Biomedical Applications of Sol-Gel Nanocomposites

  • Chapter
  • First Online:
Sol-Gel Nanocomposites

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

  • 2197 Accesses

Abstract

This chapter introduces nanocomposites of silica, titania, calcium phosphates, biologically active glasses, and their polymer-modified derivatives with meso- and macro-porous, nanotubular, or hollow nanoparticle-type structures that have been prepared via the sol-gel routes. Their applications for delivering drugs and DNAs, tissue–materials interactions, and tissue regeneration are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Biochemically active sol-gel glasses: the trap** of enzymes. Mater Lett 10:1

    Google Scholar 

  2. Watanabe K, Royer GP (1983) Polyethylenimine/silica gel as an enzyme support. J Mol Catal 22:145

    Google Scholar 

  3. Yilmaz E, Bengisu M (2006) Drug entrapment in silica microspheres through a single step sol-gel process and in vitro release behavior. J Biomed Mater Res B Appl Biomater B 77B:149

    Google Scholar 

  4. Qian KK, Bogner RH (2012) Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci 101:444

    Google Scholar 

  5. Heimink J, Sieger P, Koller H (2011) Two-dimensional pH map** of release kinetics of silica-encapsulated drugs. J Pharm Sci 100:4401

    Google Scholar 

  6. Czarnobaj K, Czarnobaj J (2008) Sol–gel processed porous silica carriers for the controlled release of diclofenac diethylamine. J Biomed Mater Res B Appl Biomater 87B:114

    Google Scholar 

  7. Mercier P, Savoie R (1997) Interaction of DNA with silica particles: A vibrational spectroscopic study. Biospectroscopy 3:299

    Google Scholar 

  8. Qin F, Zhou YC, Shi JL, Zhang YL (2009) A DNA transporter based on mesoporous silica nanospheres mediated with polycation poly(allylamine hydrochloride) coating on mesopore surface. J Biomed Mater Res A 90A:333

    Google Scholar 

  9. Pulido-Tofiño P, Barrero-Moreno JM, Pérez-Conde MC (2001) Sol–gel glass doped with isoproturon antibody as selective support for the development of a flow-through fluoroimmunosensor. Anal Chim Acta 429:337

    Google Scholar 

  10. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19:5737

    Google Scholar 

  11. Du D, Yan F, Liu SL, Ju HX (2003) Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol-gel matrix. J Immunol Methods 283:67

    Google Scholar 

  12. Kato K, Saito T, Seelan S, Tomita M, Yokogawa Y (2005) Reaction properties of catalytic antibodies encapsulated in organo substituted SiO2 sol-gel materials. J Biosci Bioeng 100:478

    Google Scholar 

  13. Nicoll SB, Radin S, Santost EM, Tuan RS, Ducheyne P (1997) In vitro release kinetics of biologically active transforming growth factor-beta 1 from a novel porous glass carrier. Biomaterials 18:853

    Google Scholar 

  14. Leonor IB, Baran ET, Kawashita M, Reis RL, Kokubo T, Nakamura T (2008) Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomater 4:1349

    Google Scholar 

  15. Jun SH, Lee EJ, Yook SW, Kim HE, Kim HW, Koh YH (2010) A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process. Acta Biomater 6:302

    Google Scholar 

  16. Chen S, Osaka A, Hanagata N (2011) Collagen-templated sol-gel fabrication, microstructure, in vitro apatite deposition, and osteoblastic cell MC3T3-E1 compatibility of novel silica nanotube compacts. J Mater Chem 21:4332

    Google Scholar 

  17. Chen S, Shi XT, Morita H, Li J, Ogawa N, Ikoma T, Hayakawa S, Shirosaki Y, Osaka A, Hanagata N (2011) BMP-2-loaded silica nanotube fibrous meshes for bone generation. Sci Technol Adv Mater 12:065003

    Google Scholar 

  18. Beppu MM, Vieira RS, Aimoli CG, Santana CC (2007) Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. J Membr Sci 301:126

