay minerals in the pharmaceutical and cosmetics industry: part II – Active ingredients. Applied Clay Science 47:171–181

    Google Scholar 

  • Carretero MI, Gomes CSF, Tateo F (2006) Clays and human health. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1. Elsevier, Amsterdam, pp 717–741

    Chapter  Google Scholar 

  • Carretero MI, Pozo M, Martin-Rubi JA, Pozo E, Maraver F (2010) Mobility of elements in interaction between artificial sweat and peloids used in Spanish spa. Appl Clay Sci 48(3):506–515

    Article  Google Scholar 

  • Carretero MI, Gomes CSF, Tateo F (2013) Chapter 5.5: Clays, drugs and human health. In: Bergaya F, Lagaly G (eds) Handbook of clay science. Part B. Techniques and applications, 2nd edn. Elsevier, pp 711–764

    Google Scholar 

  • Carroll D (1979) Clay minerals: a guide to their x-ray identification. Geological Society of America special paper 126, 80 pp

    Google Scholar 

  • Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, Riela S (2015) Biocompatible poly (N-isopropylacrylamide)-nanotubes for thermoresponsive curcumin release. J Phys Chem C 119:8944–8951

    Article  Google Scholar 

  • Cervini-Silva J, Nieto-Camacho A, Gómez-Vidales V, Kaufhold S, Theng BKG (2015) The anti-inflammatory activity of natural allophane. Appl Clay Sci 105–106:48–51

    Article  Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer, Berlin, 623 pp

    Book  Google Scholar 

  • Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, Jean JS, Lin KH (2009) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165:148–155

    Article  Google Scholar 

  • Chen T, Peng CQ (1990) A mineralogical investigation on synthetized Mg–Si-mica. Acta Mineral Sin 10(2):127–131

    Google Scholar 

  • Chen P-Y, Lin M-L, Zheng Z (1997) On the origin of the name kaolin and the kaolin deposits of the Kauling and Dazhou areas, Kiangsi, China. Appl Clay Sci 12:1–25

    Article  Google Scholar 

  • Cheng H, Zhou Y, Liu Q (2019) Chapter 6: Kaolinite nanomaterials: preparation, properties and fundamental applications. In: Wang A, Wang W (eds) Nanomaterials from clay minerals: a new approach to green functional materials. Elsevier, pp 285–334

    Google Scholar 

  • Choy J-H, Park M (2004) Cationic and anionic clays for biological applications. Interface Sci Technol 1:403–424

    Article  Google Scholar 

  • Christidis GE (2011) Industrial clays. In: Christidis GE (ed) Advances in the characterization of industrial minerals, EMU notes in mineralogy, vol 9. Mineralogical Society, London, pp 341–414

    Chapter  Google Scholar 

  • Christidis GE (2013) Chapter 4.1: Assessment of industrial clays. Developments in clay science, vol 5B. Elsevier, pp 425–449

    Google Scholar 

  • Christidis GE, Huff W (2009) Geological aspects and genesis of bentonites. Elements 5(2):93–98

    Article  Google Scholar 

  • Christidis GE, Scott PW, Dunham AC (1997) Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl Clay Sci 12:329–347

    Article  Google Scholar 

  • Christidis GE, Aldana C, Chryssikos G, Gionis V, Kalo H, Stoter M, Breu J, Robert J-L (2018) The nature of laponite: pure hectorite or a mixture of different trioctahedral phases? Minerals 8:314

    Article  Google Scholar 

  • Churchman GJ, Lowe DJ (2012) Alteration, formation, and occurrence of minerals in soils. In: Huang PM, Sumner ME (eds) Handbook of soil sciences, 2nd edn, vol 1, Properties and processes 20. CRC Press (Taylor and Francis), Boca Raton, pp 1.20.72

    Google Scholar 

  • Churchman GJ, Pasbakhsh P (2015) Current trends in research and application of natural mineral nanotubes. In: Pasbakhsh P, Churchman GJ (eds) Natural mineral nanotubes. Apple Academic Press, Oakville, pp 481–488

    Chapter  Google Scholar 

  • Churchman GJ, Aldridge LP, Carr RM (1972) Clays Clay Miner 20:241

    Article  Google Scholar 

  • Churchman GJ, Pasbakhsh P, Lowe DJ, Theng BKG (2016) Unique but diverse: some observations on the formation, structure and morphology of halloysite. Clay Miner 51:395–416

    Article  Google Scholar 

  • Clauer N, Chaudhuri S (1995) Chapter 1: an introduction to clay minerals and isotope geochemistry. In: Clays in crustal environments: isotope dating and tracing. Springer

    Google Scholar 

  • Combes PJ, Bardossy G (1995) Chapter 4D: Geodynamics of bauxites in The Tethys Ocean. In: Nairn AEM et al (eds) The ocean basins and margins. vol 8: The Tethys Ocean. Plenum Press, pp 347–365

    Google Scholar 

  • Cravero F, Fernández L, Marfil S, Sánchez M, Maiza P, Martínez A (2016) Spheroidal halloysites from Patagonia, Argentina: Some aspects of their formation and applications. Appl Clay Sci 131:48–58

    Article  Google Scholar 

  • Cuadros J (2013) Crystal-chemistry of mixed-layer clays. In: Fiore S, Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA Educational Series, Publication n° 1, 2nd edn, pp 11–34. ISBN: 978-88-7522-046-4

    Google Scholar 

  • Cuadros J, Fiore S, Huertas FJ (2013) Introduction to mixed-layer clay minerals. In: Fiore S, Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA Educational Series, Publication n° 1, 2nd edn, pp 1–10. ISBN: 978-88-7522-046-4

    Google Scholar 

  • Cunningham MJ, Lowe DJ, Wyatt JB, Moon VG, Churchman GJ (2016) Discovery of halloysite books in altered silicic Quaternary tephras, Northern New Zealand. Clay Miner 51:351–372

    Article  Google Scholar 

  • Dal Bosco SM, Jimenez RS, Vignado C, Fontana J, Geraldo B, Figueiredo FCA, Mandelli D, Carvalho WA (2006) Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption 12:133–146

    Article  Google Scholar 

  • Darder M, Ruiz-Hitzky E (2007) Bionanocomposites based on clay minerals. In: Carrado K, Bergaya F (eds) CMS workshop lectures series, vol 15. Clay Minerals Society, Chantilly, Virginia, pp 231–256

