Log in

Research on characteristics of interfacial heat transport between two kinds of materials using a mixed MD–FE model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this article is to provide a systematic method to investigate characteristics of interfacial heat transport in electronic packaging. A multi-scale model is proposed for the interfacial thermal conductance. The approach is a mixed modeling method using molecular dynamics simulation and a finite-element method. The molecular dynamics simulation is the means for describing the critical regions within the system and the finite-element method is the means for a continuum description of the remainder of the system. Applying various boundary conditions to the atomic model is rather cumbersome. In this mixed model, the continuum subdomain serves primarily as a boundary model that provides the low-frequency impedance and a sink for the energy associated with outgoing waves of the molecular dynamics model. Then, boundary conditions can be applied to the finite-element model more easily. Some simulation results can be obtained for investigation of characteristics of interfacial heat transport between dissimilar materials in electronic packaging. The research establishes a new theoretical basis for engineering design and future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Q. Wang, H.Q. Ye, Curr. Opin. Solid State Mater. Sci. 10, 26 (2006)

    Article  Google Scholar 

  2. H. Ye, M. Lin, C. Basaran, Finite Elem. Anal. Des. 38, 601 (2002)

    Google Scholar 

  3. S.G. Volz, J.B. Saulnier, G. Chen, P. Beauchamp, Microelectron. J. 31, 815 (2000)

    Article  Google Scholar 

  4. A.R. Abramson, C.L. Tien, A. Majumdar, J. Heat Transf. 124, 963 (2002)

    Article  Google Scholar 

  5. R.J. Stevens, P.M. Norris, L.V. Zhigilei, Molecular-dynamics study of thermal boundary resistance: evidence of strong inelastic scattering transport channels, in ASME Int. Mechanical Engineering Congr. Expo., Anaheim, CA (2004)

  6. P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306.1 (2002)

    Google Scholar 

  7. S.H. Choi, S. Maruyama, K.K. Kim, J.H. Lee, J. Korean Phys. Soc. 43, 747 (2003)

    Google Scholar 

  8. G.J. Wagner, W.K. Liu, J. Comput. Phys. 190, 249 (2003)

    Article  MATH  ADS  Google Scholar 

  9. S.P. **ao, T. Belytschko, Comput. Methods Appl. Mech. Eng. 193, 1645 (2004)

    Google Scholar 

  10. H.J. Liu, S.Q. Wang, A. Du, C.B. Zhang, J. Mater. Sci. Technol. 20, 644 (2004)

    Google Scholar 

  11. R.A. Johnson, Phys. Rev. B 39, 12254 (1989)

    Article  ADS  Google Scholar 

  12. P.J. Hegedus, A.R. Abramson, Int. J. Heat Mass Transf. 49, 4921 (2006)

    Article  MATH  Google Scholar 

  13. S. Maruyama, Adv. Numer. Heat Transf. 2, 189 (2000)

  14. D.K. Ward, W.A. Curtin, Y. Qi, Compos. Sci. Technol. 66, 1151 (2006)

    Article  Google Scholar 

  15. B. Li, P.C. Clapp, J.A. Rifkin, X.M. Zhang, Int. J. Heat Mass Transf. 46, 37 (2003)

    Article  MATH  Google Scholar 

  16. S. Chen, F. Ke, M. Zhou, Y. Bai, Acta Mater. 55, 3169 (2007)

    Article  Google Scholar 

  17. R.E. Rudd, Int. J. Numer. Methods Eng. 2, 203 (2004)

    Google Scholar 

  18. D. Qian, G.J. Wagner, W.K. Liu, Comput. Methods Appl. Mech. Eng. 193, 1603 (2004)

    Google Scholar 

  19. W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, Comput. Methods Appl. Mech. Eng. 193, 1529 (2004)

    Google Scholar 

  20. J. Mei, J.W. Davenport, G.W. Fernando, Phys. Rev. B 43, 4653 (1991)

    Article  ADS  Google Scholar 

  21. H.S. Yang, G.R. Bai, L.J. Thompson, J.A. Eastman, Acta Mater. 50, 2309 (2002)

    Article  Google Scholar 

  22. Y. **, L. Ningbo, Y. Daoguo, L.J. Ernst, Microsyst. Technol. 12, 1125 (2006)

    Article  Google Scholar 

  23. P. Heino, Comput. Mater. Sci. 20, 157 (2001)

    Google Scholar 

  24. J.R. Lukes, D.Y. Li, X.G. Liang, C.L. Tien, J. Heat Transf. 122, 536 (2000)

    Article  Google Scholar 

  25. Y. **, L. Ningbo, Y. Daoguo, Int. J. Mod. Phys. B 21, 3581 (2007)

    Article  Google Scholar 

  26. L. Ningbo, Y. **, Int. J. Mater. Prod. Technol. 31, 354 (2008)

    Google Scholar 

  27. P. Yang, H. Zhang, Tribol. Int. 4, 535 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Yang.

Additional information

PACS

02.70.Ns; 02.70.Dh; 02.60.Cb; 62.25.-g; 68.35.-p; 81.07.Nb; 85.85.+j; 44.00.00; 44.05.+e; 46.05.+b; 81.05.Bx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Liao, N. Research on characteristics of interfacial heat transport between two kinds of materials using a mixed MD–FE model. Appl. Phys. A 92, 329–335 (2008). https://doi.org/10.1007/s00339-008-4521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4521-3

Keywords

Navigation