Log in

Influence of Synthesis Conditions for Yb:CaWO4 Single Crystals on the Down-Conversion Luminescence of Yb3+ Ions in These Crystals

  • LASER CRYSTAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Yb:CaWO4 and Yb, Nb:CaWO4 single crystals have been grown by the Czochralski method in air and in protective atmospheres and subjected to additional annealing in air, in CO/CO2 atmosphere, and in forevacuum. The optical absorption spectra in the range from 250 to 1500 nm and the luminescence spectra of these crystals in the visible and near-IR spectral regions upon UV excitation have been investigated. It is shown that additional introduction of Nb5+ ions into Yb:CaWO4 crystal increases by an order of magnitude (almost to unity) the Yb3+ distribution coefficient between CaWO4 crystal and melt. It is found that optical excitation of the crystals in the range of 260–355 nm induces down-conversion luminescence of Yb3+ ions from the 2F5/2 level in the vicinity of 1 µm. An increase in the oxidative potential of synthesis atmosphere, as well as the introduction of niobium into the crystal composition, weakens this luminescence. A consistent pattern explaining the nature of the donor centers involved in down-conversion population of excited state 2F5/2 of Yb3+ in the crystals is proposed. Within this pattern, Yb2+ ions play the role of these donor centers. Another (much less efficient) mechanism of population of the 2F5/2 level is intracenter relaxation from the higher-lying charge transfer excited state within Yb3+ ions. At the same time, it is confirmed that color centers based on oxygen vacancies and partially reduced tungsten ions, as well as self-trapped excitons on tungstate complexes, are not involved in population of the excited state 2F5/2 of Yb3+ ions, and the optical centers formed in Yb:CaWO4 crystals as a result of vacuum annealing suppress ytterbium luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)2,” Phys. Rev. B. 74 (17), 174114 (2006). https://doi.org/10.1103/PhysRevB.74.174114

    Article  ADS  Google Scholar 

  2. Yu. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. A. Sobol’, K. A. Subbotin, S. N. Ushakov, V. E. Shukshin, and S. Dröge, “Growth and luminescent properties of NaGd(WO4)2:Yb3+ crystals,” Inorg. Mater. 39 (12), 1308–1314 (2003). https://doi.org/10.1023/B:INMA.0000008919.60956.a1

    Article  Google Scholar 

  3. A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, and V. Petrov, “Spectroscopy and lasing of Yb-doped NaY(WO4)2: Tunable and femtosecond mode-locked laser operation,” IEEE J. Quantum Electron. 43 (9), 758–764 (2007). https://doi.org/10.1109/JQE.2007.902769

    Article  ADS  Google Scholar 

  4. J. Liu, J. M. Cano-Torres, F. Esteban-Betegón, M. D. Serrano, C. Cascales, C. Zaldo, M. Rico, U. Griebner, and V. Petrov, “Continuous-wave diode-pumped operation of an Yb:NaLa(WO4)2 laser at room temperature,” Opt. Laser Technol. 39 (3), 558–561 (2007). https://doi.org/10.1016/j.optlastec.2005.10.011

    Article  ADS  Google Scholar 

  5. A. García-Cortés, J. M. Cano-Torres, X. Han, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, and F. J. Valle, “Tunable continuous wave and femtosecond mode-locked Yb3+ laser operation in NaLu(WO4)2,” J. Appl. Phys. 101 (6), 063110 (2007). https://doi.org/10.1063/1.2490382

    Article  ADS  Google Scholar 

  6. F. A. Bolshchikov, E. V. Zharikov, D. A. Lis, N. G. Zakharov, P. A. Ryabochkina, K. A. Subbotin, and O. L. Antipov, “Tunable quasi-cw two-micron lasing in diode-pumped crystals of mixed Tm3+-doped sodium–lanthanum–gadolinium molybdates and tungstates,” Quantum Electron. 40 (10), 847–850 (2010). https://doi.org/10.1070/QE2010v040n10ABEH014403

    Article  ADS  Google Scholar 

  7. A. Garcia-Cortes, C. Cascales, A. de Andres, C. Zaldo, E. V. Zharikov, K. A. Subbotin, S. Bjurshagen, V. Pasiskevicius, and M. Rico, “Raman scattering and Nd3+ laser operation in NaLa(WO4)2,” IEEE J. Quantum Electron. 43 (2), 157–167 (2007). https://doi.org/10.1109/JQE.2006.886450

    Article  ADS  Google Scholar 

  8. A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38 (21), 4533–4547 (1999). https://doi.org/10.1364/AO.38.004533

    Article  ADS  Google Scholar 

  9. V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na2/7Gd4/7MoO4: A modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51 (9), 5313–5324 (2012). https://doi.org/10.1021/ic300221m

    Article  Google Scholar 

  10. C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M 2Gd4(MoO4)7 (M = Li, Na) red phosphors,” J. Solid State Chem. 184 (12), 3190–3194 (2011). https://doi.org/10.1016/j.jssc.2011.09.025