    Google Scholar 

  • De Lapparent J (1935) An essential constituent of fuller’s earth. Compt Rendue 201:481–483

    Google Scholar 

  • De Vos P (2010) European material medica in historical texts: Longevity of a tradition and implications for future use. J Ethnopharmacol 132:28–47

    Article  Google Scholar 

  • Delcea M, Mohwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 63:730–747

    Article  Google Scholar 

  • Detellier C, Schoonheydt RA (2014) From platy to nanorolls. Elements 10:201–206

    Article  Google Scholar 

  • Direcção-Geral de Geologia e Minas, Ministério da Indústria e Energia (1985) Catálogo das Argilas Portuguesas Utilizadas na Indústria Cerâmica, 175 pp

    Google Scholar 

  • Donauerová A, Bujdák J, Smolinská M, Bujdáková H (2015) Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue. J Photochem Photobiol B 151:135–141

    Article  Google Scholar 

  • Dondi M, Chiara Z, Raimondo M (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci 96:91–109

    Article  Google Scholar 

  • Drits VA, Alexandrova VA (1966) The crystallochemical nature of palygorskites. Zap Vses Miner Obshch 95:551–560

    Google Scholar 

  • Drits VA, Zviagina BB (2009) Trans-vacant and Cis-vacant 2:1 layer-silicates: structural features, identification and occurrence. Clay Clay Miner 57(4):405–415

    Google Scholar 

  • Droy Lefaix MT, Tateo F (2006) Clays and clay minerals as drugs. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1. Elsevier, Amsterdam, pp 743–753

    Chapter  Google Scholar 

  • Dutta DK (2018) Acid-modified nanoporous montmorillonite. In: Schoonheydt R, Johnston CT, Bergaya F (eds) Developments in clay science, vol 9. Elsevier, pp 289–329

    Google Scholar 

  • Emiel JM, Hensen SB (2002) Why clay swell. J Phys Chem B 106(49):12664–12667

    Article  Google Scholar 

  • Emmerich K (2013) Chapter 2.13: Full characterization of smectites. In: Developments in clay science, vol 5B. Elsevier, Amsterdam, pp 381–404

    Google Scholar 

  • Emmerich K, Wolters F, Kahr G, Lagaly G (2009) Clay profiling: The classification of montmorillonites. Clays Clay Miner 57:104–114

    Article  Google Scholar 

  • Fakhrullin RF, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11:2243–2246

    Article  Google Scholar 

  • Falaras P, Kovanis I, Lezou F, Seiragakis G (1999) Cottonseed oil bleaching by acid-activated montmorillonite. Clay Miner 34:221–232

    Article  Google Scholar 

  • Ferrell RE, Aparício P, Forsman J (2013) Interstratified clay minerals in the weathering environment. In: Fiore S, Javier Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance AIPEA educational series, Pub. No. 1, pp 35–52

    Google Scholar 

  • Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31(1):1–8

    Article  Google Scholar 

  • Fiore S, Quadros J, Huertas FJ (eds) (2009/2013) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA educational series, Publication n°1, 175 pp, 1st edn (2009), 2nd edn (2013). ISBN: 978-88-7522-046-4

    Google Scholar 

  • Floody MC, Theng B, Reyes P, Mora M (2009) Natural nanoclays: applications and future trends – a Chilean perspective. Clay Miner 44:161–176

    Google Scholar 

  • Galán E (1996) Properties and applications of Palygorskite-Sepiolite clays. Clay Miner 31:443–453

    Article  Google Scholar 

  • Galán E (ed) (2003) Mineralogia Aplicada. Sintesis, Madrid

    Google Scholar 

  • Galán E (2006) Chapter 14: Genesis of clay minerals: geological environments for clay formation. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1, pp 1129–1162

    Chapter  Google Scholar 

  • Galán E, Aparício P (2013) Methodology for the identification and characterization of magnesium clays. In: Pozo M, Galán E (eds) Magnesium clays: characterization, origin and applications, vol 2. AIPEA educational series, pp 63–121

    Google Scholar 

  • Galán E, Carretero I (1999) A new approach to compositional limits for sepiolite and palygorskite. Clays Clay Miner 47:399–409

    Article  Google Scholar 

  • Galán E, Ferrell RE (2006) Chapter 3: genesis of clay minerals. Developments in clay science, vol 5, pp 83–126

    Google Scholar 

  • Gamelas JAF, Ferraz E (2015) Composite films based on nanocellulose and nanoclay minerals as high strength materials with gas barrier capabilities: key points and challenges. BioRes 10(4):6310–6313

    Article  Google Scholar 

  • Garcia-Romero E, Suárez M (2010) On the chemical composition of sepiolite and palygorskite. Clays Clay Miner 58(1):1–20

    Article  Google Scholar 

  • Garrido-Ramirez E, Theng B, Mora M (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: a review. Appl Clay Sci 47:182–192

    Article  Google Scholar 

  • Ghadiri M, Chrzanowski W, Rohanizadeh R (2015) Biomedical applications of cationic clay minerals. RSC Adv 5:37. https://doi.org/10.1039/C4RA16945J

    Article  Google Scholar 

  • Gomes CSF (1966a) On the hyperaluminous clays from Andorinha-Cantanhede (Portugal). Memórias e Notícias do Museu Mineralógico e Geológico da Universidade de Coimbra 60:55–57

    Google Scholar 

  • Gomes CSF (1966b) Electron-optical data of authigenic anatase, hematite and goethite from a Portuguese clay. Memórias e Notícias do Museu Mineralógico e Geológico da Universidade de Coimbra 61:81–82

    Google Scholar 

  • Gomes CSF (1968) On a Sr and Al basic phosphate-sulphate close to svanbergite occurring in Portuguese bauxitic clay. Memórias e Notícias do Museu Mineralógico e Geológico da Universidade de Coimbra 66:3–13

    Google Scholar 

  • Gomes CSF (1988) Argilas: O que são e para que servem. Fundação Calouste Gulbenkian (editor), Lisboa, 457 pp

    Google Scholar 

  • Gomes CSF (1992) Occurrence of ferriferous sepiolite in the gabbro quarry of Ribamar, Ericeira (Portugal). Actas del Congreso Geológico de España y VIII Congreso Ltinoamericano de geologia. Tomo 3, pp 134–137

