Carbon Capture and Storage: In the Quest for Clean Fossil Energy

  • Chapter
  • First Online:
Liberating Energy from Carbon: Introduction to Decarbonization

Part of the book series: Lecture Notes in Energy ((LNEN,volume 22))

  • 1807 Accesses

Abstract

The main objective of carbon capture and storage (CCS) is to prevent CO2 from entering the atmosphere by capturing CO2 from large industrial sources and securely storing it in various carbon sinks. CCS is considered a critical component of the portfolio of carbon mitigation solutions, because global economy heavily relies and will continue to rely on fossil fuels in the foreseeable future. Currently, there are close to 300 active and planned CCS-related projects around the world—an indication of a growing commitment to this technological option. However, despite significant progress in CCS technology, the pace of CCS commercial deployment is rather slow. The major challenges facing the large-scale CCS deployment worldwide relate to a very high financial barrier and limited economic stimuli or regulatory drivers to encourage investments in the technology. This chapter highlights scientific and engineering progress in all three major stages of the CCS chain, CO2 capture, transport, and storage, and the current status of existing and planned commercial CCS projects. Technological, economic, environmental, and societal aspects of the large-scale CCS deployment and its prospects as a major carbon abatement policy are analyzed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    New Entrants Reserve (NER300) is one of the world’s largest funding programs for innovative low-carbon energy demonstration projects as part of the EU Emission Trading System.

References

  1. Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Final report. http://www/globalccsinstitute.com/downloads/reports/2009/worley/foundation-report-1-rev0.pdf. Accessed 3 Aug 2010

    Google Scholar 

  2. Outcomes from UNFCCC conference in Doha (2013) Carbon Capture J 32

    Google Scholar 

  3. Global CCS Institute (2013) Status of carbon capture and storage update. Carbon Capture J 32

    Google Scholar 

  4. International Energy Agency (2012) Energy technology perspectives. Pathways to a clean energy system. IEA/OECD, Paris, France

    Google Scholar 

  5. Jacobson M (2009) Review of solutions to global warming, air pollution and energy security. Energy Environ Sci 2:148–173

    Article  Google Scholar 

  6. Quaile I, Gräßler B (2011) Deutsche Welle. http//www.dw-world.de/dw/article/0,15402725,00.html. Accessed 10 Dec 2011

    Google Scholar 

  7. Thompson J (2012) The dash for gas—no climate cure without CCS. Global CCS Institute. http://www.globalccsinstitute.com/insights/authors/jyhompson/2012/10/22/das-gas-%E2%80%93-no-climate-cure-without-ccs. Accessed 23 Oct 2012

  8. International Energy Agency (2013) Tracking clean energy progress. IEA input to the Clean Energy Ministerial, IEA, Paris. www.iea.org/publications/TCEP_web.pdf. Accessed 10 Sep 2013

  9. IEA calls for more funds to support carbon capture technology (2012) Bloomberg, June 11, 2012. http://www.eco-business.com/news/iea-calls-for-more-funds-to-support-carbon-capture-technology. Accessed 10 Jul 2012

  10. Mankins J (1995) Technology readiness levels, NASA Office of Space Access and Technology, Advanced Concepts Office. http://www.hq.nasa.gov/office/codeq/trl/trl.pdf. Accessed 20 Oct 2012

  11. WorleyParsons, Schlumberger, Baker & McKenzie and EPRI (2009) Strategic analysis of the global status of carbon capture and storage. http://cdn.globalccsinstitute.com/sites/default/files/publications/5751/report-5-synthesis-report.pdf. Accessed 10 Jul 2012

  12. Global CCS Institute (2011) The global status of CCS: 2011 update. Canberra, Australia, ISBN 978-0-9871863-0-0

    Google Scholar 

  13. He H, Li W, Zhong M et al (2013) Reversible CO2 capture with porous polymers using the humidity swing. Energy Environ Sci 6:488–493

    Google Scholar 

  14. US Department of Energy (2007) Carbon sequestration technology. Roadmap, Washington, DC

    Google Scholar 

  15. Rochelle G (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  Google Scholar 

  16. Ciferno J, Fout T, Jones A et al. (2009) Capturing carbon from existing coal-fired power plants. Chem Eng Progress:33–47

