Molecular Dynamics Applications in Packaging

  • Chapter
  • First Online:
Nano-Bio- Electronic, Photonic and MEMS Packaging

Abstract

Development of integrated circuits (IC) and semiconductor chips has narrowed dimensions of electronic components to length scales of nanometer size. However, design and manufacture of nano-scale electronic components need extensive understanding of material properties at small length scales, preferably at the atomistic level. Behavior of materials at nanometer scale is significantly influenced by size effects; behaviors of materials significantly change at nanometer level compared in macroscopic world due to size effects. As a result, electronic packaging has to adopt significant design requirements associated with the tremendous reduction in size.

Molecular dynamics (MD) simulation [1–5] was invented as a tool to account for the interactions between basic particles, generally atoms, in small systems of interest. Many attributes of materials can be obtained from MD simulation, at least on a qualitative level and sometimes in more quantitative manner. MD has been utilized as a powerful tool to narrow the number of possible candidate materials for many components in electronic packaging, based on the critical requirements on the material, such as resistance of materials to moisture, stress and thermal cycling, and strength of interfaces. This is achieved by understanding the behavior of the materials with hypothetical structure and composition, reducing or eliminating the need for synthesizing these materials at least during the initial material selection process. Thus, in addition to understanding material behavior, MD can be used to address the inverse problem of designing materials with specific properties for a chosen end use.

In the past decade, MD procedure has experienced explosive growth in its usage in a variety of areas. Here, we give a brief review of MD simulation procedure with particular emphasis to its applications in electronic packaging.

Among all the micro-scale or nano-scale simulation methods (MD, Monte Carlo methods and quantum mechanics), MD serves as a major simulation tool in electronic packaging area. Selection of an appropriate simulation method depends on the length scale of the systems under consideration and the time scale associated with the process of interest that the system is subjected to. Many problems of interest in the packaging area fall within the length scale limits of MD as it is comparable to the relevant size of many electronic packaging devices. Compared to other methods, MD can model most properties and processes at the equilibrium state as well as many nonequilibrium phenomena (such as water diffusion, heat transfer, mechanical deformation) in the packaging area. In addition, MD can be coupled with (1) Monte Carlo methods to incorporate complementary effects within the MD time/length scale domain, (2) quantum mechanics to capture events even at smaller scale and the effects of changes in electronic structures from the changes in atomic positions or structure, and (3) with finite element methods to embed quantum and molecular effects with continuum structural behavior for a material or a device. Depending on the particular property, in most cases molecular simulations can give excellent qualitative results and in many cases very good quantitative results as well. Since there are limitations on time and domain size in MD simulations, one may find difficulties in accurately simulating some of the properties that are realized in a larger domain and longer duration in real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alder B.J. and Wainwright T.E., Studies in molecular dynamics.1. General method. Journal of Chemical Physics 1959, 31 (2), 459–466.

    Article  CAS  Google Scholar 

  2. Frenkel D. and Smit B., Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. Academic Press: San Diego, 2002; p xxii, 638 p.

    Google Scholar 

  3. Haile J.M., Molecular Dynamics Simulation: Elementary Methods. Wiley: New York, 1992; p xvii, 489 p.

    Google Scholar 

  4. Rapaport D.C., The Art of Molecular Dynamics Simulation, 2nd ed. Cambridge University Press: Cambridge; New York, 2004; p xiii, 549 p.

    Google Scholar 

  5. Sadus R.J., Molecular Simulation of Fluids: Theory, Algorithms, and Object-Orientation, 1st ed. Elsevier: Amsterdam; New York, 1999; p xxvii, 523 p.

    Google Scholar 

  6. Ponder J.W. and Case D.A., Force fields for protein simulations. Protein Simulations 2003, 66, 27–86.

    Article  CAS  Google Scholar 

  7. MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., and Karplus M., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 1998, 102 (18), 3586–3616.