    Google Scholar 

  19. Gupta KC, Jabrail FH (2006) Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr Res 341:744

    Google Scholar 

  20. Gupta KC, Jabrail FH (2007) Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr Res 342:2244

    Google Scholar 

  21. Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769

    Google Scholar 

  22. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62

    Google Scholar 

  23. Kortesuo P, Ahola M, Kangas M, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) In vitro evaluation of sol-gel processed spray dried silica gel microspheres as carrier in controlled drug delivery. Int J Pharm 200:223

    Google Scholar 

  24. Takeuchi H, Nagira S, Yamamoto H, Kawashima Y (2005) Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int J Pharm 293:155

    Google Scholar 

  25. Kortesuo P, Ahola M, Kangas M, Jokinen M, Leino T, Vuorilehto L, Laakso S, Kiesvaara J, Yli-Urpo A, Marvola M (2002) Effect of synthesis parameters of the sol–gel-processed spray-dried silica gel microparticles on the release rate of dexmedetomidine. Biomaterials 23:2795

    Google Scholar 

  26. Esquena J, Pons R, Azemar N, Caelles J, Solans C (1997) Preparation of monodisperse silica particles in emulsion media. Colloid Surf A 123–124:575

    Google Scholar 

  27. Esquena J, Solans C (2001) Phase changes during silica particle formation in water-in-oil emulsions. Colloid Surf A 183–185:533

    Google Scholar 

  28. Lindberg R, Sjöblom J, Sundholm G (1995) Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes. Colloid Surf A 99:79

    Google Scholar 

  29. Oh C, Ki CD, Chang JY, Oh SG (2005) Preparation of PEG-grafted silica particles using emulsion method. Mater Lett 59:929

    Google Scholar 

  30. Jesionowski T (2008) Synthesis and characterization of spherical silica precipitated via emulsion route. J Mater Process Tech 203:121

    Google Scholar 

  31. Hwang YJ, Oh C, Oh SG (2005) Controlled release of retinol from silica particles prepared in O/W/O emulsion: The effects of surfactants and polymers. J Controlled Release 106:339

    Google Scholar 

  32. Li XG, He YQ, Swihart MT (2004) Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF–HNO3 etching. Langmuir 20:4720

    Google Scholar 

  33. Chen S, Hayakawa S, Shirosaki Y, Fujii E, Kawabata K, Tsuru K, Osaka A (2009) Sol–gel synthesis and microstructure analysis of amino-modified hybrid silica nanoparticles from aminopropyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 92:2074

    Google Scholar 

  34. van Blaaderen A, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. J Colloid Interf Sci 156:1

    Google Scholar 

  35. Hüsing N, Schubert U, Mezei R, Fratzl P, Riegel B, Kiefer W, Kohler D, Mader W (1999) Formation and structure of gel networks from Si(OEt)4/ (MeO)3Si(CH2)3NR´2 mixtures (NR´2=NH2 or NHCH2CH2NH2). Chem Mater 11:451

    Google Scholar 

  36. Pryce RS, Hench LL (2004) Tailoring of bioactive glasses for the release of nitric oxide as an osteogenic stimulus. J Mater Chem 14:2303

    Google Scholar 

  37. Ottenbrite RM, Wall JS, Siddiqui JA (2000) Self-catalyzed synthesis of organo-silica nanoparticles. J Am Ceram Soc 83:3214

    Google Scholar 

  38. He XX, Huo HL, Wang KM, Tan WH, Gong P, Ge J (2007) Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs). Talanta 73:764

    Google Scholar 

  39. Ashtari P, He XX, Wang KM, Gong P (2005) An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles. Talanta 67:548

    Google Scholar 

  40. Peng JF, He XX, Wang KM, Tan WH, Li HM, **ng XL, Wang Y (2006) An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomed Nanotech Biol Med 2:113