    Google Scholar 

  17. US Department of Energy (2003) Carbon sequestration. Technology roadmap and program plan. US DOE Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia

    Google Scholar 

  18. Millward A, Yaghi O (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  Google Scholar 

  19. Carbon sponge could soak up coal emissions (2013) Carbon Capture J 32:21

    Google Scholar 

  20. CO2 capture in vehicles and home heating systems (2012) Carbon Capture J. http://www.carboncapturejournal.com/displaynews.php?NewsID=1043&PHPSESSID=18dkjsha7qaa6s815mlrslvtq4. Accessed 30 Nov 2012

  21. Lin H, Merkel T, Baker R (2007) The membrane solution to global warming. 6th annual conference on carbon capture and sequestration, Pittsburgh, PA

    Google Scholar 

  22. Du N, Park H, Robertson G et al (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375

    Article  Google Scholar 

  23. US Department of Energy (2006) Carbon Sequestration Technology Roadmap. Office of Fossil Energy, NETL, Morgantown, West Virginia

    Google Scholar 

  24. US Department of Energy (2005) Roadmap for the hydrogen economy. Workshop on manufacturing R&D for the hydrogen economy, Washington, DC

    Google Scholar 

  25. Intergovernmental Panel on Climate Change (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H et al (eds). Cambridge University Press, Cambridge

    Google Scholar 

  26. International Energy Agency (1996) Decarbonization of fossil fuels, IEA Report PH2/2, March 1996, IEA Greenhouse Gas R&D Programme, Cheltenham

    Google Scholar 

  27. Muradov N (2009) Production of hydrogen from hydrocarbons. In: Gupta R (ed) Hydrogen fuel. Production, transport and storage. CRC Press, Boca Raton

    Google Scholar 

  28. Wilson E, Gerard D (2007) Carbon capture and sequestration. Integrating technology, monitoring and regulation. Blackwell Publishing, Ames, IA

    Google Scholar 

  29. Ball M, Weindorf W, Bunger U (2009) Hydrogen production. In: Ball M, Wietschel M (eds) Hydrogen economy. Opportunities and challenges. Cambridge University Press, Cambridge, UK

    Chapter  Google Scholar 

  30. Lin S (2009) Hydrogen production from coal. In: Gupta R (ed) Hydrogen fuel. Production, transport and storage. CRC Press, Boca Raton

    Google Scholar 

  31. US Department of Energy (2010) Worldwide gasification database online, NETL. Pittsburgh, PA. www.netl.doe.gov/coalpower/gasification/models/dtbs.pdf. Accessed 12 Aug 2012

  32. US Department of Energy (2012) Turbine program. Enabling near-zero emission coal-based power generation, Office of fossil energy, NETL. http://www.netl.doe.gov/technologies/coalpower/turbines/refshelf/brochures/brochure%209-19-05.pdf. Accessed 20 Aug 2012

  33. Fukuizumi Y, Shiozaki S, Muyama A et al (2004) Large frame gas turbines. The leading technology of power generation industries, Mitsubishi Heavy Industries, Technical Review, vol.41, No. 5, 1–5 Oct 2004. http://www.mhi.co.jp/technology/review/pdf/e415/e415254.pdf. Accessed 20 Aug 2012

  34. Bancalari E, Chan P, Diakunchak I (2007) Advanced hydrogen turbine development, Siemens, DOE contract No. DE-FC26-05NT42644. http://www.energy.siemens.com/co/pool/hq/energy-topics/pdfs/en/igcc/6_advanced_hydrogen.pdf. Accessed 20 Aug 2012

  35. Mak S (2003). Where are construction materials headed. http://www.dbce.csiro.au/inno-web/0899/sustainable.htm. Accessed 20 Jan 2008

  36. Stern M, Simeon F, Herzog H et al (2013) Post-combustion carbon-dioxide capture using electrochemically mediated amine regeneration. Energy Environ Sci. doi:10.1039/c3ee41165f