    Article  CAS  Google Scholar 

  8. Daw M.S., Foiles S.M., and Baskes M.I., The embedded-atom method – a review of theory and applications. Materials Science Reports 1993, 9 (7–8), 251–310.

    Article  CAS  Google Scholar 

  9. Sun H., COMPASS: an ab initio force-field optimized for condensed-phase applications – overview with details on alkane and benzene compounds. Journal of Physical Chemistry B 1998, 102 (38), 7338–7364.

    Article  CAS  Google Scholar 

  10. Niketic S.R. and Rasmussen K., The consistent force field: a documentation. Springer-Verlag: Berlin; New York, 1977; p ix, 212 p.

    Google Scholar 

  11. Hamerton I., Heald C.R., and Howlin B.J., Molecular modelling of the physical and mechanical properties of two polycyanurate network polymers. Journal of Materials Chemistry 1996, 6 (3), 311–314.

    Article  CAS  Google Scholar 

  12. Leung Y.K. and Eichinger B.E., Computer-simulation of end-linked elastomers. 1. Trifunctional networks cured in the bulk. Journal of Chemical Physics 1984, 80 (8), 3877–3884.

    Article  CAS  Google Scholar 

  13. Cheng K.C. and Chiu W.Y., Monte-Carlo simulation of polymer network formation with complex chemical-reaction mechanism – kinetic approach on curing of epoxides with amines. Macromolecules 1994, 27 (12), 3406–3414.

    Article  CAS  Google Scholar 

  14. Mayo S.L., Olafson B.D., and Goddard W.A., Dreiding – a generic force-field for molecular simulations. Journal of Physical Chemistry 1990, 94 (26), 8897–8909.

    Article  CAS  Google Scholar 

  15. Yarovsky I. and Evans E., Atomistic simulation of the sol formation during synthesis of organic/inorganic hybrid materials. Molecular Simulation 2002, 28 (10–11), 993–1004.

    Article  CAS  Google Scholar 

  16. Wu C.F. and Xu W.J., Atomistic molecular modelling of crosslinked epoxy resin. Polymer 2006, 47 (16), 6004–6009.

    Article  CAS  Google Scholar 

  17. Fan H.B. and Yuen M.M.F., Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 2007, 48 (7), 2174–2178.

    Article  CAS  Google Scholar 

  18. http://accelrys.com/products/materials-studio/

  19. Komarov P.V., Chiu Y.T., Chen S.M., Khalatur P.G., and Reineker P., Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a map**/reverse map** procedure. Macromolecules 2007, 40 (22), 8104–8113.

    Article  CAS  Google Scholar 

  20. Varshney V., Patnaik S.S., Roy A.K., and Farmer B.L., A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 2008, 41 (18), 6837–6842.

    Article  CAS  Google Scholar 

  21. Brown D., and Clarke J.H.R., A loose-Coupling, Constant-pressure, molecular-dynamics algorithm for use in the modeling of polymer materials. Computer Physics Communications 1991, 62 (2–3), 360–369.

    Article  CAS  Google Scholar 

  22. Parrinello M. and Rahman A., Polymorphic transitions in single-crystals – a new molecular-dynamics method. Journal of Applied Physics 1981, 52 (12), 7182–7190.

    Article  CAS  Google Scholar 

  23. Stevens M.J., Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 2001, 34 (8), 2710–2718.

    Article  CAS  Google Scholar 

  24. Stevens M.J., Manipulating connectivity to control fracture in network polymer adhesives. Macromolecules 2001, 34 (5), 1411–1415.

    Article  CAS  Google Scholar 

  25. Tsige M., Lorenz C.D., and Stevens M.J., Role of network connectivity on the mechanical properties of highly cross-linked polymers. Macromolecules 2004, 37 (22), 8466–8472.