    Google Scholar 

  • Gomes CSF (2002) Argilas: Aplicações na Indústria. Edição do autor. ISBN: 972-8684-12-6, 338 pp

    Google Scholar 

  • Gomes CSF (2015) In pelotherapy what is more important, the peloid solid phase or the peloid liquid phase? Balnea 10:125–142

    Google Scholar 

  • Gomes CSF (2018) Healing and edible clays: A review of basic concepts, benefits and risks. Environ Geochem Health 40:1739–1765. https://doi.org/10.1007/s10653-016-9903-4

    Article  Google Scholar 

  • Gomes CSF, Rautureau M (2013) The role of clay and clay minerals in peloid properties. In: Nunes J, Gomes C, Silva J. (eds) Livro de Actas do III Congresso Iberoamericano de Peloides, Ponta Delgada, São Miguel, Açores, pp 86–93

    Google Scholar 

  • Gomes CSF, Silva JBP (2007) Minerals and clay minerals in medical geology. Appl Clay Sci 36:4–21

    Article  Google Scholar 

  • Gomes CSF, Hernandez R, Sequeira MC (2009) Characterization of clays used for medicinal purposes in the Archipelago of Cape Verde. Geochimica Brasiliensis 22(3):315–331

    Google Scholar 

  • Gomes CSF, Carretero MI, Pozo M, Maraver F, Cantista P, Armijo F, Legido JL, Teixeira F, Rautureau M, Delgado R (2013a) Peloids and pelotherapy: historical evolution, classification and glossary. Appl Clay Sci 75–76:28–38

    Article  Google Scholar 

  • Gomes A, Simões M, Cavaleiro J, Gomes J, Gomes C, Silva J, Santos D, Pontes A (2013b) Study of the organic constituents of the volcanic mud from the “blue pool” of the Balneário da Coroa, São Miguel Island, Azores, Portugal. In: Nunes J, Gomes C, Silva J (eds) Livro de Actas do III Congresso Iberoamericano de Peloides. Ponta Delgada, São Miguel, Açores, pp 332–339

    Google Scholar 

  • Gomes CSF, Silva JBP, Gomes JHC (2015) Natural peloids versus designed and engineered peloids. Bol Soc Esp Hidrol Méd 30(1):15–36

    Google Scholar 

  • Grim RE (1953) Clay mineralogy. McGraw-Hill, New York, 384 pp

    Book  Google Scholar 

  • Grim RE (1962) Applied clay mineralogy. McGraw-Hill, New York, 422 pp

    Book  Google Scholar 

  • Grim RE (1968) Clay mineralogy. McGraw-Hill, New York, 569 pp

    Google Scholar 

  • Grim R, Guven N (1978) Bentonite: geology, clay mineralogy, properties and users, 1978. Elsevier Science Publishing, New York

    Google Scholar 

  • Guégan R (2019) Organoclay applications and limits in the environment. Comptes Rendus Chimie 22:132–141

    Article  Google Scholar 

  • Guggenheim S (2011) An overview of order/disorder in hydrous phyllosilicates. In: Brigatti MF, Mottana A (eds) Layered mineral structures and their applications in advanced technologies, EMU notes in mineralogy, vol 11, pp 72–121

    Google Scholar 

  • Guggenheim S (2013) Introduction to Mg-rich clay minerals: structure and composition. In: Pozo M, Galán E (eds) Magnesium clays: characterization, origin and applications, AIPEA educational series, vol 2, pp 1–62

    Google Scholar 

  • Guggenheim S, Krekeler MPS (2011) The structure and microtextures of the palygorskite-sepiolite group minerals. Chapter 1, 3–32 pp of Volume 3 “Developments in Palygorskite-Sepiolite Research: A new outlook on these nanomaterials” (eds. Galan E, Singer A) of “Developments in clay science series”, Elsevier

    Google Scholar 

  • Guggenheim S, Martin RT (1995) Definition of clay and clay mineral: joint report of the nomenclature and CMS nomenclature committees. Clays Clay Miner 43(2): 255–256. Clay Miner 30: 257–259

    Google Scholar 

  • Guggenheim S, Alietti A, Drits VA, Formoso MLL, Galán E, Koster HM, Paquet H, Wanatabe T, Bain DC, Hundnall WH (1997) Report of the AIPEA Nomenclature Committee for 1996. Clays Clay Miner 45: 298–300. Clay Miner 32: 493–496

    Google Scholar 

  • Guggenheim S, Bain DC, Bergaya F, Brigatti MF, Drits V, Eberl DD, Formoso MLL, Galán E, Merriman RJ, Peacor DR, Stanjek H, Wanatabe T (2002) Report of AIPEA Nomenclature Committee for 2001: order-disorder, and crystallinity in Phyllosilicates and the use of the crystallinity index. Clays Clay Miner 50: 406–409. Clay Miner 37: 389–393

    Google Scholar 

  • Guggenheim S, Adams JM, Bain D, Bergaya F, Brigatti MF, Drits V, Formoso MLL, Galán E, Kogure T, Stanjek H (2006) Summary of the recommendations of nomenclature committees relevant to clay mineralogy. Report of the Association Internationale pour l’Étude des Argiles (AIPEA). Clay Miner 41(4):863–877

    Article  Google Scholar 

  • Hanif M, Jabbar F, Sharif S, Abbas G, Farooq A, Aziz M (2016) Halloysite nanotubes as a new drug-delivery system: A review. Clay Miner 51:469–477

    Article  Google Scholar 

  • Harsh J (2000) Poorly crystalline aluminosilicate clays. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp 169–182

    Google Scholar 

  • Harvey CC, Lagaly G (2013) Industrial applications. Developments in clay science, vol 5B. https://doi.org/10.1016/B978-0-08-098259-5.00018-4

  • Haydel SE, Remineh CM, Williams LB (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother

    Google Scholar 

  • Hazen RM et al (2013) Clay mineral evolution. Am Mineral 98:2007–2009

    Article  Google Scholar 

  • He H, Ma L, Zhu J, Frost RL, Theng BKG, Bergaya F (2014) Synthesis of organoclays: A critical review and some unresolved issues. Appl Clay Sci 100:22–28

    Article  Google Scholar 

  • Heller-Kalai L (2013) Thermally modified clay minerals. In: Bergaya F, Lagaly G (eds) Handbook of clay science, 2nd edn, vol 5A, Fundamentals, 10.2, pp 411–434

