Log in

Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane

  • Presented at the 6th Korea-China Workshop on Clean Energy Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

La0.6Sr0.4Co0.2Fe0.8O3−δ oxides were synthesized by citrate method and hydrothermal method. The oxides prepared by citrate method are perovskite type structure, while the oxides by hydrothermal method have a small amount of secondary phase in the powder. Pyrex glass seal and Ag melting seal provided reliable gas-tight sealing of disk type dense membrane in the range of operation temperature, but commercial ceramic binder could not be removed from the support tube without damage to the tube or membrane. Though the degree of gas tightness increases in the order of glass>Ag>ceramic binder, in the case of glass seal, the undesired spreading of glass leads to an interfacial reaction between it and the membrane and reduction of effective permeation area. The oxygen flux of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane increases with increasing temperature and decreasing thickness, and the oxygen permeation flux through 1.0 mm membrane exposed to flowing air (P h =0.21 atm) and helium (P1=0.037 atm) is ca. 0.33 ml/cm2·min at 950 °C. X-ray diffraction analysis for the membrane after permeation test over 160 h revealed that La2O3 and unknown compound were formed on the surface of membrane. The segregation compounds of surface elements formed on both surfaces of membrane irrespective of spreading of glass sealing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gielen and J. Podkanski, Prospects for CO 2 capture and storage, IEA Publictions, Paris (2004).

    Google Scholar 

  2. K. Thambimuthu, M. Soltanieh and J. C. Abanades, in IPCC special report on carbon dioxide caopture and storage, O. Davidson and B. Metz Eds., Cambridge University Press, London (2005).

    Google Scholar 

  3. A. J. Burggraaf and H. J. M. Bouwmeester, in Fundamentals of inorganic membrane science and technology, A. J. Burggraaf and L. Cot Eds., Elsevier, Amsterdam (1996).

    Google Scholar 

  4. P. N. Dyer, R. E. Richards, S. L. Russek and D. M. Taylor, Solid State Ion, 134, 21 (2000).

    Article  CAS  Google Scholar 

  5. Y. Teraoka, H. M. Zhang, S. Furukawa and N. Yamazoe, Chem. Lett., 1743 (1985).

  6. Y. Teraoka, T. Nobunaga and N. Yamazoe, Chem. Lett., 503 (1988).

  7. Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura and N. Yamazoe, Solid State Ion, 48, 207 (1991).

    Article  CAS  Google Scholar 

  8. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner and B. C. H. Steele, Solid State Ion., 53, 597 (1992).

    Article  Google Scholar 

  9. Y. Zeng, Y. S. Lin and S. L. Swartz, J. Membr. Sci., 87, 150 (1998).

    Google Scholar 

  10. S. J. Xu and W. J. Thomson, AIChE J., 43, 2731 (1997).

    Article  CAS  Google Scholar 

  11. S. J. Xu and W. J. Thomson, Ind. Eng. Chem. Res., 37, 1290 (1998).

    Article  CAS  Google Scholar 

  12. J. A. Lane, S. J. Benson, D. Waller and J. A. Kilner, Solid State Ion, 121, 201 (1999).

    Article  CAS  Google Scholar 

  13. Q. Xu, D. Huang, W. Chen, J. H. Lee, H. Wang and R. Yuan, Scripta Materialia, 50, 165 (2004).

    Article  CAS  Google Scholar 

  14. W. **, S. Li, P. Huang, N. Xu and J. Shi, J. Membr. Sci., 170, 9 (2000).

    Article  CAS  Google Scholar 

  15. Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong and G. **ong, J. Membr. Sci., 172, 177 (2000).

    Article  CAS  Google Scholar 

  16. S. Li, W. **, P. Huang, N. Xu and J. Shi, AIChE J., 45, 276 (1999).

    Article  CAS  Google Scholar 

  17. K. S. Lim, K. S. Lee, I. S. Han, D. W. Seo, K. S. Hong, K. Bai, S. K. Woo and T. L. Cho, Journal of the Korean Ceramic Society, 38, 886 (2001).

    CAS  Google Scholar 

  18. W. J. Weber, J. W. Stevenson, T. R. Armstrong and L. R. Pederson, in Mater. Res. Soc. Symp. Proc., G. A. Nazri, J. M. Taraeson and M. S. Scheiber Eds., Materials Research Society, Pittsburgh (1995).

    Google Scholar 

  19. N. Itoh, T. Kato, K. Uchida and K. Haraya, J. Membr. Sci., 92, 239 (1994).

    Article  CAS  Google Scholar 

  20. S. Li, W. **, P. Huang, N. Xu, J. Shi and Y. S. Lin, J. Membr. Sci., 166, 51 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hoon Park.

Additional information

This paper was presented at the 6th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Park, S.D. Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane. Korean J. Chem. Eng. 24, 897–905 (2007). https://doi.org/10.1007/s11814-007-0062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0062-2

Key sords

Navigation