  37. CO2 Technology Centre Mongstad (2012) Technologies. http://www.tcmda.com/en/technology/. Accessed 15 Jul 2012

  38. Brennecke J, Gurkan B (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 2010:3459–3464

    Article  Google Scholar 

  39. Ritter S (2010) Carbon dioxide’s unsettled future. Chem Eng News 88:36–37

    Google Scholar 

  40. Trachtenberg M, Cowan R, Smith D et al (2008). Membrane-based enzyme-facilitated efficient CO2 capture. Proceedings of the 9th international conference on Greenhouse Gas Control Technologies, Washington, DC, p 353–360

    Google Scholar 

  41. Tuinier M, Hamers H, van Sing Annaland M (2011) Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. Int J Greenhouse Gas Control 5:1559–1565

    Article  Google Scholar 

  42. US Department of Energy (2012) Cryogenic carbon capture. ARPA-E project DE-AR0000101. NETL. http://www.netl.doe.gov/publications/proceedings/12/co2capture/presentations/5-Posters/D%20Frankman-SES-Cryogenic%20Carbon%20Capture.pdf. Accessed 20 Jan 2013

  43. Harris S (2013) Material could enable cheaper method of carbon capture. The Engineer, June, 2013. http://www.theengineer.co.uk/sectors/energy-and-environment/news/material-could-enable-cheaper-method-of-carbon-capture/1012898.article. Accessed 14 Sep 2013

  44. Zafar Q, Mattisson T, Gevert B (2005) Integrated hydrogen and power production with CO2 capture using chemical-loo** reforming-redox reactivity of particles of CuO, Mn2O3, NiO and Fe2O3 using SiO2 as a support. Ind Eng Chem Res 44:3485–3496

    Article  Google Scholar 

  45. McGlashan N (2008) Chemical loo** combustion—a thermodynamic study. J Mech Eng Sci 222:1005–1019

    Article  Google Scholar 

  46. Brandvoll O, Bolland O (2004) Inherent CO2 capture using chemical loo** combustion in a natural gas fired power cycle. ASME J Eng Gas Turb Power 126:316–321. ASME Paper GT-2002–30129

    Google Scholar 

  47. Naqvi R, Bolland O (2007) Multi-stage chemical loo** combustion (CLC) for combined cycles with CO2 capture. Int J Greenhouse Gas Control 1:19–30

    Article  Google Scholar 

  48. Habib M, Badr H, Ahmed S et al (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35:741–764

    Article  Google Scholar 

  49. Mattisson T (2007) Chemical-loo** combustion using gaseous and solid fuels. 2nd Workshop on international oxy-combustion research network, 25–26 Jan 2007, Windsor, CT

    Google Scholar 

  50. Tan X, Wang Z, Lin H et al (2008) Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fibre membranes by surface modifications. J Membr Sci 324:128–135

    Article  Google Scholar 

  51. Park J, Do Par S (2007) Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3-δ membrane. Korean J Chem Eng 24:897–905

    Article  Google Scholar 

  52. Esquiro A, Brandon N, Kilner J et al (2004) Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for intermediate temperature SOFC. J Electrochem Soc 151:A1847–A1855

    Article  Google Scholar 

  53. Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane. J Membr Sci 210:259–271

    Article  Google Scholar 

  54. Zhu X, Cong Y, Yang W (2006) Effects of synthesis methods on oxygen permeability of BaCe0.15Fe0.85O3-δ ceramic membranes. J Membr Sci 283:158–163

    Article  Google Scholar 

  55. Arnold M, Wang H, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and microstructure of perovskite type (Ba0.5Sr0.5) (Co0.8Fe0.2)O3-δ membranes. J Membr Sci 293:44–52

    Article  Google Scholar 

  56. Yan A, Liu B, Dong Y et al (2008) A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Appl Catal B 80:24–31

    Article  Google Scholar 

  57. Benson S, Waller D, Kilner J (1999) Degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ in carbon dioxide and water atmospheres. J Electrochem Soc 146:1305–1309

    Article  Google Scholar 

  58. Efimov K, Arnold M, Martynczuk J et al (2009) Crystalline intermediate phases in the sol-gel-based synthesis of La2NiO4+δ. J Am Ceram Soc 92:876–880

    Article  Google Scholar 

  59. Kvamsdal H, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24

    Article  Google Scholar 

  60. Sandquist S, Julsrud S, Vigenand B et al (2007) Development and testing of AZEP reactor components. Int J Greenhouse Gas Control 2007:180–187