    Google Scholar 

  • Hillier S, Brydson R, Delbos E, Fraser A, Gray N, Pendlowski H, Phillips I, Robertson J, Wilson I (2016) Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Miner 51:325–350

    Article  Google Scholar 

  • Hong SI, Rhim JW (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8:5818–5824

    Article  Google Scholar 

  • Hu P, Yang H (2013) Insight into the physicochemical aspects of kaolins with different morphologies. Appl Clay Sci 47:58–65

    Google Scholar 

  • Hussini F, Aroua MK, Daud WMAW (2011) Textural characteristics, surface chemistry and activation of bleaching earth: a review. Chem Eng J 170:90–106

    Article  Google Scholar 

  • Ismadji S, Soetaredjo FE, Ayucitra A (2015) Chapter 2: Natural clay minerals as environmental cleaning agents. In: Clay materials for environmental remediation. SpringerBriefs in Green chemistry for sustainability. https://doi.org/10.1007/978-3-319-16712-1-2

  • Jaber M, Komarneni S, Zhou C (2013) Synthesis of clay minerals. In: Bergaya F, Lagaly G (eds) Handbook of clay science, 2nd edn. Elsevier, Amsterdam, pp 223–240

    Chapter  Google Scholar 

  • Jackson ML (1956) Soil chemical analysis and soil chemical analysis course

    Google Scholar 

  • Jepson WB (1984) Kaolins: their properties and uses. Philos Trans R Soc Lond A311:411–432

    Google Scholar 

  • Johnston CT (1996) Sorption of organic compounds on clay minerals: a surface functional group approach. In: Sawhney L (ed) Organic pollutants in the environment. CMS workshop lectures. The Clay Minerals Society, pp 2–44

    Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Minerals 45:245–279

    Article  Google Scholar 

  • Johnston CT, Elzea Kogel J, Bish DL, Kogure T, Murray H (2008) Low-temperature FTIR study of kaolin-group minerals. Clays Clay Miner 56:470–485

    Article  Google Scholar 

  • Jozefacink G, Bowanko G (2002) Effects of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner 50(6):771–783

    Article  Google Scholar 

  • Karakaya MC, Karakaya N, Sarioglan S, Koral M (2010) Some properties of thermal muds of some Spas in Turkey. Appl Clay Sci 48:531–537

    Article  Google Scholar 

  • Keller WD (1970) Environmental aspects of clay minerals. J Sed Petrol 40:788–813

    Google Scholar 

  • Keller WD (1976) Scan electron micrographs of kaolins collected from diverse environments of origin. Clays Clay Miner 24:107–113

    Google Scholar 

  • Keller EA (2000) Environmental geology, 8th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kelly HM, Deasy PB, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug. Int J Pharm 274(1-2):167–183

    Article  Google Scholar 

  • Kendall T (1996) Smectite clays. In: Kendal T (ed) Industrial clays. Industrial minerals information, London, pp 1–12

    Google Scholar 

  • Khan A, Afzal S, Mustafa H, Qumreen M (2018) Data article for adsorption of chemically activated fuller’s earth and rice husk for removal of drimarine reactive red dye. Data in brief 21. Elsevier, pp 189–200

    Google Scholar 

  • Khurana S, Kaur S, Kaur H, Khurana RK (2015) Multifaceted role of clay minerals in pharmaceuticals. Future Science OA 1 (3), Special report, FSO6

    Google Scholar 

  • Kikouama OJR, Baldé L (2010) From edible clay to clay-containing formulations for optimization of the oral delivery of some trace elements: a review. Int J Food Sci Nutr 61(8):1–21

    Google Scholar 

  • Kikouama OJR, Konan KL, Katty JA, Bonnet JP, Baldé L, Yagoubi N (2009) Physicochemical characterization of edible clays and release of trace elements. Appl Clay Sci 43(1):135–141

    Article  Google Scholar 

  • Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  • Kirkman JH (1981) Morphology and structure of halloysite in New Zealand tephras. Clays Clay Miner 29:1–9

    Article  Google Scholar 

  • Kloprogge JT, Komarneni S, Amonette JE (1999) Clays Clay Miner 47(5):529–554

    Article  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993a) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189

    Article  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993b) Sorption of water in nylon 6-clay hybrid. J Appl Polym Sci 49:1259–1264

    Article  Google Scholar 

  • Komadel P (2003) Chemically modified smectites. Clay Miner 38:127–138

    Article  Google Scholar 

  • Komadel P (2016) Acid activated Clays: Materials in continuous demand. Appl Clay Sci 131:84–99

    Article  Google Scholar 

  • Komadel P, Madejová J (2013a) Chapter 10.1: Acid activation of clay minerals. Developments in clay science, pp 385–409

    Google Scholar 

  • Komadel P, Madejová J (2013b) Identification and characterization of interstratified clay minerals with spectroscopic and other classical methods. In: Fiore S, Javier Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA educational series. Publication no. 1, pp 89–114

    Google Scholar 

  • Kübler B (1964) Les argiles, indicateurs de métamorphisme. Rev Inst Français du Pétrole 19:1093–1112

    Google Scholar 

  • Kübler B (1968) Evaluation quantitative du métamorphism par la cristallinité de l’illite. Bulletin Centre de Recherche Pau-SNPA 2:385–397

    Google Scholar 

  • Låg J (1990) General survey of geomedicine. In: Lag J (ed) Geomedicine. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • Laird DA (2006) Influence of layer-charge on swelling of Smectites. Appl Clay Sci 34:74–87

    Article  Google Scholar 

  • Lee WF, Fu YT (2003) Effect of montmorillonite on the swelling behavior and drug release behavior of nanocomposite hydrogels. J Appl Polymer Sci 89:3652–3660

    Article  Google Scholar 

  • Leroux F, Besse J-P (2001) Polymer interleaved layered double hydroxides: A new emerging class of nanocomposites. Chem Mater 13(10):3507–3515

    Article  Google Scholar 

  • Levis SR, Deasy PB (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propanolol hydrochloride. Int J Pharm 253(1–2):145–157

    Article  Google Scholar 

  • Limpitlaw UG (2004) The medical use of minerals, rocks and fossils. In: Proceedings of the Geological Society of America, annual meeting abstract 48-5, v36 (5), p 130

    Google Scholar 

  • Liu M, Jia Z, Jia D, Zhou C (2011) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  Google Scholar 

