Structure-Function Relationships in the Mn4CaO5 Water-Splitting Cluster

  • Chapter
  • First Online:
The Biophysics of Photosynthesis

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

Abstract

Mn4CaO5 cluster is the catalytic center for photosynthetic water-splitting harbored in photosystem II (PSII), a huge, multi-subunit membrane–protein complex located in the thylakoid membranes from cyanobacteria to higher plants. The structure of PSII has been analyzed at 1.9 Å resolution by X-ray crystallography, revealing a clear picture of the Mn4CaO5 cluster. In this chapter, principles of crystallization and crystal structure analysis are briefly introduced, followed by descriptions of the structure of the Mn4CaO5 cluster and its implications in the mechanism of water-splitting. Based on the geometric organization of the Mn4CaO5 cluster, the location of four terminal water ligands, the possible oxidation states of the four Mn ions reported so far, as well as the structural changes revealed by replacing the Ca ion with Sr, a mechanism for water-splitting was proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

EM:

Electron microscopy

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

FTIR:

Fourier transform infrared spectroscopy

NMR:

Nuclear magnetic resonance

OEC:

Oxygen-evolving complex

PSII:

Photosystem II

References

  1. Wydrzynski TJ, Satoh K, editors. Photosystem II, The light-driven water:plastoquinone oxidoreductase. Dordrecht, The Netherlands: Springer; 2005.

    Google Scholar 

  2. Shen JR, Henmi T, Kamiya N. Structure and function of photosystem II. In: Fromme P, editor. Photosynthetic protein complexes. A structural approach. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 83–106.

    Chapter  Google Scholar 

  3. Li M, Chang WR. Protein crystallization. Photosynth Res. 2009;102:223–9.

    Article  Google Scholar 

  4. Weber PC. Overview of protein crystallization methods. Macromol Crystallogr A. 1997;276:13–22.

    Article  Google Scholar 

  5. Bergfors TM, editor. Protein crystallization: techniques, strategies, and tips. San Diego, CA: International University Line (IUL); 1999.

    Google Scholar 

  6. Chayen NE, Saridakis E. Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods. 2008;5:147–53.

    Article  Google Scholar 

  7. McPherson A. Crystallization of biological macromolecules. New York, NY: Cold Spring Harbor Laboratory Press; 1999.

    Google Scholar 

  8. Michel H, editor. Crystallization of membrane proteins. Boca Raton, FL: CRS press; 1990.

    Google Scholar 

  9. Iwata S, editor. Methods and results in crystallization of membrane proteins. San Diego, CA: International University Line (IUL); 2003.

    Google Scholar 

  10. Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat Protoc. 2009;4:706–31.

    Article  Google Scholar 

  11. Katona G, Andréasson U, Landau EM, et al. Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35 Å resolution. J Mol Biol. 2003;331:681–92.

    Article  Google Scholar 

  12. Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996;93(25):14532–5.

    Article  ADS  Google Scholar 

  13. Hunte C, Michel H. Crystallization of membrane proteins mediated by antibody fragments. Curr Opin Struct Biol. 2002;12:503–8.

    Article  Google Scholar 

  14. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.

    Article  ADS  Google Scholar 

  15. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science. 2007;318:1266–73.

    Article  ADS  Google Scholar 

  16. Allen JP, Seng C, Larson C. Structures of proteins and cofactors: X-ray crystallography. Photosynth Res. 2009;102:231–40.

    Article  Google Scholar 

  17. Drenth J. Principles of protein X-ray crystallography. New York, NY: Springer; 1999.

    Book  Google Scholar 

  18. Chayen NE, Helliwell JR, Snell EH. Macromolecular crystallization and crystal perfection. Oxford: Oxford University Press; 2010.

    Book  Google Scholar 

  19. Kuhl H, Kruip J, Seidler A, Krieger-Liszkay A, Bunker M, Bald D, Scheidig AJ, Rogner M. Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J Biol Chem. 2000;275:20652–9.

    Article  Google Scholar 

  20. Shen JR, Kamiya N. Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. Biochemistry. 2000;39:14739–44.

    Article  Google Scholar 

  21. Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature. 2001;409:739–43.

    Article  ADS  Google Scholar 

  22. Shen JR, Inoue Y. Binding and functional properties of two new extrinsic components, cytochrome c550 and a 12 kDa protein, in cyanobacterial photosystem II. Biochemistry. 1993;32:1825–32.

