Log in

Structures of proteins and cofactors: X-ray crystallography

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Protein crystallography is the predominately used technique for the determination of the three-dimensional structures of proteins and other macromolecules. In this article, the methodology utilized for the measurement and analysis of the diffraction data from crystals is briefly reviewed. As examples of both the usefulness and difficulties of this technique, the determination of the structures of several photosynthetic pigment–protein complexes is described, namely, the reaction center from purple bacteria, photosystem I and photosystem II from cyanobacteria, the light-harvesting complex II from purple bacteria, and the FMO protein from green bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734. doi:10.1073/pnas.84.16.5730

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Drory O, Nelsen N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63. doi:10.1038/nature05687

    Article  CAS  PubMed  Google Scholar 

  • Axelrod HL, Okamura MY (2005) The structure and function of the cytochrome c 2 : reaction center electron transfer complex from Rhodobacter sphaeroides. Photosynth Res 85:101–114. doi:10.1007/s11120-005-1368-8

    Article  CAS  PubMed  Google Scholar 

  • Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G (2002) X-ray structure determination of the cytochrome c 2 reaction center electron transfer complex from Rhodobacter sphaeroides. J Mol Biol 319:501–515. doi:10.1016/S0022-2836(02)00168-7

    Article  CAS  PubMed  Google Scholar 

  • Baxter RH, Seagle BL, Ponomarenko N, Norris JR (2005) Cryogenic structure of the photosynthetic reaction center Blastochloris viridis in the light and dark. Acta Crstallogr D 61:605–612. doi:10.1107/S0907444905005809

    Article  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635. doi:10.1038/nature02200

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2004) Evolution of photosystem I from symmetry through pseudosymmetry to asymmetry. FEBS Lett 564:274–280. doi:10.1016/S0014-5793(04)00360-6

    Article  CAS  PubMed  Google Scholar 

  • Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–628. doi:10.1038/nature03429

    Article  CAS  PubMed  Google Scholar 

  • Camara-Artigas A, Brune D, Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci USA 99:11055–11060. doi:10.1073/pnas.162368399

    Article  CAS  PubMed  Google Scholar 

  • Camara-Artigas A, Blankenship RE, Allen JP (2003) The structure of the FMO protein from Chlorobium tepidum at 2.2 Å resolution. Photosynth Res 75:49–55. doi:10.1023/A:1022406703110

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, El-Kabbani O, Tiede D, Norris J, Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30:5352–5360. doi:10.1021/bi00236a005

    Article  CAS  PubMed  Google Scholar 

  • Cheng YS, Brantner CA, Tsapin A, Collins MLP (2000) Role of the H protein in assembly of the photochemical reaction center and intracytoplasmic membrane in Rhodosprillum rubrum. J Bacteriol 182:1200–1207. doi:10.1128/JB.182.5.1200-1207.2000

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324. doi:10.1017/S0033583506004434

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ, Feher G, Okamura MY (1985) LM complex of reaction centers from Rhodopseudomas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry 24:2488–2500. doi:10.1021/bi00331a015

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624. doi:10.1038/318618a0

    Article  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246:429–457. doi:10.1006/jmbi.1994.0097

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein–cofactor interactions. Structure 2:925–936. doi:10.1016/S0969-2126(94)00094-8

    Article  CAS  PubMed  Google Scholar 

  • Feher G, Allen JP, Okamura MY, Rees DC (1989) Structure and function of bacterial photosynthetic reaction centres. Nature 339:111–116. doi:10.1038/339111a0

    Article  CAS  Google Scholar 

  • Fenna RE, Matthes BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573–577. doi:10.1038/258573a0

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  CAS  PubMed  Google Scholar 

  • Goldbeck J (ed) (2006) Photosystem I: the light induced plastocyanin:ferredoxin oxidoreductase. Springer-Verlag Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Hunter N, Daldal F, Thurnauer M, Beatty JT (eds) (2008) The purple phototrophic bacteria. Springer-Verlag Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917. doi:10.1038/35082000