    Google Scholar 

  61. Sundquist S, Griffin T, Thornhaug N (2011) AZEP-development of an integrated air separation membrane-gas turbine. 2nd Nordic minisymposium on carbon dioxide capture and storage. Alstom Power, Gothenburg, Sweden, October 2011

    Google Scholar 

  62. US Department of Energy (2012) Praxair: IEP—oxy-combustion CO2 emissions control, OTM-based oxycombustion for CO2 recovery, Project No.: FC26-01NT41147 & FC26-07NT43088 http://www.netl.doe.gov/technologies/coalpower/ewr/co2/oxy-combustion/otm-based.html. Accessed 14 Jan 2013

  63. Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Report 5: synthesis report. http://cdn.globalccsinstitute.com/sites/default/files/publications/5751/report-5-synthesis-report.pdf. Accessed 12 Feb 2012

  64. Seiersten M (2001) Material selection for separation, transportation and disposal of CO2. Proceedings of the Corrosion National Association. Corrosion Engineers, paper 1042

    Google Scholar 

  65. Guijt W (2004) Analyses of incident data show US, European pipelines becoming safer. Oil Gas J 102:68–73

    Google Scholar 

  66. McKinsey and Co (2008) Carbon capture & storage: assessing the economics. McKinsey and Company. http://assets.wwf.ch/downloads/mckinsey2008.pdf. Accessed 12 Feb 2012

  67. International Energy Agency (2004) Ship transport of CO2. IEA Greenhouse Gas R&D Programme, Report PH4/30, Cheltenham

    Google Scholar 

  68. Marchetti C (1977) On geoenginering and the CO2 problem. Clim Chang 1:59–68

    Article  Google Scholar 

  69. Kaarstad O (1992) Emission-free fossil energy from Norway. Energy Convers Manag 33:781–786

    Article  Google Scholar 

  70. Koide H, Tazaki Y, Noguchi Y et al (1992) Subterranean containment and long-term storage of carbon dioxide in unused aquifers and depleted natural gas reservoirs. Energy Convers Manag 33:619–626

    Article  Google Scholar 

  71. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media. Environ Geol 44:277–289

    Article  Google Scholar 

  72. Pershad H (2012) CCS for gas—results of Element Energy study. Carbon Capture J 13–15

    Google Scholar 

  73. Doyle A (2013) Norwegian sea can hold 100 years of Norway’s CO2. Scientific American, 25 Jan 2013. http://www.scientificamercian.com/article.cfm?id=Norwegian-sea-can-hold100-years-of-Norways-CO2 . Accessed 10 Jul 2013

  74. Johnson J (2009) Huge CO2 storage potential in China. Chem Eng News 87:27

    Article  Google Scholar 

  75. Bachu S, Gunter W, Perkins E (1994) Aquifer disposal of CO2: hydrodynamic and mineral trap**. Energy Convers Manag 35:269–279

    Article  Google Scholar 

  76. Perkins E, Czernichowski-Lauriol I, Azaroual M et al (2004) Long term predictions of CO2 storage by mineral and solubility trap** in the Weybourn Midale Reservoir. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, vol II, Vancouver, Canada, p. 2093–2096

    Google Scholar 

  77. Casey A (2008) Carbon cemetery. Canadian Geographic Magazine, January/February:61

    Google Scholar 

  78. US Department of Energy (2012) NETL. Enhanced oil recovery information. www.netl.doe.gov/KMD/cds/disk44/F-General/EOR_Brochure.pdf. Accessed 20 Dec 2012

  79. Holt T, Jensen J, Lindeberg E (1995) Underground of storage of CO2 in aquifers and oil reservoirs. Energy Convers Manag 36:535–538

    Article  Google Scholar 

  80. Ferguson R, Nichols C, van Leeuwen T et al (2009) Storing CO2 with enhanced oil recovery. Greenhouse Gas Technologies-9, Elsevier Science Direct, Energy Procedia 1: 1989–1996

    Google Scholar 

  81. Baviere M (2007) Basic concepts in enhanced oil recovery processes. Elsevier Applied Science, London, ISBN 1-85166-617-6