    Article  Google Scholar 

  23. Sugiura M, Inoue Y. Highly purified thermo-stable oxygen-evolving photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having His-tagged CP43. Plant Cell Physiol. 1999;40:1219–31.

    Google Scholar 

  24. Kamiya N, Shen JR. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci U S A. 2003;100:98–103.

    Article  ADS  Google Scholar 

  25. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science. 2004;303:1831–8.

    Article  ADS  Google Scholar 

  26. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature. 2005;438:1040–4.

    Article  ADS  Google Scholar 

  27. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9 Å resolution and role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009;16:334–42.

    Article  Google Scholar 

  28. Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60.

    Google Scholar 

  29. Dau H, Liebisch P, Haumann M. The structure of the manganese complex of photosystem II in its dark-stable S1-state: EXAFS results in relation to recent crystallographic data. Phys Chem Chem Phys. 2004;6:4781–92.

    Article  Google Scholar 

  30. Dau H, Grundmeier A, Loja P, Haumann M. On the structure of the manganese complex of photosystem II: extended-range EXAFS data and specific atomic resolution models for four S-states. Philos Trans R Soc Lond B. 2008;363:1237–44.

    Article  Google Scholar 

  31. Pushkar Y, Yano J, Glatzel P, Messinger J, Lewis A, Sauer K, Bergmann U, Yachandra V. Structure and orientation of the Mn4Ca cluster in plant photosystem II membranes studied by polarized range-extended X-ray absorption spectroscopy. J Biol Chem. 2007;282:7198–208.

    Article  Google Scholar 

  32. Sauer K, Yano J, Yachandra VK. X-ray spectroscopy of the photosynthetic oxygen-evolving complex. Coord Chem Rev. 2008;252:318–35.

    Article  Google Scholar 

  33. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science. 2006;314:821–5.

    Article  ADS  Google Scholar 

  34. Zein S, Kulik LV, Yano J, Kern J, Pushkar Y, Zouni A, Yachandra VK, Lubitz W, Neese F, Messinger J. Focusing the view on nature’s water-splitting catalyst. Philos Trans R Soc Lond B. 2008;363:1167–77.

    Article  Google Scholar 

  35. Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T. Meyer-KlauckeW, Dau H. Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation cycle (S0/S1, S1/S2, S2/S3, and S3, S4/S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry. 2005;44:1894–908.

    Article  Google Scholar 

  36. Yano J, Pushkar Y, Glatzel P, Lewis A, Sauer K, Messinger J, Bergmann U, Yachandra VK. High-resolution Mn EXAFS of the oxygen-evolving complex in photosystem II: structural implications for the Mn4Ca cluster. J Am Chem Soc. 2005;127:14974–5.

    Article  Google Scholar 

  37. Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of photosystem II: protonation states and magnetic interactions. J Am Chem Soc. 2011;133:19743–57.

    Article  Google Scholar 

  38. Grundmeier A, Dau H. Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta. 2012;1817:88–105.

    Article  Google Scholar 

  39. Isobe H, Shoji M, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen JR, Yamaguchi K. Theoretical illumination of water-inserted structures of the CaMn4O5 cluster in the S2 and S3 states of oxygen-evolving complex of photosystem II: full geometry optimizations by B3LYP hybrid density functional. Dalton Trans. 2012;41:13727–40.

    Article  Google Scholar 

  40. Petrie S, Gatt P, Stranger R, Pace RJ. Modelling the metal atom positions of the photosystem II water oxidising complex: a density functional theory appraisal of the 1.9 angstrom resolution crystal structure. Phys Chem Chem Phys. 2012;14:11333–43.

    Article  Google Scholar 

  41. Siegbahn PEM. The effect of backbone constraints—the case of water oxidation by the oxygen evolving complex in photosystem II. ChemPhysChem. 2011;12:3274–80.

    Article  Google Scholar 

  42. Siegbahn PE. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O–O bond formation and O2 release. Biochim Biophys Acta. 2013;1827(8–9):1003–19. doi:10.1016/j.bbabio.2012.10.006.

    Article  Google Scholar 

  43. Yamaguchi K, Isobe H, Yamanaka S, Saito T, Kanda K, Shoji M, Umena Y, Kawakami K, Shen JR, Kamiya N, Okumura M. Full geometry optimizations of the mixed-valence CaMn4O4X(H2O)4 (X = OH or O) cluster in OEC of PS II: degree of symmetry breaking of the labile Mn-X-Mn bond revealed by several hybrid DFT calculations. Int J Quan Chem. 2013;113:525–41.