    Google Scholar 

  41. Liu XQ, Ma ZY, **ng JM, Liu HZ (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres J Magn Magn Mater 270:1

    Google Scholar 

  42. Wu YL, Lin JJ, Hsu PY, Hsu CP (2011) Highly sensitive polysilicon wire sensor for DNA detection using silica nanoparticles/Îł-APTES nanocomposite for surface modification. Sensor Actuat B-Chem 155:709

    Google Scholar 

  43. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad PN (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 102:279

    Google Scholar 

  44. Liu XQ, **ng JM, Guan YP, Shan GB, Liu HZ (2004) Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization. Colloid Surf A 238:127

    Google Scholar 

  45. Ehlert N, Hoffmann A, Luessenhop T, Gross G, Mueller PP, Stieve M, Lenarz T, Behrens P (2011) Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomater 7:1772

    Google Scholar 

  46. Enrichi F (2008) Luminescent amino-functionalized or erbium-doped silica spheres for biological applications. Ann NY Acad Sci 1130:262

    Google Scholar 

  47. Enrichi F, Trave E, Bersani M (2008) Acid synthesis of luminescent amine-functionalized or erbium-doped silica spheres for biological applications. J Fluoresc 18:507

    Google Scholar 

  48. Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan WH, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 21:2810

    Google Scholar 

  49. Kresge CT, Leonovics ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710

    Google Scholar 

  50. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BFF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548

    Google Scholar 

  51. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341

    Google Scholar 

  52. Tao ZM, Toms B, Goodisman J, Asefa T (2010) Mesoporous silica microparticles enhance the cytotoxicity of anticancer platinum drugs. ACS Nano 4:789

    Google Scholar 

  53. Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792

    Google Scholar 

  54. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216

    Google Scholar 

  55. Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharm 359:280

    Google Scholar 

  56. Choi HK, Chang JH, Ko IH, Lee JH, Jeong BY, Kim JH, Bae J (2011) Electrostatic interaction effect for human DNA separation with functionalized mesoporous silicas. J Solid State Chem 184:805

    Google Scholar 

  57. Vivero-Escoto JL, Slowing II, Lin VSY (2010) Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa. Biomaterials 31:1325

    Google Scholar 

  58. Li X, **e QR, Zhang JX, **a WL, Gu HC (2011) The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 32:9546

    Google Scholar 

  59. Park JH, Oh C, Shin SI, Moon SK, Oh SG (2003) Preparation of hollow silica microspheres in W/O emulsions with polymers. J Colloid Interface Sci 266:107

    Google Scholar 

  60. Chen M, Wu L, Zhou S, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18:801

    Google Scholar 

  61. Fowler CE, Khushalani D, Mann S (2001) Facile synthesis of hollow silica microspheres. J Mater Chem 1968:11

    Google Scholar 

  62. Li ZZ, Wen LX, Shao L, Chen JF (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Controlled Release 98:245

    Google Scholar 

  63. Kim K, Jang KY, Upadhye RS (1987) Hollow silica spheres of controlled size and porosity by sol-gel processing. J Am Ceram Soc 1991:74

    Google Scholar 

  64. Botterhuis NE, Sun QY, Magusin PCMM, van Santen RA, Sommerdijk NAJM (2006) Hollow silica spheres with an ordered pore structure and their application in controlled release. Chem Eur J 12:1448

    Google Scholar 

  65. Mei X, Chen DY, Li NJ, Xu QF, Ge JF, Li H, Lu JM (2012) Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer for controlled drug release. Microporous Mesoporous Mater 152:16

    Google Scholar 

  66. Zhu YF, Fang Y, Borchardt L, Kaskel S (2011) PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. Microporous Mesoporous Mater 141:199

    Google Scholar 

  67. Zhu YF, Meng WJ, Hanagata N (2011) Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Trans 40:10203

    Google Scholar 

  68. Zhu YF, Meng WJ, Li XL, Gao H, Hanagata N (2011) Design of mesoporous silica/cytosine-phosphodiester-guanine oligonucleaotides complexes to enhance delivery efficiency. J Phys Chem C 115:447