    Google Scholar 

  82. Stevens S, Kuuskraa J, Schraufnagel R (1996) Technology spurs growth of US coal bed methane. Oil Gas J 94:56–63

    Google Scholar 

  83. Key R, Kozyr A, Sabine C et al (2004) A global ocean carbon climatology: results from GLODAP. Global Biochem Cy 18:GB4031

    Google Scholar 

  84. Giles J (2002) Norway sinks ocean carbon study. Nature 419:6

    Article  Google Scholar 

  85. Brewer P, Peltzer E, Walz P et al (2005) Deep ocean experiments with fossil fuel carbon dioxide: creation and sensing of a controlled plume at 4 km depth. J Mar Res 63:9–33

    Article  Google Scholar 

  86. Intergovernmental Panel on Climate Change (2007) IPCC 4th assessment report, climate change 2007. The physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  87. O’Connor W, Dahlin D, Rush G et al (2005) Aqueous mineral carbonation, Final Report, DOE/ARC-TR-04-002, 15 March 2005

    Google Scholar 

  88. US Department of Energy (1999) Carbon sequestration. State of the Science. US DOE, Office of Science, Office of Fossil Fuels, Working paper on carbon sequestration science and technology. Washington, DC

    Google Scholar 

  89. Andersen R (2005) Algal culturing techniques. Elsevier, Amsterdam, pp 189–203

    Google Scholar 

  90. Nakamura T (2004) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae, Technical report to DOE, NETL, No. PSI-1356, December 2004

    Google Scholar 

  91. National Laboratory Directors (1997) Technology opportunities to reduce US greenhouse gas emissions. Oak Ridge National Laboratory, Tennessee

    Google Scholar 

  92. International Energy Agency (2004) Improvements in power generation with post- combustion capture of CO2, IEA report PH4/33. IEA Greenhouse gas R&D Programme, Cheltenham, UK

    Google Scholar 

  93. Davison J (2005) CO2 capture and storage and the IEA Greenhouse Gas Programme. Workshop on CO2 issues, Miffelfart, Denmark, May 2005, IEA Greenhouse Gas Programme, Cheltenham

    Google Scholar 

  94. Power from gas + CCS at 54% efficiency? (2013) Carbon Capture J 14–15

    Google Scholar 

  95. Tola V, Pettinau A (2014) Power generation plants with carbon capture and storage: a techno-economic comparison between coal combustion and gasification technologies. Appl Energy 113:1461–1474

    Article  Google Scholar 

  96. Global CCS Institute (2011) Economic assessment of carbon capture and storage technologies. 2011 update. WorleyParsons, Schlumberger. Canberra, Australia. http://cdn.globalccsinstitute.com/sites/default/files/publications/12786/economic-assessment-carbon-capture-and-storage-technologies-2011-update.pdf. Accessed 12 May 2012

  97. Thayer A (2009) Chemicals to help coal come clean. Chem Eng News 87:18–20

    Article  Google Scholar 

  98. McCoy S, Rubin E (2008) An engineering economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2:219–229

    Article  Google Scholar 

  99. National Energy Technology Laboratory (2012) Carbon storage. Geologic storage focus. http://www.netl.doe.gov/technologies/carbon_seq/corerd/storage.html. Accessed 12 Oct 2012

  100. Bock B, Rhudy R, Herzog H et al. (2003) Economic evaluation of CO2 storage and sink options. DOE research report, DE-FC26–00NT40937, Washington, DC

    Google Scholar 

  101. Hendriks C, Graus W, van Bergen F (2002) Global carbon dioxide storage potential and costs. Report Ecofys & The Netherlands Institute of Applied Geoscience TNO, Ecofys Report EEP, p 63

    Google Scholar 

  102. Roche P (2012) Widespread CCS unlikely unless CO2 capture cost reduced, conference hears. Daily Oil Bull. http://airwaterland.ca/issues/printer.asp?article=dob%2F121017%2Fdob2012_oh0032.html. Accessed 23 Oct 2012

  103. Akai M, Nishio N, Iijima M et al. (2004) Performance and economic evaluation of CO2 capture and sequestration technologies. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, Elsevier, Oxford