  • López-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36:51–63

    Article  Google Scholar 

  • López-Galindo A, Viseras C, Aguzzi C, Cerezo P (2011) Chapter 13: Pharmaceutical and cosmetic uses of fibrous clays, Advances in the crystal chemistry of sepiolite and palygorskite. In: Galán E, Singer A (eds) Developments in palygorskite-sepiolite research. Developments in clay science, vol 3, pp 290–324. Elsevier

    Google Scholar 

  • Lvov YM (2008) Bio-inorganic hybrid nanomaterials (eds. Ruiz-Hitzky E, Ariga K, Lvov YM). Wiley, Weinheim

    Google Scholar 

  • Lvov YM, Schchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820

    Article  Google Scholar 

  • Lvov YM, Devilliers MM, Fakhrullin RF (2016) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 13:977–986

    Article  Google Scholar 

  • Ma’or Z, Henis Y, Along Y, Orlov E, Sorensen KB, Oren A (2006) Antimicrobial properties of Dead Sea black mineral mud. Int J Dermatol 45:504–511

    Article  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential Materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410

    Article  Google Scholar 

  • Martin RT, Bailey SW, Ebert DD, Fanning DS, Guggenheim S, Kodama H, Srodón Pevear DR, Wicks FJ (1991) Report of the clay minerals society nomenclature committee: revised classification of clay minerals. Clays Clay Miner 39:333–335

    Article  Google Scholar 

  • Massaro M, Collletti CG, Lazzara G, Riela S (2018) The use of some clay minerals as natural resources for drug carrier applications. J Funct Biomater 9:58. https://doi.org/10.3390/jfb9010058

    Article  Google Scholar 

  • Merriman RJ (2005) Clay minerals and sedimentary basin history. Eur J Mineral 17:7–20. https://doi.org/10.1127/0935-1221/200570017-0007

    Article  Google Scholar 

  • Merriman RJ (2006) Clay minerals and sedimentary basin history. Macla 6, XXVI Reúnion SEM/XX Reúnion SEA, 25–26

    Google Scholar 

  • Merriman RJ, Peacor DR (1998) Chapter 2: very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell Science, London

    Google Scholar 

  • Meunier A (2005) Clays. Springer Berlin/Heidelberg/New York, 472 pp. ISBN 3-540-21667-7

    Google Scholar 

  • Meunier A (2013) Identification and characterization with microscopic methods. In: Fiore S, Javier Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA educational series. Publication no. 1, pp 73–88

    Google Scholar 

  • Milliken RE, Bish DL (2011) Clays beyond Earth. Clays Clay Miner 59(4):337–338. https://doi.org/10.1346/CCMN.2011.0590400

    Article  Google Scholar 

  • Millot G (1970) Geology of clays. Springer, Berlin, 429 pp

    Book  Google Scholar 

  • Mitchell D, Vincent A (1997) Exploration and appraisal of plastic sedimentary clays for the fine ceramics industry. Appl Clay Sci 11:311–327

    Google Scholar 

  • Mishra G, Dasf B, Pandey S (2018) Layered double hydroxides: a brief review from fundamentals to applications as evolving biomaterials. Appl Clay Sci 153:172–186

    Article  Google Scholar 

  • Modabberi S, Namayandeh A, López-Galindo A, Viseras C, Setti M, Ranjbaran M (2015) Characterization of Iranian bentonites to be used as pharmaceutical materials. Appl Clay Sci 116–117:193–201

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York

    Google Scholar 

  • Moreno-Maroto JM, Alonso-Azcárate J (2018) What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Appl Clay Sci 161:57–63

    Article  Google Scholar 

  • Mukherjee S (2013) The science of clays: applications in industry, engineering, and environment. Springer, Heidelberg

    Book  Google Scholar 

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    Google Scholar 

  • Murray HH (2006) Current industrial applications of clays. Clay Sci 12(Supplement 2):106–112

    Google Scholar 

  • Murray HH (2007) Applied clay mineralogy: occurrences, processing and application of Kaolins, Bentonites, Palygorskite-Sepiolite, and common clays, Developments in clay science, vol 2. Elsevier, 180 pp

    Google Scholar 

  • Murray HH et al. (1993) Kaolins, kaolins and kaolins. In: Murray HH, Bundy WM, Harvey CC (eds) Kaolin genesis and utilization. , Special Publication 1. Clay Mineralogical Society of America, pp 1–24

    Google Scholar 

  • Nagasawa K, Moro H (1987) Mineralogical properties of halloysites of weathering origin. Chem Geol 60:145–149

    Google Scholar 

  • Nagendrappa G (2011) Organic synthesis using clay and clay-supported catalysts. Appl Clay Sci 53:106–138

    Article  Google Scholar 

  • Nagy B, Bradley WF (1955) The structure scheme of sepiolite. Am Miner 40:885–892

    Google Scholar 

  • Nazir MS, Kassim MHM, Mohapatra L, Gilani MA, Raza MR, Majeed K (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Jawaid M et al (eds) Nanoclay reinforced polymer composites, Engineering materials. Springer, Singapore, pp 35–55. https://doi.org/10.1007/978981-10-1953-1-2

    Chapter  Google Scholar 

  • Nieto F, Arroyo X (2013) Identification and characterization with microscopic methods. In: Fiore S, Javier Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA educational series. Publication no. 1, pp 73–88

    Google Scholar 

  • Novelli G (1996) Applicazion medicali e Igieniche delle bentoniti. Atti Conv. “Argille Curative”, Veniale F. (editor), Gruppo Italiano AIPEA, Salice Terme (PV), Tipografia Trabella, Milano

    Google Scholar 

  • Novelli G (1998) Applicazioni Cosmetiche e Medicaliu delle argille smectiche. Cosmet News 122:350–357

    Google Scholar 

  • Novelli G (2000) Bentonite: a clay over the centuries. Incontri Scentifici, V Corso di Formazione “Metodi di Analisi di Materiali Argillosi”. Gruppo Itaiano AIPEA, pp 263–304

    Google Scholar 

  • Odom IE (1984) Smectite clay minerals: properties and uses. Philos Trans R Soc London A311:391–409

    Google Scholar 

  • Oliveira KCBF, Meneguin AB, Bertolino LC, Filho EC, Leite JRSA, Eiras C (2018) Immobilization of biomolecules on natural clay minerals for medical applications. Int J Adv Med Biotechnol 1(1):31–40