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100:98–103. doi:10.1073/pnas.0135651100

    Article  CAS  PubMed  Google Scholar 

  • Karrasch S, Bullog PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14:631–638

    CAS  PubMed  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin. Nature 185:422–427. doi:10.1038/185422a0

    Article  CAS  PubMed  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4:581–597. doi:10.1016/S0969-2126(96)00063-9

    Article  CAS  PubMed  Google Scholar 

  • Krauss N (2008) Structure and function of cyanobacterial photosystem I. In: Fromme P (ed) Photosynthetic protein complexes. Wiley-Blackwell, Weinheim, pp 23–64

    Google Scholar 

  • Krauss N, Hinrics W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT, Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361:326–331. doi:10.1038/361326a0

    Article  CAS  Google Scholar 

  • Li Y-F, Zhou W, Blankenship RE, Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271:456–471. doi:10.1006/jmbi.1997.1189

    Article  CAS  PubMed  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  CAS  PubMed  Google Scholar 

  • Lupo D, Ghosh R (2004) The reaction center H subunit is not required for high levels of light-harvesting complex I in Rhodosprillum rubrum mutants. J Bacteriol 186:5585–5595. doi:10.1128/JB.186.17.5585-5595.2004

    Article  CAS  PubMed  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MF (1979) Structure of a bacteriochlorophyll a-protein from the green bacterium Prosthecochloris aestuarii. J Mol Biol 131:259–285. doi:10.1016/0022-2836(79)90076-7

    Article  CAS  PubMed  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96:14706–14711. doi:10.1073/pnas.96.26.14706

    Article  CAS  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521. doi:10.1038/374517a0

    Article  CAS  Google Scholar 

  • Miyashita O, Okamura MY, Onuchic JM (2005) Interprotein electron transfer from cytochrome c 2 to photosynthetic reaction center: tunneling across an aqueous interface. Proc Natl Acad Sci USA 102:3558–3563. doi:10.1073/pnas.0409600102

    Article  CAS  PubMed  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538. doi:10.1016/S0022-2836(03)00024-X

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT (1960) Structure of haemoglobin. Nature 185:416–422. doi:10.1038/185416a0

    Article  CAS  PubMed  Google Scholar 

  • Raszewski G, Diner BA, Schlodder E, Renger T (2008) Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. Biophys J 95:105–119. doi:10.1529/biophysj.107.123935

    Article  CAS  PubMed  Google Scholar 

  • Read EL, Schlau-Cohen GS, Engel GS, Wen J, Blankenship RE, Fleming GR (2008) Visualization of excitonic structure in the Fenna–Matthews–Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy. Biophys J 95:847–856. doi:10.1529/biophysj.107.128199

    Article  CAS  PubMed  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972. doi:10.1126/science.1088892

    Article  CAS  PubMed  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron–proton transfer. Science 276:812–816. doi:10.1126/science.276.5313.812

    Article  CAS  PubMed  Google Scholar 

  • Tehrani A, Prince RC, Beatty JT (2003) Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides. Biochemistry 42:8919–8928. doi:10.1021/bi0346650

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE, Matthews BW (1993) Refinement of the structure of a water-soluble antenna complex from green photosynthetic bacteria by incorporation of the chemically determined amino acid sequence. In: Norris J, Deisenhofer J (eds) The photosynthetic reaction center. Academic Press, New York, pp 13–21

    Google Scholar 

  • Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II: the light-induced water:pastoquinone oxidoreductase. Springer-Verlag Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825. doi:10.1126/science.1128186

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 49:739–743. doi:10.1038/35055589

    Article  Google Scholar 

Download references

Acknowledgment

The work from our laboratory described in this review is supported from a grant from the National Science Foundation, MCB 0640002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J.P., Seng, C. & Larson, C. Structures of proteins and cofactors: X-ray crystallography. Photosynth Res 102, 231–240 (2009). https://doi.org/10.1007/s11120-009-9416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9416-4

Keywords

Navigation