    Google Scholar 

  69. Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo A (2000) Silica xerogel carrier material for controlled release of toremifene citrate. Int J Pharm 195:219

    Google Scholar 

  70. Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) Silica xerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue effects after implantation. Biomaterials 21:193

    Google Scholar 

  71. Kortesuo P, Ahola M, Kangas M, Yli-Urpo A, Kiesvaara J, Marvola M (2001) In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol-gel synthesis parameters. Int J Pharm 221:107

    Google Scholar 

  72. Munusamy P, Seleem MN, Alqublan H, Tyler R Jr, Sriranganathan N, Pickrell G (2009) Targeted drug delivery using silica xerogel systems to treat diseases due to intracellular pathogens. Mater Sci Eng C Mater Biol Appl 29:2313

    Google Scholar 

  73. Radin S, Duchyne P, Kamplain T, Tan BH (2001) Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J Biomed Mater Res 57:313

    Google Scholar 

  74. Prokopowicz M (2009) Correlation between physicochemical properties of doxorubicin-loaded silica/polydimethylsiloxane xerogel and in vitro release of drug. Acta Biomater 5:193

    Google Scholar 

  75. Wang JX, Wen LX, Liu RJ, Chen JF (2005) Needle-like calcium carbonate assisted self-assembly of mesostructured hollow silica nanotubes. J Solid State Chem 178:2383

    Google Scholar 

  76. Yang YJ, Tao X, Hou Q, Chen JF (2009) Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen. Acta Biomater 5:3488

    Google Scholar 

  77. **ao Q, Tao X, Zhang J, Chen J (2006) Hollow silica nanotubes for immobilization of penicillin G acylase enzyme. J Mol Catal B-Enzym 42:14

    Google Scholar 

  78. Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan J, Ismat Shah S (2007) Antibacterial properties of silver-doped titania. Small 3:799

    Google Scholar 

  79. Cheng CL, Sun DS, Chu WC, Tseng YH, Ho HC, Wang JB, Chung PH, Chen JH, Tsai PJ, Lin NT, Yu MS, Chang HH (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16:7

    Google Scholar 

  80. Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481

    Google Scholar 

  81. Zhang RN, Bai YH, Zhang B, Chen LX, Yan B (2012) The potential health risk of titania nanoparticles. J Hazard Mater 211–212:404

    Google Scholar 

  82. Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174

    Google Scholar 

  83. Watari F, Abe S, Koyama C, Yokoyama A, Akasaka T, Uo M, Matsuoka M, Totsuka M, Esaki M, Morita M, Yonezawa T (2008) Behavior of in vitro, in vivo and internal motion of micro/nano particles of titanium, titanium oxides and others. J Ceram Soc Japan 116:1

    Google Scholar 

  84. Li XB, Xu SQ, Zhang ZR, Schluesener HJ (2009) Apoptosis induced by titanium dioxide nanoparticles in cultured murine microglia N9 cells. Chin Sci Bull 54:3830

    Google Scholar 

  85. Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grimes CA, Desai TA (2009) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 91A:647

    Google Scholar 

  86. Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, Jia G, Gao YX, Li B, Sun J, Li YF, Jiao F, Zhao YL, Chai ZF (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176

    Google Scholar 

  87. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904

    Google Scholar 

  88. Hou Q, Tao X, Yang YJ, Ma Y (2010) Optimal synthesis of mesostructured hollow titania nanotubes templated on CaCO3 nanoparticles. Powder Technol 198:429

    Google Scholar 

  89. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160

    Google Scholar 

  90. Zhao JL, Wang XH, Chen RZ, Li LT (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun 134:705

    Google Scholar 

  91. Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol 58:179

    Google Scholar 

  92. Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8:449

    Google Scholar 

  93. Cho SJ, Kim HJ, Lee JH, Choi HW, Kim HG, Chung HM, Do JT (2010) Silica coated titania nanotubes for drug delivery system. Mater Lett 64:1664