    Article  Google Scholar 

  • Onal M, Sarikaya Y (2007) Preparation and characterization of acid activated bentonite powders. Powder Technol 172(1):14–18

    Article  Google Scholar 

  • Pagano T, Sérgio M, Glisenti L, Diano W, Grompone MA (2001) Use of pillared montmorillonites to eliminate chlorophyll from rice bran oil. Ingenieria Química, 11–19

    Google Scholar 

  • Paquet H, Clauer N (1997) (eds) Soils and sediments: mineralogy and geochemistry. 369 pp, Springer

    Google Scholar 

  • Parfitt RL (1990) Allophane in New Zealand: a review. Aust J Soil Res 28:343–360

    Article  Google Scholar 

  • Patel HA, Somani RS, Bajai HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases, and cosmetic formulations, drug vehicle and waste water treatment. Bull Mater Sci 29:133–145

    Article  Google Scholar 

  • Pearson A (2002) The competent nurse? Int J Nursing Practice 8(5):233–234. https://doi.org/10.1046/j.1440-172x.2002.00381.x

    Article  Google Scholar 

  • Peiró PS, Tejero SS (2014) Utilización terapêutica de la arcilla. In: Peloteraia: Aplicaciones médicas e cosméticas de fangos termales. Fundación Bílbilis, Torres AH (coordinador), pp 279–288

    Google Scholar 

  • Plançon A (2001) Order-disorder in clay minerals structures. Clay Miner 36:1–14

    Article  Google Scholar 

  • Plançon A (2013) Identification and characterization of mixed-layer clay minerals by means of XRD of oriented clay mounts. In: Fiore S, Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance. AIPEA educational series, Pub. no. 1, pp 35–52

    Google Scholar 

  • Plançon A, Tchoubar C (1977a) Determination of structural defects in phyllosilicates by X-ray powder diffraction – I. principle of calculation of the diffraction phenomenon. Clays Clay Miner 25:430–435

    Google Scholar 

  • Plançon A, Tchoubar C (1977b) Determination of structural defects in phyllosilicates by X-ray powder diffraction – II. Nature and proportion of defects in natural kaolinites. Clays Clay Miner 25:436–450

    Google Scholar 

  • Ponto BS, Berg JC (1918) Clay particle charging in apolar media. Appl Clay Sci 161:76–81

    Google Scholar 

  • Pozo M, Calvo JP (2013) Madrid basin: a natural lab for the formation and evolution of magnesium clays. In: Pozo M, Galán E (eds) Magnesium clays: characterization, origin and applications,. AIPEA educational series. Publication no. 2, pp 229–282. ISBN: 978-88-7522-093-6

    Google Scholar 

  • Pozo M, Calvo JP (2018) An overview of authigenic magnesian clays. Minerals 8(11):520. https://doi.org/10.3390/min8110520

  • Pozo M, Galán E (eds) (2013) Magnesium clays: characterization, origin and applications. AIPEA educational series. Publication no. 2, 380 pp. ISBN: 978-88-7522-093-6

    Google Scholar 

  • Preissinger A (1963) Sepiolite and related compounds: its stability and applications. In: Clays and clay minerals. Proceedings of the national conference, vol 10. Pergamon Press, New York, pp 365–371

    Google Scholar 

  • Price R, Gaber B, Lvov YM (2001) In vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite: a cylindrical mineral. J Microencap 18:713

    Article  Google Scholar 

  • Pruett RJ, Pickering SM Jr (2006) Clays: Kaolin. In: Kogel E et al (eds) Industrial minerals and rocks, 7th edn. Society of Mining Engineers, Littleton, pp 383–399

    Google Scholar 

  • Psyrillos A, Howe JH, Manningm DAC, Burley SD (1999) Geological controls on kaolin particle shape and consequences for mineral processing. Clay Miner 34:193–208

    Article  Google Scholar 

  • Putzoulu F, Papa AP, Mondillo N, Boni M, Balassone G, Mormone A (2018) Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals 8:298

    Article  Google Scholar 

  • Quantin P, Gautheyrou J, Lorenzoni P (1988) Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico’s Volcano, Italy. Clay Miner 23:423–437

    Article  Google Scholar 

  • Rautureau M, Tchoubar C (1976) Structural analysis of sepiolite by selected area electron diffraction: relations with physico-chemical properties. Clays Clay Miner 24:43–49

    Article  Google Scholar 

  • Rautureau M, Tchoubar C, Mering J (1972) Analyse structural de la sepiolite par microdiffraction eléctronique. C.R Acad Sci 274:269–271

    Google Scholar 

  • Rautureau M, Liewig N, Gomes CSF, Katouzian-Safadi M (2010) Argiles et Santé: Propriétés et Thérapies. Editions Médicales Internationales, Lavoisier, 184 pp. ISBN: 978-2-7430-1202-1

    Google Scholar 

  • Rautureau M, Gomes CSF, Liewig N, Katouzian-Safadi M (2017) Clays and health: properties and therapeutic uses. Springer, Cham. ISBN: 978-3-319-42883-3

    Google Scholar 

  • Reinbacher R (1999) Brief history of clay in medicine. Clay Miner Soc News 11:22–23

    Google Scholar 

  • Reinbacher R (2003) Healing Earths: the third leg of medicine. 1st Books Library, Bloomington, 244 pp

    Google Scholar 

  • Revuri V, Lee Y-K (2019) 2D material-based hybrid nanostructure for diagnosis and therapy. In: Biomedical application of graphene and 2D nanomaterials.