    Article  CAS  Google Scholar 

  26. Tsige M. and Stevens M.J., Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules 2004, 37 (2), 630–637.

    Article  CAS  Google Scholar 

  27. Drozdov A.D., Christiansen J.D., Gupta R.K., and Shah A.P., Model for anomalous moisture diffusion through a polymer-clay nanocomposite. Journal of Polymer Science Part B, Polymer Physics 2003, 41 (5), 476–492.

    Article  CAS  Google Scholar 

  28. Marsh L.L., Lasky R., Seraphim D.P., and Springer G.S., Moisture solubility and diffusion in epoxy and epoxy-glass composites. IBM Journal of Research and Development 1984, 28 (6), 655–661.

    Article  Google Scholar 

  29. Yu Y.T. and Pochiraju K., Three-dimensional simulation of moisture diffusion in polymer composite materials. Polymer-Plastics Technology and Engineering 2003, 42 (5), 737–756.

    Article  CAS  Google Scholar 

  30. Fan H.B., Chan E.K.L., Wong C.K.Y., and Yuen M.M.F., Investigation of moisture diffusion in electronic packages by molecular dynamics simulation. Journal of Adhesion Science and Technology 2006, 20 (16), 1937–1947.

    Article  CAS  Google Scholar 

  31. Fukuda M. and Kuwajima S., Molecular-dynamics simulation of moisture diffusion in polyethylene beyond 10 ns duration. Journal of Chemical Physics 1997, 107 (6), 2149–2159.

    Article  CAS  Google Scholar 

  32. Hofmann D., Fritz L., Ulbrich J., Schepers C., and Bohning M., Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromolecular Theory and Simulations 2000, 9 (6), 293–327.

    Article  CAS  Google Scholar 

  33. Lin Y.C. and Chen X., Investigation of moisture diffusion in epoxy system: experiments and molecular dynamics simulations. Chemical Physics Letters 2005, 412 (4–6), 322–326.

    Article  CAS  Google Scholar 

  34. Soles C.L. and Yee A.F., A discussion of the molecular mechanisms of moisture transport in epoxy resins. Journal of Polymer Science Part B Polymer Physics 2000, 38 (5), 792–802.

    Article  CAS  Google Scholar 

  35. Tamai Y., Tanaka H., and Nakanishi K., Molecular simulation of permeation of small penetrants through membranes. 1. Diffusion-coefficients. Macromolecules 1994, 27 (16), 4498–4508.

    Article  CAS  Google Scholar 

  36. Vanlandingham M.R., Eduljee R.F., and Gillespie J.W., Moisture diffusion in epoxy systems. Journal of Applied Polymer Science 1999, 71 (5), 787–798.

    Article  CAS  Google Scholar 

  37. Zannideffarges M.P. and Shanahan M.E.R., Diffusion of water into an epoxy adhesive – comparison between bulk behavior and adhesive joints. International Journal of Adhesion and Adhesives 1995, 15 (3), 137–142.

    Article  CAS  Google Scholar 

  38. Dermitzaki E., Wunderle B., Bauer J., Walter H., and Michel B., Structure property correlation of epoxy resins under the influence of moisture and comparison of diffusion coefficient with MD-simulations. In 9th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems EuroSimE, 2008.

    Google Scholar 

  39. Comyn J., Groves C.L., and Saville R.W., Durability in high humidity of glass-to-lead alloy joints bonded with an epoxide adhesive. International Journal of Adhesion and Adhesives 1994, 14 (1), 15–20.

    Article  CAS  Google Scholar 

  40. Dong H., Fan L.H., Moon K.S., Wong C.P., and Baskes M.I., MEAM molecular dynamics study of lead free solder for electronic packaging applications. Modelling and Simulation in Materials Science and Engineering 2005, 13 (8), 1279–1290.

    Article  CAS  Google Scholar 

  41. Dong H., Moon K.S., and Wong C.P., Molecular dynamics study on the coalescence of Cu nanoparticles and their deposition on the Cu substrate. Journal of Electronic Materials 2004, 33 (11), 1326–1330.