    Google Scholar 

  104. World Energy Investment Outlook (2003) OECD/IEA, 75775 Paris. ISBN: 92-64-01906-5

    Google Scholar 

  105. Edmonds J, Feund P, Dooley J (2000) The role of carbon management technologies in addressing atmospheric stabilization of greenhouse gases. Proceedings of the 5th international conference on Greenhouse Gas Control Technologies. Sponsored by the IEA Greenhouse gas R&D Programme, Cairns

    Google Scholar 

  106. Kithil P (2007) A policy option to provide sufficient funding for massive-scale sequestration of CO2, the Smithsonian/NASA Astrophysics Data System. http://adsabs.harvard.edu/abs/2007AGUFM.U43C1410K. Accessed 14 Jan 2010

  107. International Energy Agency (2013) Technology roadmap. Carbon capture and storage, 2013 edn. http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapCarbonCaptureandStorage.pdf. Accessed 5 Sep 2013

  108. Status of CCS project database (2012) Carbon Capture J:24–25

    Google Scholar 

  109. China becoming a global leader in CCS projects (2013) Carbon Capture J. http://www.carboncapturejournal.com/displaynes.php?NewsID=1126&PHPSESSID=18dkjsha7qaa6s815mlrslvtq4. Accessed 15 Jun 2013

  110. Global CCS Institute (2011) The global status of CCS: 2010, Canberra, Australia, ISSN 1838-9481. http://www.globalccsinsitute.com/resources/publications/global-status-ccs-2010. Accessed 25 May 2011

  111. Global CCS Institute status of CCS update (2013) Carbon Capture J. http://www.carboncapturejournal.com/. Accessed 20 Jul 2013

  112. Michael K, Allison G, Golab A (2009) CO2 storage in saline aquifers II- experience from existing storage operations. Proceedings of the greenhouse gas technologies-9 conference. Energy procedia, vol 1, p. 1973–1980

    Google Scholar 

  113. Statoil (2009) Development solution. http://www.statoil.com/statoilcom/snohvit/svg02699.nsf?opendatabase&lang=en. Accessed 25 Sep 2009

  114. Petroleum Technology Research Center (2007) Weyburn-Midale CO2 monitoring & storage project. Proceedings of the 6th annual conference on carbon capture & sequestration. Pittsburg, PA, 7 May 2007

    Google Scholar 

  115. Wackowski R (2007) Rangely Weber Sand unit CO2 flooding case study, a long history of CO2 injection. Proceedings of the CO2 capture and storage conference, The Canadian Institute, Calgary, AB, 7 Feb 2007

    Google Scholar 

  116. Beckwith R (2011) Carbon capture and storage: a mixed review. JPT:42–45

    Google Scholar 

  117. Reeves S, Davis D, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report, Washington, DC

    Google Scholar 

  118. Flett M, Beacher G, Brantjes J et al (2008) Gordon Project: subsurface evaluation of carbon dioxide disposal under Barrow Island. Society of Petroleum Engineering, SPE 116372

    Google Scholar 

  119. Johnson J (2012) Stumbling on the path to “clean coal”. Chem Eng News 90:37–39

    Google Scholar 

  120. Reisch M (2011) Air products inks carbon-capture deals. Chem Eng News 89:24

    Google Scholar 

  121. International Energy Agency (2012) Carbon capture and storage in industrial applications. doi:10.1787/9789264130661-en. http://www.oecd-ilibrary.org/energy/carbon-capture-and-storage-in-industrial-applications_9789264130661-en. Accessed 18 Dec 2012

  122. Worrell E, Price L, Martin N et al (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329

    Article  Google Scholar 

  123. Van Puyvelde D (2013) An update on CO2 capture from cement production. Global CCS Institute. http://www.globalccsinstitute.com/insights/authors/dennisvanpuyvelde/2013/02/20/update-co2-capture-cement-production. Accessed 20 Aug 2013

  124. European Cement Research Academy (2012) Carbon capture technology ECRA’s approach towards CCS. ECRA Commun Bull. http://www.ecra-online.org/fileadmin/redaktion/files/pdf/ECRA_CCS_Communication_Bulletin_29.08.12neu.pdf. Accessed 20 Feb 2013