    Google Scholar 

  • Rieder M, Cavazzini G, D’yakonov YS, Frank-Kamenetski VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiis Z, Wones DR (1998) Nomenclature of the micas. Clays Clay Miner 46:586–595

    Article  Google Scholar 

  • Robertson RHS (1960) Mineral use guide. Cleaver- Hume Press, London

    Google Scholar 

  • Robertson RHS (1986) Fuller’s Earth: a history. Volturna Press, Kent, 421 pp

    Google Scholar 

  • Robertson RHS (1996) Cadavers, choleras and clays. Bull Mineral Soc 113:3–7

    Google Scholar 

  • Ross CS, Shannon EV (1926) Minerals of bentonite and related clays and their physical properties. Am Ceram Soc J 9:77–96

    Google Scholar 

  • Ruiz-Hitsky E, Darder M, Alcântara ACS, Wicklein B, Aranda AP (2015) Recent advances on fibrous clay-based nanocomposites. Adv Polym Sci 267:39–86

    Article  Google Scholar 

  • Ruiz-Hitzky E, Darder M, Fernandes FM, Wicklein B, Alcântara ACS, Aranda AP (2013a) Fibrous clay-based nanocomposites. Prog Polym Sci 38:1392–1414

    Article  Google Scholar 

  • Ruiz-Hitzky E, Aranda P, Darder M, Fernandes FM (2013b) Fibrous clay mineral-polymer nanocomposites. Developments in clay science, vol 5, pp 721–741

    Google Scholar 

  • Ruiz-Hitzky E, Darder M, Alcântara ACS, Wicklein B, Aranda AP (2017) Chapter 1: functional nanocomposites based on fibrous clays. RSC smart materials n° 22, pp 1–53

    Google Scholar 

  • Santarén J (2013) Properties and applications of magnesium clays. In: Pozo M, Galán E (eds) Magnesium clays: characterization, origin and applications. AIPEA educational series, vol 2, p 331

    Google Scholar 

  • Savechenkov TV (1862) Definition, Verlag Russe-Kaiser, Gessellschaft Mineralogy, St. Petersburg, URSS, p 102

    Google Scholar 

  • Savic I, Stojiljkovic S, Savic I, Gajic D (2014) Chapter 15: Industrial application of clays and clay minerals. In: Wesley LR (ed) Clays and clay minerals: geological origin, mechanical properties and industrial applications. Nova Science Publishers, New York

    Google Scholar 

  • Schoonheydt RA (2016) Reflections on the material science of clay minerals. Appl Clay Sci 131:107–112

    Article  Google Scholar 

  • Schroeder PA, Erickson GG (2014) Kaolin: from ancient porcelains to nanocomposites. Elements 10(3):177–182

    Article  Google Scholar 

  • Scott PW (1990) Brightness and colour measurement CEC/ASEAN training course on assessment procedures for clays and ceramic raw materials

    Google Scholar 

  • Selinus O, Alloway B, Centeno J, Finkelman R, Fuge R, Lindh, U, Smedley P. (eds) (2005) Essentials of medical geology: impacts of the natural environment on public health. Academic Press/Elsevier, 812 pp

    Google Scholar 

  • Shahidi S, Ghoranneviss M (2014) Effect of plasma pretreatment followed by nanoclay loading flame retardant properties of cotton fabric. J Fusion Energ 33:88–95

    Article  Google Scholar 

  • Shutava TG, Fakhrullin RF, Lvov YM (2014) Spherical and tubular nanocarriers for sustained drug release. Curr Opin Pharmacol 18:141–148

    Article  Google Scholar 

  • Silva JS, Vilarinho A, Barud HD, da Silva EC, Nunes LCC (2016) Fibrous and tubular clays to modified release of drugs: a review. Revista Matéria 21:204–212

    Article  Google Scholar 

  • Sokolova GV, Drits V (1971) Structure of palygorskite. Sov Phys Crystall 16:183–185

    Google Scholar 

  • Srodon J (2013) Evolution of mixed-layer clay minerals in prograde alteration systems. In: Fiore S, Cuadros J, Huertas FJ (eds) Interstratified clay minerals: origin, characterization and geochemical significance AIPEA educational series, Pub. No. 1, p 41

    Google Scholar 

  • Suárez M, Garcia-Romero E (2006) Macroscopic palygorskite from Lisbon volcanic complex. Eur J Mineral 18:119–126

    Google Scholar 

  • Sudo T, Yotsumoto M (1977) The formation of halloysite tubes from spheritic halloysite. Clay Clay Miner 25:155–159

    Article  Google Scholar 

  • Suresh R, Borkar S, Sawant V, Shende V, Dimble S (2010) Nanoclay drug delivery system. Int J Pharm Sci Nanothecnol 3:901–905

    Google Scholar 

  • Tang Q, Wang F, Tang M, Liang J, Ren C (2012) Study on pore distribution and formation rule of sepiolite mineral nanomaterials. J Nanomater 2012:382603

    Article  Google Scholar 

  • Tateo F, Summa V (2007) Element mobility in clays for healing use. Appl Clay Sci 36:64–76

    Google Scholar 

  • Tateo F, Summa V, Gianossi ML, Ferraro G (2006) Healing clays: Mineralogical and geochemical constraints on the preparation of clay-water suspension (“argillic water”). Appl Clay Sci 33:181–194

    Article  Google Scholar 

  • Tateo F, Ravaglioli A, Andreoli C, Bonina F, Coiro V, Degetto S, Giaretta A, Menconi Orsini A, Puglia C, Summa V (2009) The in vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Sci 44:83–94

    Article  Google Scholar 

  • Thompson CJS (1914) Terra Sigillata, a famous medicament of ancient times. In: Proceedings of the 17th international congress of medicine vol 23, pp 433–434

    Google Scholar 

  • Thorez J (1975) Phyllosilicates and clay minerals: A laboratory handbook for their X-ray diffraction analysis. Editions G. Lellote. Dison, Belgium, 579 pp

    Google Scholar 

  • Thorez J (1976) Practical identification of clay minerals: a handbook for teachers and students in clay mineralogy. Editions G. Lelotte. Dison, Belgium, 90 pp

    Google Scholar 

  • Thorez J (2003) L’argile, mineral pluriel. Bulletin de la Socité Royale des Sciences de Liège 72(1):19–70

    Google Scholar 

  • Tosca N (2013) Geochemical Pathways to Mg-silicate Formation. In: Pozo M, Galán E (eds) Magnesium clays: characterization, origin and applications, AIPEA educational series, vol 2, pp 283–330

    Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  Google Scholar 

  • Valeton I (1983) Paleoenvironment of lateritic bauxites with vertical and lateral differentiation. Geological Society, London, Special Publication 11 – residual deposits: surface related weathering processes and materials, 77–90 pp

    Google Scholar 

  • Van Olphen H (1963) An introduction to clay colloid chemistry. Wiley Interscience Publishers, New York

    Google Scholar 

  • Vaniman DT, Bristow TF, Bish DL, Ming DW, Blake DF, Morris RV, Rampe EB, Chipera SJ, Treiman AH, Morrison SM, Achilles CN, Downs RT, Farmer JD, Crisp JA, Morookian JM, Des Marais DJ, Grotzinger JP, Sarrazin P, Yen AS (2014) The first X-Ray diffraction analyses of clay minerals on Mars. 51st annual meeting of CMS. Everything is big: from nanoparticles to planets, Abstract Book 227-228