    Google Scholar 

  94. Song YY, Schmidt-Stein F, Bauer S, Schmuki P (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131:4230

    Google Scholar 

  95. Bauer S, Park J, Pittrof A, Song YY, von der Mark K, Schmuki P (2011) Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. Integr Biol 3:927

    Google Scholar 

  96. Lai M, Cai KY, Zhao L, Chen XY, Hou YH, Yang ZX (2011) Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 1097:12

    Google Scholar 

  97. Lopez T, Ortiz Islas E, Hernandez A, Manjarrez J, Rodriguez-Reinoso F, Sepulveda A, Gonzalez RD (2006) Biocompatible titania microtubes formed by nanoparticles and its application in the drug delivery of valproic acid. Opt Mater 29:70

    Google Scholar 

  98. Nayak AK (2010) Hydroxyapatite synthesis methodologies: an overview. Int J Chem Tech Res 2:903

    Google Scholar 

  99. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Ch 32:1

    Google Scholar 

  100. Bouyer E, Gitzhofer F, Boulos MI (2000) Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med 11:523

    Google Scholar 

  101. Li YB, de Wijn J, Klein CPAT, Van de Meer S (1994) Preparation and characterization of nanograde osteoapatite-like rod crystals. J Mater Sci Mater Med 5:252

    Google Scholar 

  102. Pan Y, Huang JL, Shao CY (2003) Preparation of β-TCP with high thermal stability by solid reaction route. J Mater Sci 1049:38

    Google Scholar 

  103. Kamitakahara M, Kimura K, Ioku K (2012) Synthesis of nanosized porous hydroxyapatite granules in hydrogel by electrophoresis. Colloid Surface B 97:236

    Google Scholar 

  104. Yoshimura M, Suda H, Okamoto K, Ioku K (1994) Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29:3399

    Google Scholar 

  105. Aizawa M, Porter AE, Best SM (2005) Ultrastructural observation of single-crystal apatite fibres. Biomaterials 26:3427

    Google Scholar 

  106. Aizawa M, Ueno H, Itatani K, Okada I (2006) Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. J Eur Ceram Soc 26:501

    Google Scholar 

  107. Zhuang Z, Yamamoto H, Aizawa M (2012) Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and its characterization. Powder Technol 222:193

    Google Scholar 

  108. Zhuang Z, Yoshimura H, Aizawa M (2013) Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel. Mater Sci Eng C Mater Biol Appl 33:2534

    Google Scholar 

  109. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487

    Google Scholar 

  110. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907

    Google Scholar 

  111. Wang SN, Wang XY, Xu H, Abe HY, Tan ZQ, Zhao YQ, Guo JB, Naito M, Ichikawa H, Fukumori Y (2010) Towards sustained delivery of small molecular drugs using hydroxyapatite microspheres as the vehicle. Adv Powder Technol 21:268

    Google Scholar 

  112. Zhao QF, Wang TY, Wang J, Zheng L, Jiang TY, Cheng G, Wang SL (2011) Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol. Appl Surf Sci 257:10126

    Google Scholar 

  113. Ye F, Guo HF, Zhang HJ, He XL (2010) Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater 6:2212

    Google Scholar 

  114. Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX (2011) The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials 32:9031

    Google Scholar 

  115. Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33:136

    Google Scholar 

  116. Okazaki M, Yoshida Y, Yamaguchi S, Kaneno M, Elliott JC (2001) Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22:2459

    Google Scholar 

  117. Chowdhury EH, Maruyama A, Kano A, Nagaoka M, Kotaka M, Hirose S, Kunou M, Akaike T (2006) pH-sensing nano-crystals of carbonate apatite: effects on intracellular delivery and release of DNA for efficient expression into mammalian cells. Gene 376:87

    Google Scholar 

  118. Hossain S, Stanislaus A, Chua MJ, Tada S, Tagawa Y, Hoque E, Chowdhury EH, Akaike T (2010) Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. J Controlled Release 147:101