    Article  Google Scholar 

  44. Yamaguchi K, Yamanaka S, Isobe H, Saito T, Kanda K, Umena Y, Kawakami K, Shen JR, Kamiya N, Okumura M, Nakamura H, Shoji M, Yoshioka Y. The nature of chemical bonds of the CaMn4O5 cluster in oxygen evolving complex of photosystem II: Jahn-Teller distortion and its suppression by Ca do** in cubane structures. Int J Quan Chem. 2013;113:453–73.

    Article  Google Scholar 

  45. Luber S, Rivalta I, Umena Y, Kawakami K, Shen JR, Kamiya N, Brudvig GW, Batista VS. S1-state model of the O2-evolving complex of photosystem II. Biochemistry. 2011;50:6308–11.

    Article  Google Scholar 

  46. Boussac A, et al. Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus. J Biol Chem. 2004;279:22809–19.

    Article  Google Scholar 

  47. Cox N, et al. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc. 2011;133:3635–48.

    Article  Google Scholar 

  48. Ishida N, et al. Biosynthetic exchange of bromide for chloride and strontium for calcium in the photosystem II oxygen-evolving enzymes. J Biol Chem. 2008;283:13330–40.

    Article  Google Scholar 

  49. Pushkar Y, Yano J, Sauer K, Boussac A, Yachandra VK. Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc Natl Acad Sci U S A. 2008;105:1879–84.

    Article  ADS  Google Scholar 

  50. Suzuki H, Taguchi Y, Sugiura M, Boussac A, Noguchi T. Structural perturbation of the carboxylate ligands to the manganese cluster upon Ca2+/Sr2+ exchange in the S-state cycle of photosynthetic oxygen evolution as studied by flash-induced FTIR difference spectroscopy. Biochemistry. 2006;45:13454–64.

    Article  Google Scholar 

  51. Koua FHM, Umena Y, Kawakami K, Shen JR. Structure of Sr-substituted photosystem II at 2.1 Å resolution and its implications in the mechanism of water oxidation. Proc Natl Acad Sci U S A. 2013;110:3889–94.

    Article  ADS  Google Scholar 

  52. Dau H, Haumann M. The manganese complex of photosystem II in its reaction cycle—basic framework and possible realization at the atomic level. Coord Chem Rev. 2008;252:273–95.

    Article  Google Scholar 

  53. Joliot P. Period-four oscillations of the flash-induced oxygen formation in photosynthesis. Photosynth Res. 2003;76:65–72.

    Article  Google Scholar 

  54. Kok B, Forbush B, McGloin M. Cooperation of charges in photosynthetic oxygen evolution. I. A linear four step mechanism. Photochem Photobiol. 1970;11:457–75.

    Article  Google Scholar 

  55. Junge W, Haumann M, Ahlbrink R, Mulkidjanian A, Clausen J. Electrostatics and proton transfer in photosynthetic water oxidation. Philos Trans R Soc Lond B. 2002;357:1407–18.

    Article  Google Scholar 

  56. Suzuki H, Sugiura M, Noguchi T. Monitoring proton release during photosynthetic water oxidation in photosystem II by means of isotope-edited infrared spectroscopy. J Am Chem Soc. 2009;131:7849–57.

    Article  Google Scholar 

  57. Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J. Recent pulsed EPR studies of the photosystem II oxygen-evolving complex: implications as to water oxidation mechanisms. Biochim Biophys Acta. 2004;1655:158–71.

    Article  Google Scholar 

  58. Kulik LV, Epel B, Lubitz W, Messinger J. 55Mn pulse ENDOR at 34 GHz of the S0 and S2 states of the oxygen-evolving complex in photosystem II. J Am Chem Soc. 2005;127:2392–3.

    Article  Google Scholar 

  59. Kulik LV, Epel B, Lubitz W, Messinger J. Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc. 2007;129:13421–35.

    Article  Google Scholar 

  60. McEvoy JP, Gascon JA, Batista VS, Brudvig GW. The mechanism of photosynthetic water splitting. Photochem Photobiol Sci. 2005;4:940–9.

    Google Scholar 

  61. Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD. 55Mn ENDOR of the S2-state multiline EPR signal of photosystem II: implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc. 2000;122:10926–42.

    Article  Google Scholar 

  62. Kolling DR, Cox N, Ananyev GM, Pace RJ, Dismukes GC. What are the oxidation states of manganese required to catalyze photosynthetic water oxidation? Biophys J. 2012;103:313–22.