    Google Scholar 

  • Vasilakos SP, Tarantili PA (2012) “In Vitro” drug-release studies from organoclay/poly (dimethyl siloxane) nanocomposite matrices. J Biomed Mater Res Part B 100B:1899–1910

    Article  Google Scholar 

  • Velde B (1992) Introduction to clay minerals. Chapman & Hall, London

    Book  Google Scholar 

  • Veniale F (1996) Argille Curative: Antefatti, Fatti e Misfatti. Atti Convegno “Argille curative”. Salice Terme (PV, Italy), 26–28 October, 1–11

    Google Scholar 

  • Veniale F (1998) Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). Corso di Specializzazione, Gruppo Italiano AIPEA, 1–40

    Google Scholar 

  • Veniale F (1999) Simposio “Argille per fanghi peloidi termali e per trattamenti dermatologici e cosmetici”. Montecatini Terme, May 14–15. Gruppo Italiano AIPEA, Pisa, Italy

    Google Scholar 

  • Veniale F, Barberis E, Carcangiu G, Morandi N, Setti M, Tamanini M, Tessier D (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci 25:135–148

    Article  Google Scholar 

  • Veniale F, Bettero A, Jobstraibizer PG, Setti M (2007) Thermal muds: prespectives of innovation. Appl Clay Sci 36:141–147

    Article  Google Scholar 

  • Viseras C, López-Galindo A (1999) Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some pre-formulation studies. Appl Clay Sci 14:69–82

    Article  Google Scholar 

  • Viseras C, Cultrone G, Cerezo P, Aguzzi P, Baschini MT, Valles J, López-Galindo A (2006) Characterization of northern Patagonian bentonite for pharmaceutical uses. Appl Clay Sci 31:272–281

    Article  Google Scholar 

  • Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci 36:37–50

    Article  Google Scholar 

  • Viseras C, Cerezo P, Sanchez R (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48(3):291–295

    Article  Google Scholar 

  • Wagner U, Gebhard R, Grosse G, Hutzelmann T, Murad E, Riederer J, Shimada I, Wagner FE (1998) Clay: an important raw material for prehistoric man. Hyperfine Interact 117:323–335

    Article  Google Scholar 

  • Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of Layered Double Hydroxides (LDH) Nanosheets. Chem Rev 112:4124–4155

    Article  Google Scholar 

  • Wang A, Wang W (2019) Nanomaterials from clay minerals: a new approach to green functional materials (Micro and Nano Technologies). Publisher Elsevier,1st edition, 693 pp, ISBN-13 :978-0128145333; ISBN-10: 0128145331

    Google Scholar 

  • Wei W, Minullina R, Abdullayev E, Fakhrullin R, Mills D, Lvov Y (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4:488–494

    Article  Google Scholar 

  • Weiss A, Range KJ (1970) Superiority of hydrazine over potassium acetate in the formation of kaolinite intercalation complexes. In: Heller-Kalai L (eds) Proceedings of the international clay conference, Tokyo 1969, vol 2. Israel University Press, Jerusalem, pp 185–186

    Google Scholar 

  • Wesley LR (2014) Clays and clay minerals: geologic origin, mechanical properties and industrial applications, Earth sciences in the 21st century. Nova Science Publishers, New York

    Google Scholar 

  • Williams LB, Hillier S (2014) Kaolins and health: From first grade to first aid. Elements 10:207–211

    Article  Google Scholar 

  • Williams LB, Holland M, Eberl DD, Brunet T, Brunet de Courssou L (2004) Killer Clays ! Natural antibacterial clay minerals. Mineral Soc Bull 139:3–8

    Google Scholar 

  • Wilson MJ (ed) (1987) A handbook of determinative methods in clay mineralogy. Blackie, London

    Google Scholar 

  • Wilson MJ (2003) Clay mineralogical and related characteristics of geophagic materials. J Chem Ecol 29:1525–1547

    Article  Google Scholar 

  • Wilson MJ (2013) Rock forming minerals: sheet silicates, clay minerals, 2nd edn. Geological Society of London, London

    Google Scholar 

  • Wilson I, Keeling J (2016) Global occurrence, geology and characteristics of tubular halloysite deposits. Clay Miner 51:309–324

    Article  Google Scholar 

  • Worrall WE (1975) Clays and ceramic raw materials. Applied Science Publishers, London, 203 pp

    Google Scholar 

  • Worrall WE (1982) Ceramic raw materials. Pergamon Press, Oxford, 111 pp

    Google Scholar 

  • Wu CN, Yang Q, Takeuchi M, Saito T, Isogai A (2014) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6:392–399. https://doi.org/10.15376/biores.10.46310-6313

    Article  Google Scholar 

  • Yuen JWM, Chung TWK, Loke AY (2015) Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant. Int Environ Res Public Health 12:3026–3041

    Article  Google Scholar 

  • Zhang D, Zhou C, Lin C, Tong D, Yu W (2010) The synthesis of clay minerals. Appl Clay Sci 50(1):1–11

    Article  Google Scholar 

  • Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science 74:3–9

    Article  Google Scholar 

  • Zhou CH, Du ZX, Li XN, Lu CS, Ge ZH (2005) Structure development of hectorite in hydrothermal crystallization synthesis process. Chin. J. Inorg. Chem. 21(9):1327–1332

    Google Scholar 

  • Zhou CH, Zhao LZ, Wang AQ, Chen TH, He HP (2016) Current fundamental and applied research into clay minerals in China. Applied Clay Science 119:3–7

    Article  Google Scholar 

  • Zhou CH, Tong D, Yu W (2019) Chapter 7: Smectite nanomaterials: preparation, properties and functional applications. In: Wang A, Wang W (eds) Nanomaterials from clay minerals: a new approach to green functional materials. Elsevier, 335–364 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso S. F. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.S.F., Rautureau, M. (2021). General Data on Clay Science, Crystallochemistry and Systematics of Clay Minerals, Clay Typologies, and Clay Properties and Applications. In: Gomes, C., Rautureau, M. (eds) Minerals latu sensu and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-65706-2_6

Download citation

Publish with us

Policies and ethics

Navigation