    Article  CAS  Google Scholar 

  42. Dong H., Moon K.S., and Wong C.P., Molecular dynamics study of nanosilver particles for low-temperature lead-free interconnect applications. Journal of Electronic Materials 2005, 34 (1), 40–45.

    Article  CAS  Google Scholar 

  43. Dong H., Zhang Z.Q., and Wong C.P., Molecular dynamics study of a nano-particle joint for potential lead-free anisotropic conductive adhesives applications. Journal of Adhesion Science and Technology 2005, 19 (2), 87–94.

    Article  CAS  Google Scholar 

  44. Dong H., Fan L., Moon K., and Wong C.P. Molecular dynamics simulation of lead free solder for low temperature reflow applications. In 55th Electronic Components and Technology Conference, 2005; pp 983–987.

    Google Scholar 

  45. Dong H., Moon K., and Wong C.P. Molecular dynamics study on coalescence of silver (Ag) nanoparticles and their deposition on gold (Au) substrates. In 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2004; pp 152–157.

    Google Scholar 

  46. Wang W., Ding Y., and Wang C., Molecular dynamics (MD) simulation of uniaxial tension of β-Sn single crystals with nanocracks. In 6th International Conference on Electronic Packaging Technology, 2005.

    Google Scholar 

  47. Iwamoto N. and Pedigo J., Property trend analysis and simulations of adhesive formulation effects in the microelectronics packaging industry using molecular modeling. In 48th IEEE Electronic Components and Technology Conference, USA, 1998; pp 1241–1246.

    Google Scholar 

  48. Iwamoto N. Applying polymer process studies using molecular modeling. In 4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, 2000; pp 182–187.

    Google Scholar 

  49. Iwamoto N. Advancing materials using interfacial process and reliability simulations on the molecular level. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2000; pp 14–17.

    Google Scholar 

  50. Mustoe G.G.W., Nakagawa M., Lin X., and Iwamoto N. Simulation of particle compaction for conductive adhesives using discrete element modeling. In 49th Electronic Components and Technology Conference, 1999; pp 353–359.

    Google Scholar 

  51. Su Y.Y. and Shemenski R.M., The role of oxide structure on copper wire to the rubber adhesion. Applied Surface Science 2000, 161 (3–4), 355–364.

    Article  CAS  Google Scholar 

  52. Chan E.K.L., Fan H., and Yuen M.M.F., Effect of interfacial adhesion of copper/epoxy under different moisture level. In 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE, 2006.

    Google Scholar 

  53. Fan H.B., Chan E.K.L., Wong C.K.Y., and Yuen M.M.F., Molecular dynamics simulation of thermal cycling test in electronic packaging. Journal of Electronic Packaging 2007, 129 (1), 35–40.

    Article  CAS  Google Scholar 

  54. Wong C.K.Y., Fan H.B., and Yuen M.M.F., Interfacial adhesion study for SAM induced covalent bonded copper-EMC interface by molecular dynamics simulation. IEEE Transactions on Components and Packaging Technologies 2008, 31 (2), 297–308.

    Article  CAS  Google Scholar 

  55. Wong C.K., Fan H., and Yuen M.M.F., Investigation of adhesion properties of Cu-EMC interface by molecular dynamic simulation. In 6th International Conference on Thermo, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. EuroSimE, 2005.

    Google Scholar 

  56. Heino P., Simulations of nanoscale thermal conduction. Microsystem Technologies Micro- and Nanosystems-Information Storage and Processing Systems 2009, 15 (1), 75–81.

    CAS  Google Scholar 

  57. Schelling P.K., Phillpot S.R., and Keblinski P., Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B 2002, 65 (14), 144306

    Article  CAS  Google Scholar 

  58. MullerPlathe F., A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. Journal of Chemical Physics 1997, 106 (14), 6082–6085.

    Article  Google Scholar 

  59. Yang P. and Liao N.B., Research on characteristics of interfacial heat transport between two kinds of materials using a mixed MD-FE model. Applied Physics A, Materials Science and Processing 2008, 92 (2), 329–335.