    Article  Google Scholar 

  63. Stich TA, Yeagle GJ, Service RJ, Debus RJ, Britt RD. Ligation of D1-His332 and D1-Asp170 to the manganese cluster of photosystem II from Synechocystis assessed by multifrequency pulse EPR spectroscopy. Biochemistry. 2011;50:7390–404.

    Article  Google Scholar 

  64. Noguchi T. FTIR detection of water reactions in the oxygen-evolving centre of photosystem II. Philos Trans R Soc Lond B Biol Sci. 2008;363:1189–94.

    Article  Google Scholar 

  65. Suzuki H, Sugiura M, Noguchi T. Monitoring water reactions during the S-state cycle of the photosynthetic water-oxidizing center: detection of the DOD bending vibrations by means of Fourier transform infrared spectroscopy. Biochemistry. 2008;47:11024–30.

    Article  Google Scholar 

  66. Noguchi T. Fourier transform infrared analysis of the photosynthetic oxygen-evolving center. Coord Chem Rev. 2008;252:336–46.

    Article  Google Scholar 

  67. Siegbahn PE. A structure-consistent mechanism for dioxygen formation in photosystem II. Chem Eur J. 2008;14:8290–302.

    Article  Google Scholar 

  68. Siegbahn PE. Structures and energetics for O2 formation in photosystem II. Acc Chem Res. 2009;42:1871–80.

    Article  Google Scholar 

  69. Gabdulkhakov A, Guskov A, Broser M, Kern J, Müh F, Saenger W, Zouni A. Probing the accessibility of the Mn4Ca cluster in photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO. Structure. 2009;17:1223–34.

    Article  Google Scholar 

  70. Ho FM, Styring S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta. 2008;1777:140–53.

    Article  Google Scholar 

  71. Murray JW, Barber J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol. 2007;159:228–37.

    Article  Google Scholar 

  72. Saito K, Shen JR, Ishida T, Ishikita H. Short hydrogen bond between redox-active Tyrosine YZ and D1-His190 in the photosystem II crystal structure. Biochemistry. 2011;50:9836–44.

    Article  Google Scholar 

  73. Hays AMA, Vassiliev IR, Golbeck JH, Debus RJ. Role of D1-His190 in the proton-coupled oxidation of tyrosine YZ in manganese-depleted Photosystem II. Biochemistry. 1999;38:11851–65.

    Article  Google Scholar 

  74. Hoganson CW, Babcock GT. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science. 1997;277:1953–6.

    Article  Google Scholar 

  75. Tommos C, Babcock GT. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta. 2000;1458:199–219.

    Article  Google Scholar 

  76. Kawakami K, Umena Y, Kamiya N, Shen JR. Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proc Natl Acad Sci U S A. 2009;106:8567–72.

    Article  ADS  Google Scholar 

  77. Murray JW, Maghlaoui K, Kargul J, Ishida N, Lai TL, Rutherford AW, Sugiura M, Boussac A, Barber J. X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of Photosystem II. Energ Environ Sci. 2008;1:161–6.

    Article  Google Scholar 

  78. Debus RJ. Protein ligation of the photosynthetic oxygen-evolving center. Coord Chem Rev. 2008;252:244–58.

    Article  Google Scholar 

  79. Popelková H, Yocum CF. Current status of the role of Cl ion in the oxygen-evolving complex. Photosynth Res. 2007;93:111–21.

    Article  Google Scholar 

  80. Wincencjusz H, van Gorkom HJ, Yocum CF. The photosynthetic oxygen evolving complex requires chloride for its redox state S2 → S3 and S3 → S0 transitions but not for S0 → S1 or S1 → S2 transitions. Biochemistry. 1997;36:3663–70.

    Article  Google Scholar 

Download references

Acknowledgements

Structural analysis of PSII at the atomic resolution described in this chapter was performed in collaboration with Drs. Nobuo Kamiya, Yasufumi Umena, and Keisuke Kawakami, and analysis of the Sr-PSII was performed in collaboration with Dr. Faisal H.M. Koua in addition to the above colleagues. I thank these colleagues for their continuous contributions. The work performed in the author’s laboratory is supported by a Grant-in-Aid for Specially Promoted Research from MEXT/JSPS of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ren Shen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shen, JR. (2014). Structure-Function Relationships in the Mn4CaO5 Water-Splitting Cluster. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_11

Download citation

Publish with us

Policies and ethics

Navigation