    Article  ADS  Google Scholar 

  11. V. B. Mikhailik, H. Kraus, G. Miller, M. S. Mykhaylyk, and D. Wahl, “Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations,” J. Appl. Phys. 97 (8), 083523 (2005). https://doi.org/10.1063/1.1872198

    Article  ADS  Google Scholar 

  12. V. Yakovyna, A. Matkovskii, D. Sugak, I. Solskii, and S. Novosad, “Effects of annealing on calcium tungstate crystals,” Radiat. Meas. 38 (4–6), 403–406 (2004). https://doi.org/10.1016/j.radmeas.2004.02.021

  13. A. N. Belsky, S. M. Klimov, V. V. Mikhailin, A. N. Vasil’ev, E. Auffray, P. Lecoq, C. Pedrini, M. V. Korzhik, A. N. Annenkov, P. Chevallier, P. Martin, and J. C. Krupa, “Influence of stoichiometry on the optical properties of lead tungstate crystals,” Chem. Phys. Lett. 277 (1–3), 65–70 (1997). https://doi.org/10.1016/S0009-2614(97)00890-7

  14. K. A. Subbotin, D. A. Lis, Yu. N. Osipova, A. V. Khomyakov, D. A. Nikolaev, V. A. Smirnov, E. V. Zharikov, and I. A. Shcherbakov, “Down-conversion in ytterbium-doped NaGd(MoO4)2 crystals,” Opt. Spectrosc. 119 (6), 974–981 (2015). https://doi.org/10.1134/S0030400X15110223

    Article  ADS  Google Scholar 

  15. K. A. Subbotin, Yu. N. Osipova, D. A. Lis, V. A. Smirnov, E. V. Zharikov, and I. A. Shcherbakov, “Cooperative down-conversion of UV light in disordered scheelitelike Yb-doped NaGd(MoO4)2 and NaLa(MoO4)2 crystals,” Opt. Spectrosc. 123 (1), 49–55 (2017). https://doi.org/10.1134/S0030400X17070256

    Article  ADS  Google Scholar 

  16. E. Sani, A. Brugioni, L. Mercatelli, D. Parisi, E. V. Zharikov, D. A. Lis, and K. A. Subbotin, “Yb-doped double tungstates for down-conversion applications,” Opt. Mater. 94, 415–422 (2019). https://doi.org/10.1016/j.optmat.2019.06.006

    Article  ADS  Google Scholar 

  17. X. Cao, L. Li, X. Wei, Y. Chen, W. Zhang, and M. Yin, “CaMoO4:x%Yb3+: A novel near-infrared quantum-cutting phosphors via cooperative energy transfer,” J. Nanosci. Nanotechnol. 11 (11), 9543–9549 (2011). https://doi.org/10.1166/jnn.2011.5229

    Article  Google Scholar 

  18. X. Cao, T. Wei, Y. Chen, M. Yin, C. Guo, and W. Zhang, “Increased down-conversion efficiency and improved near infrared emission by different charge compensations in CaMoO4:Yb3+ powders,” J. Rare Earths. 29 (11), 1029–1035 (2011). https://doi.org/10.1016/S1002-0721(10)60592-3

    Article  Google Scholar 

  19. K. A. Subbotin, A. I. Titov, D. A. Lis, E. Sani, V. A. Smirnov, O. K. Alimov, E. V. Zharikov, and I. A. Shcherbakov, “Donor centers involved into the quantum cutting in ytterbium-doped scheelite-like crystals,” Phys. Status Solidi A. 217 (4), 1900659 (2020). https://doi.org/10.1002/pssa.201900659

    Article  ADS  Google Scholar 

  20. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express. 18 (9), 9671–9676 (2010). https://doi.org/10.1364/OE.18.009671

    Article  ADS  Google Scholar 

  21. L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91 (3-4), 177–193 (2000). https://doi.org/10.1016/S0022-2313(00)00214-3

    Article  Google Scholar 

  22. I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f–f luminescence in ytterbium compounds,” Opt. Mater. 24 (1-2), 267–274 (2003). https://doi.org/10.1016/S0925-3467(03)00133-2

    Article  ADS  Google Scholar 

  23. I. Nicoara, L. Lighezan, M. Enculescu, and I. Enculescu, “Optical spectroscopy of Yb2+ ions in YbF3-doped CaF2 crystals,” J. Cryst. Growth. 310 (7–9), 2026–2032 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.183

  24. S. M. Kaczmarek, T. Tsuboi, M. Ito, G. Boulon, and G. Leniec, “Optical study of Yb3+/Yb2+ conversion in CaF2 crystals,” J. Phys.: Condens. Matter. 17 (25), 3771–3786 (2005). https://doi.org/10.1088/0953-8984/17/25/005

    Article  ADS  Google Scholar 

  25. M. Chaika, O. Vovk, G. Mancardi, R. Tomala, and W. Strek, “Dynamics of Yb2+ to Yb3+ ion valence transformations in Yb:YAG ceramics used for high-power lasers,” Opt. Mater. 101, 109774 (2020). https://doi.org/10.1016/j.optmat.2020.109774