    Article  CAS  Google Scholar 

  60. Bi K.D., Chen Y.F., Yang J.K., Wang Y.J., and Chen M.H., Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Physics Letters A 2006, 350 (1–2), 150–153.

    Article  CAS  Google Scholar 

  61. Che J.W., Cagin T., and Goddard W.A., Thermal conductivity of carbon nanotubes. Nanotechnology 2000, 11 (2), 65–69.

    Article  CAS  Google Scholar 

  62. Fan H.B., Zhang K., and Yuen M.M.F., Thermal performance of carbon nanotube-based composites investigated by molecular dynamics simulation. In 57th Electronic Components and Technology Conference, Reno, NV, 2007; pp 269–272.

    Google Scholar 

  63. Grujicic M., Cao G., and Gersten B., Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Materials Science and Engineering B, Solid State Materials for Advanced Technology 2004, 107 (2), 204–216.

    Google Scholar 

  64. Lopez M.J., Rubio A., and Alonso J.A., Deformations and thermal stability of carbon nanotube ropes. IEEE Transactions on Nanotechnology 2004, 3 (2), 230–236.

    Article  Google Scholar 

  65. Ma P.C., Tang B.Z., and Kim J.K., Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008, 46 (11), 1497–1505.

    Article  CAS  Google Scholar 

  66. Maruyama S., A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophysical Engineering 2003, 7 (1), 41–50.

    Article  CAS  Google Scholar 

  67. Mingo N. and Broido D.A., Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Letters 2005, 5 (7), 1221–1225.

    Article  CAS  Google Scholar 

  68. Ngo Q., Cruden B.A., Cassell A.M., Sims G., Meyyappan M., Li J., and Yang C.Y., Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Letters 2004, 4 (12), 2403–2407.

    Article  CAS  Google Scholar 

  69. Padgett C.W. and Brenner D.W., Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Letters 2004, 4 (6), 1051–1053.

    Article  CAS  Google Scholar 

  70. Shaikh S., Lafdi K., and Silverman E., The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon 2007, 45 (4), 695–703.

    Article  CAS  Google Scholar 

  71. Shenogin S., Bodapati A., Xue L., Ozisik R., and Keblinski P., Effect of chemical functionalization on thermal transport of carbon nanotube composites. Applied Physics Letters 2004, 85 (12), 2229–2231.

    Article  CAS  Google Scholar 

  72. Berber S., Kwon Y.K., and Tomanek D., Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 2000, 84 (20), 4613–4616.

    Article  CAS  Google Scholar 

  73. Saha S.K. and Shi L., Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon. Journal of Applied Physics 2007, 101 (7), 074304-1–074304-7.

    Article  CAS  Google Scholar 

  74. Starr F.W., Schroder T.B., and Glotzer S.C., Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 2002, 35 (11), 4481–4492.

    Article  CAS  Google Scholar 

  75. Sellers M.S., Schultz A.J., Kofke D.A., and Basaran C., Molecular dynamics modeling of grain boundary diffusion in Sn-Ag-Cu solder. In AIChe Annual Meeting, Salt Lake City, Utah, 2007.

    Google Scholar 

  76. Heino P. and Ristolainen E., Molecular dynamics study of thermally induced shear strain in nanoscale copper. IEEE Transactions on Advanced Packaging 1999, 22 (3), 510–514.

    Article  CAS  Google Scholar 

  77. Liu H.H., Jiang E.Y., Bai H.L., Wu P., Li Z.Q., and Sun C.Q., The kinetics and modes of gold nanowire breaking. Journal of Computational and Theoretical Nanoscience 2008, 5 (7), 1450–1453.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support from NASA Langley Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y., Hinkley, J.A., Jacob, K.I. (2010). Molecular Dynamics Applications in Packaging. In: Wong, C., Moon, KS., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0040-1_18

Download citation

Publish with us

Policies and ethics

Navigation