    Google Scholar 

  119. Zohra FT, Chowdhury EH, Akaike T (2009) High performance mRNA transfection through carbonate apatite–cationic liposome conjugates. Biomaterials 30:4006

    Google Scholar 

  120. Hossain S, Tada S, Akaike T, Chowdhury EH (2010) Influences of electrolytes and glucose on formulation of carbonate apatite nanocrystals for efficient gene delivery to mammalian cells. Anal Biochem 397:156

    Google Scholar 

  121. Hebishima T, Tada S, Takeshima S, Akaike T, Ito Y, Aida Y (2011) Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochem Biophys Res Commun 415:597

    Google Scholar 

  122. Luong LN, McFalls KM, Kohn DH (2009) Gene delivery via DNA incorporation within a biomimetic apatite coating. Biomaterials 30:6996

    Google Scholar 

  123. Wang Y, Azaïs T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Arnaudet G, Babonneau F, Giraud-Guille M, Nassif N (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724

    Google Scholar 

  124. Engqvist H, Schultz-Walz JE, Loof J, Botton GA, Mayer D, Phaneuf MW, Ahnfelt NO, Hermansson L (2004) Chemical and biological integration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth. Biomaterials 25:2781

    Google Scholar 

  125. Neo M, Nakamura T, Ohtsuki C, Kokubo T, Yamamuro T (1993) Apatite formation on three kinds of bioactive material at an early stage in vivo: A comparative study by transmission electron microscopy. J Biomed Mater Res 27:999

    Google Scholar 

  126. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353

    Google Scholar 

  127. Xu CX, Su PQ, Chen XF, Meng YC, Yu WH, **ang AP, Wang YJ (2011) Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials 1051:32

    Google Scholar 

  128. Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jerome R (2005) Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass® composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 25:23

    Google Scholar 

  129. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérôme R (2004) Porous poly(α- hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterization. Biomaterials 25:4185

    Google Scholar 

  130. Cannillo V, Chiellini F, Fabbri P, Sola A (2010) Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Compos Struct 1823:92

    Google Scholar 

  131. Landi E, Valentini F, Tampieri A (2008) Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater 4:1620

    Google Scholar 

  132. Budiraharjo R, Neoh KG, Kang ET (2012) Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interface Sci 366:224

    Google Scholar 

  133. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, Akita K, Takakuda K, Tanaka J (2004) Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Biomaterials 25:5979

    Google Scholar 

  134. Zhao J, Guo LY, Yang XB, Weng J (2008) Preparation of bioactive porous HA/PCL composite scaffolds. Appl Surf Sci 255:2942

    Google Scholar 

  135. Milella E, Cosentino F, Licciulli A, Massaro C (2001) Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol–gel process. Biomaterials 22:1425

    Google Scholar 

  136. Ortega-Lara W, Cortés-Hernández DA, Best S, Brooks R, Bretado-Aragón L, Rentería-Zamarrón D (2008) In vitro bioactivity of wollastonite–titania materials obtained by sol–gel method or solid state reaction. J Sol-Gel Sci Technol 48:362

    Google Scholar 

  137. Wen CE, Xu W, Hu WY, Hodgson PD (2007) Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomater 3:403

    Google Scholar 

  138. Meretoja VV, Tirri T, Ääritalo V, Walboomers XF, Jansen JA, Närhi TO (2007) Titania and titania-silica coatings for titanium: comparison of ectopic bone formation within cell-seeded scaffolds. Tissue Eng 13:855

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Osaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, S., Hayakawa, S., Shirosaki, Y., Hanagata, N., Osaka, A. (2014). Biomedical Applications of Sol-Gel Nanocomposites. In: Guglielmi, M., Kickelbick, G., Martucci, A. (eds) Sol-Gel Nanocomposites. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1209-4_7

Download citation

Publish with us

Policies and ethics

Navigation