    Article  Google Scholar 

  26. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, P. A. Eistrikh-Geller, E. V. Zharikov, D. A. Lis, and K. A. Subbotin, “Influence of initial charge composition and growth/annealing atmospheres on the structural parameters of Czochralski-grown (NaxGd1–x)MoO4 crystals,” CrystEngComm. 16, 2921–2928 (2016). https://doi.org/10.1039/c5ce02570b

    Article  Google Scholar 

  27. G. M. Kuz’micheva, V. B. Rybakov, V. L. Panyutin, E. V. Zharikov, and K. A. Subbotin, “Symmetry of (Na0.5R0.5)MO4 Crystals (R = Gd, La; M = W, Mo),” Russ. J. Inorg. Chem. 55 (9), 1448–1453 (2010). https://doi.org/10.1134/S0036023610090196

    Article  Google Scholar 

  28. R. Pappalardo and D. L. Wood, “Crystal field calculation for the Ca site of the Scheelite structure,” J. Mol. Spectrosc. 10 (1–6), 81–110 (1963). https://doi.org/10.1016/0022-2852(63)90157-7

  29. G. R. Jones, “Optical absorption spectrum and optical Zeeman effect in CaWO4:Yb3+,” J. Chem. Phys. 47 (11), 4347–4355 (1967). https://doi.org/10.1063/1.1701636

    Article  ADS  Google Scholar 

  30. W.-C. Zheng, H.-N. Dong, X.-X. Wu, and S. Tang, “Investigations of the optical spectra and EPR parameters in CaWO4:Yb3+,” Spectrochim. Acta, Part A. 60 (13), 3169–3171 (2004). https://doi.org/10.1016/j.saa.2004.02.032

    Article  ADS  Google Scholar 

  31. W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express. 5 (7), 072201 (2012). https://doi.org/10.1143/APEX.5.072201

    Article  ADS  Google Scholar 

  32. K. A. Subbotin, E. V. Zharikov, and V. A. Smirnov, “Yb- and Er-doped single crystals of double tungstates NaGd(WO4)2, NaLa(WO4)2, and NaBi(WO4)2 as active media for lasers operating in the 1.0 and 1.5 μm ranges,” Opt. Spectrosc. 92 (4), 601–608 (2002). https://doi.org/10.1134/1.1473604

    Article  ADS  Google Scholar 

  33. K. Subbotin, P. Loiko, S. Slimi, A. Volokitina, A. Titov, D. Lis, E. Chernova, S. Kuznetsov, R. M. Solé, U. Griebner, V. Petrov, M. Aguiló, F. Díaz, P. Camy, E. Zharikov, and X. Mateos, “Monoclinic zinc monotungstate Yb3+, Li+:ZnWO4: Part I. Czochralski growth, structure refinement and Raman spectra,” J. Lumin. 228, 117601 (2020). https://doi.org/10.1016/j.jlumin.2020.117601

    Article  Google Scholar 

  34. V. B. Dudnikova, A. V. Gaister, E. V. Zharikov, N. I. Gul’ko, V. G. Senin, and V. S. Urusov, “Distribution of chromium between the forsterite crystal and melt as a function of crystal growth and do** conditions,” Dokl. Phys. Chem. 394, 31–33 (2004). https://doi.org/10.1023/B:DOPC.0000017997.66546.81

    Article  Google Scholar 

  35. C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B. 11 (10), 2054–2065 (1994). https://doi.org/10.1364/JOSAB.11.002054

    Article  ADS  Google Scholar 

  36. J. A. Caird, M. D. Shinn, T. A. Kirchoff, L. K. Smith, and R. E. Wilder, “Measurements of losses and lasing efficiency in GSGG:Cr, Nd and YAG:Nd laser rods,” Appl. Opt. 25 (23), 4294–4305 (1986). https://doi.org/10.1364/AO.25.004294

    Article  ADS  Google Scholar 

  37. G. M. Kuz’micheva, V. B. Rybakov, K. A. Subbotin, E. V. Zharikov, D. A. Lis, O. Zaharko, D. A. Nikolaev, and V. G. Senin, “Colors of mixed-substituted double molybdate single crystals having scheelite structure,” Russ. J. Inorg. Chem. 57, 1128–1133 (2012). https://doi.org/10.1134/S0036023612080098

    Article  Google Scholar 

  38. P. Kaur, A. Khanna, M. N. Singh, and A. K. Sinha, “Structural and optical characterization of Eu and Dy doped CaWO4 nanoparticles for white light emission,” J. Alloys Compd. 834, 154804 (2020). https://doi.org/10.1016/j.jallcom.2020.154804

    Article  Google Scholar 

  39. J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33 (2), 153–158 (2010). https://doi.org/10.1016/j.optmat.2010.08.008

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 18-12-00517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Subbotin.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotin, K.A., Titov, A.I., Lis, D.A. et al. Influence of Synthesis Conditions for Yb:CaWO4 Single Crystals on the Down-Conversion Luminescence of Yb3+ Ions in These Crystals. Phys. Wave Phen. 29, 187–198 (2021). https://doi.org/10.3103/S1541308X21030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21030122

Keywords:

Navigation