  125. Skyonic (2013) Profitable, scalable, solid carbon capture. www.skyonic.com. Accessed 12 Mar 2013

  126. Velzy C, Grillo L (2007) Waste-to-energy combustion. In: Kreith F, Goswami Y (eds) Handbook of energy efficiency and renewable energy. CRC Press, Boca Raton, USA

    Google Scholar 

  127. Johnson J (2011) EPA proposes easing CO2 controls. Chem Eng News 89:25

    Google Scholar 

  128. Johnson J (2009) Water and CO2 shouldn’t mix. Chem Eng News 87:32

    Google Scholar 

  129. Carapeza M, Badalamenti B, Cavarra L et al (2003) Gas hazard assessment in a densely inhabited area of Colli Albani Volcano. J Volcanol Geothermal Res 123:81–94

    Article  Google Scholar 

  130. Zoback M, Gorelick S (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci U S A. http://www.pnas.org/cgi/doi/10.1073/pnas.1202473109. Accessed 10 Mar 2013

  131. CCS may have potential to induce seismic events (2012) Carbon Capture J. http://www.carboncapturejournal.com/displaynews.php?NewsID=959&PHPSESSID=9sd636g2pot2m8t5t1e8n2gsc3. Accessed 20 Mar 2012

  132. Stone E, Lowe J, Shine K (2009) The impact of carbon capture and storage on climate. Energy Environ Sci 2:81–91

    Article  Google Scholar 

  133. Zhou W, Stenhouse M, Arthur R et al (2005) The IEA Weybourn CO2 monitoring and storage project—modeling of long-term migration of CO2 from Weybourn. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, vol 1, Vancouver, Canada, p 721–730, Elsevier, UK

    Google Scholar 

  134. National Institute for Occupational Safety and Health (1997). Washington, DC

    Google Scholar 

  135. Palmgren C, Granger Morgan M, Bruine de Bruin W et al (2004) Initial public perception of deep geological and oceanic disposal of CO2. Environ Sci Technol 38:6441–6450

    Article  Google Scholar 

  136. Itoaka K, Saito A, Akai M (2004) Public acceptance of CO2 capture and storage technology: a survey of public opinion to explore influential factors. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, 2004, Vancouver, Canada

    Google Scholar 

  137. Johnson J (2010) Gasification plant funds shifted by DOE. Chem Eng News 88:34

    Google Scholar 

  138. Shell Barendrecht project cancelled (2010) Carbon Capture J. http://www.carboncapturejournal.com/displaynews.php?NewsID=676. Accessed 20 Jul 2012

  139. CCS awareness higher in Saskatchewan than Europe Projects (2011) Carbon Capture J. http://www.carboncapturejournal.com/displaynews.php?NewsID=873. Accessed 15 Jan 2012

  140. International Energy Agency (2011) World Energy Outlook. Are we entering a golden age of gas? IEA, Paris, France

    Google Scholar 

  141. Global CCS Institute (2012) Global status of large scale integrated projects. 2012 update. http://cdn.globalccsinstitute.com/sites/default/files/publications/41146/globalstatusoflargescaleintegratedprojectsjune2012update.pdf. Accessed 20 Jan 2013

  142. Johnson J (2013) EPA tries cap** power plant carbon. Chem Eng News 91:42–43

    Google Scholar 

  143. Gurria A (2013) Carbon price vital to address climate change. Responding to climate change (RTCC), 9 Oct 2013. http://www.rtcc.org/2013/10/09/oecd-chief-carbon-price-vital-to-address-climate-change/. Accessed 14 Oct 2013

  144. Wilcox J (2012) Carbon capture. Springer, New York, p 321

    Book  Google Scholar 

  145. Cook P (2012) Clean energy, climate and carbon. CSIRO Publishing, Collingwood, p 214

    Google Scholar 

  146. Mills R (2011) Capturing carbon. The new weapon in the war against climate change. Columbia University Press, New York, p 465

    Google Scholar 

  147. Jackson F (2009) Conquering carbon. Carbon emissions, carbon markets and the consumers. New Holland, London, UK, p 256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muradov, N. (2014). Carbon Capture and Storage: In the Quest for Clean Fossil Energy. In: Liberating Energy from Carbon: Introduction to Decarbonization. Lecture Notes in Energy, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0545-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0545-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0544-7

  • Online ISBN: 978-1-4939-0545-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation