Log in

Advanced aqueous redox flow batteries design: Ready for long-duration energy storage applications?

  • Large-Scale Energy Storage — Perspective
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

  • Critical developments of advanced aqueous redox flow battery technologies are reviewed.

  • Long duration energy storage oriented cell configuration and materials design strategies for the developments of aqueous redox flow batteries are discussed

Long-duration energy storage (LDES) is playing an increasingly significant role in the integration of intermittent and unstable renewable energy resources into future decarbonized grids. Aqueous redox flow batteries (ARFBs) with intrinsic high scalability, safety and power capability can be promising candidates for LDES if a substantially decreased levelized cost of storage is achieved. In this Perspective, we present a top-down analysis of existing ARFBs for long-duration applications, including ARFB cell configurations and materials design strategies for both membranes and redox active materials. In addition, we discuss the types of testing and demonstration needed at the lab-scale for feasible projection for future large-scale systems. The LDES-oriented materials design strategies serve as a guidance for the research and developments for future advanced ARFBs in large-scale deployments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Figure 1

Adapted from Ref. 3. (b) Semi-quantitative overview of the maximum duration of electricity storage needed to ensure demand versus the fraction of annual energy from variable generators, such as wind and solar. Reproduced with permission from Ref. 4. (c) Comparison of different pathways of increasing the discharge duration for lithium-ion batteries and redox flow batterie. (d) Comparison of different storage options in terms of capacity and duration adapted with the permission from Siemens.7

Figure 2
Figure 3
Figure 4
Figure 5

Adapted from Li et al.,31 and iodide (K+) from Li et al.,60 iodide (Na+) from Su et al.101 and the grey squares indicate the values are not found in literature yet. (b) Comparison of cell voltage, reversible volumetric capacity, cycle life and energy density for the reported ARFBs. (c) Comparison of the temporal decay rate, total testing duration, cycle life and E/P ratio for the reported ARFBs.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.S. Ziegler, J.M. Mueller, G.D. Pereira, J. Song, M. Ferrara, Y.-M. Chiang, J.E. Trancik, Storage requirements and costs of sha** renewable energy toward grid decarbonization. Joule 3, 2134–2153 (2019)

    Article  Google Scholar 

  2. R. Eisenberg, H.B. Gray, G.W. Crabtree, Addressing the challenge of carbon-free energy. Proc. Natl. Acad. Sci. USA 117, 12543–12549 (2020)

    Article  CAS  Google Scholar 

  3. M. Roser, Why did renewables become so cheap so fast? (2021), https://ourworldindata.org/cheap-renewables-growth. Accessed 17 Dec 2021

  4. P. Albertus, J.S. Manser, S. Litzelman, Long-duration electricity storage applications, economics, and technologies. Joule 4, 21–32 (2020)

    Article  CAS  Google Scholar 

  5. J.A. Dowling, K.Z. Rinaldi, T.H. Ruggles, S.J. Davis, M. Yuan, F. Tong, N.S. Lewis, K. Caldeira, Role of long-duration energy storage in variable renewable electricity systems. Joule 4, 1907–1928 (2020)

    Article  Google Scholar 

  6. M.S. Ziegler, Evaluating and improving technologies for energy storage and backup power. Joule 5, 1925–1927 (2021)

    Article  Google Scholar 

  7. Siemens. ‘Green Ammonia REFUEL Kickoff Meeting, August 17, Denver Elfriede Simon, CT REE STS (2021), https://arpa-e.energy.gov/sites/default/files/04c%20Denver-Green%20Ammonia-Siemens-final.pdf. Accessed 18 Oct 2021

  8. N.A. Sepulveda, J.D. Jenkins, A. Edington, D.S. Mallapragada, R.K. Lester, The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 6, 506–516 (2021)

    Article  Google Scholar 

  9. World Energy Council, Energy Storage Monitor Latest trends in energy storage|2019, https://www.worldenergy.org/assets/downloads/ESM_Final_Report_05-Nov-2019.pdf. Accessed 30 Aug 2021

  10. M. Park, J. Ryu, W. Wang, J. Cho, Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 16080 (2017)

    Article  CAS  Google Scholar 

  11. C.A. Hunter, M.M. Penev, E.P. Reznicek, J. Eichman, N. Rustagi, S.F. Baldwin, Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule 5, 2077–2101 (2021)

    Article  Google Scholar 

  12. B.R. Sutherland, Charging up stationary energy storage. Joule 3, 1–3 (2019)

    Article  Google Scholar 

  13. L. Trahey, F.R. Brushett, N.P. Balsara, G. Ceder, L. Cheng, Y.-M. Chiang, N.T. Hahn, B.J. Ingram, S.D. Minteer, J.S. Moore, K.T. Mueller, L.F. Nazar, K.A. Persson, D.J. Siegel, K. Xu, K.R. Zavadil, V. Srinivasan, G.W. Crabtree, Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc. Natl. Acad. Sci. USA 117, 12550–12557 (2020)

    Article  CAS  Google Scholar 

  14. U. S. D. O. E. Advanced Research Projects Agency-Energy. Duration Addition to Electricity Storage (2021), https://arpa-e.energy.gov/technologies/programs/days. Accessed 31 Aug 2021

  15. U. S. D. O. E. Office of Policy. Energy Earthshots Initiative. (2021), https://www.energy.gov/policy/energy-earthshots-initiative. Accessed 31 Aug 2021

  16. R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014)

    Article  CAS  Google Scholar 

  17. M. Ferrara, Y.-M. Chiang, J.M. Deutch, Demonstrating near-carbon-free electricity generation from renewables and storage. Joule 3, 2585–2588 (2019)

    Article  Google Scholar 

  18. O.J. Guerra, Beyond short-duration energy storage. Nat. Energy 6, 460–461 (2021)

    Article  Google Scholar 

  19. O. Schmidt, S. Melchior, A. Hawkes, I. Staffell, Projecting the future levelized cost of electricity storage technologies. Joule 3, 81–100 (2019)

    Article  Google Scholar 

  20. O. Schmidt, A. Hawkes, A. Gambhir, I. Staffell, The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)

    Article  Google Scholar 

  21. B. Zakeri, S. Syri, Electrical energy storage systems: a comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 42, 569–596 (2015)

    Article  Google Scholar 

  22. Z. Li, Y.C. Lu, Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32, 2002132 (2020)

    Article  CAS  Google Scholar 

  23. K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, M.P. Marshak, Alkaline quinone flow battery. Science 349, 1529–1532 (2015)

    Article  CAS  Google Scholar 

  24. B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, A metal-free organic-inorganic aqueous flow battery. Nature 505, 195–198 (2014)

    Article  CAS  Google Scholar 

  25. P. **ong, L. Zhang, Y. Chen, S. Peng, G. Yu, A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. Int. Ed. 60(47), 24770–24798 (2021)

    Article  CAS  Google Scholar 

  26. W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, X. Li, Porous membranes in secondary battery technologies. Chem. Soc. Rev. 46, 2199–2236 (2017)

    Article  CAS  Google Scholar 

  27. E.W. Zhao, T. Liu, E. Jónsson, J. Lee, I. Temprano, R.B. Jethwa, A. Wang, H. Smith, J. Carretero-González, Q. Song, C.P. Grey, In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579, 224–228 (2020)

    Article  CAS  Google Scholar 

  28. T. Li, F. **ng, T. Liu, J. Sun, D. Shi, H. Zhang, X. Li, Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy Environ. Sci. 13, 4353–4361 (2020)

    Article  CAS  Google Scholar 

  29. T.M. Narayanan, Y.G. Zhu, E. Gençer, G. Mckinley, Y. Shao-Horn, Low-cost manganese dioxide semi-solid electrode for flow batteries. Joule 5, 2934–2954 (2021)

    Article  CAS  Google Scholar 

  30. F. Zhang, M. Gao, S. Huang, H. Zhang, X. Wang, L. Liu, M. Han, Q. Wang, Redox targeting of energy materials for energy storage and conversion. Adv. Mater. 2104562 (2021)

  31. Z. Li, M.S. Pan, L. Su, P.-C. Tsai, A.F. Badel, J.M. Valle, S.L. Eiler, K. **ang, F.R. Brushett, Y.-M. Chiang, Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017)

    Article  CAS  Google Scholar 

  32. D.G. Kwabi, K. Lin, Y. Ji, E.F. Kerr, M.-A. Goulet, D. De Porcellinis, D.P. Tabor, D.A. Pollack, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1894–1906 (2018)

    Article  CAS  Google Scholar 

  33. Y. Yao, J. Lei, Y. Shi, F. Ai, Y.-C. Lu, Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6, 582–588 (2021)

    Article  Google Scholar 

  34. C. **e, T. Li, C. Deng, Y. Song, H. Zhang, X. Li, A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135–143 (2020)

    Article  CAS  Google Scholar 

  35. M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.-M. Chiang, Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516 (2011)

    Article  CAS  Google Scholar 

  36. Q. Huang, H. Li, M. Gratzel, Q. Wang, Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. Phys. Chem. Chem. Phys. 15, 1793–1797 (2013)

    Article  CAS  Google Scholar 

  37. Y. Chen, M. Zhou, Y. **a, X. Wang, Y. Liu, Y. Yao, H. Zhang, Y. Li, S. Lu, W. Qin, X. Wu, Q. Wang, A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries. Joule 3, 2255–2267 (2019)

    Article  CAS  Google Scholar 

  38. Z. Wang, L.-Y.S. Tam, Y.-C. Lu, Flexible solid flow electrodes for high-energy scalable energy storage. Joule 3, 1677–1688 (2019)

    Article  CAS  Google Scholar 

  39. W. Yan, C. Wang, J. Tian, G. Zhu, L. Ma, Y. Wang, R. Chen, Y. Hu, L. Wang, T. Chen, J. Ma, Z. **, All-polymer particulate slurry batteries. Nat. Commun. 10, 2513 (2019)

    Article  Google Scholar 

  40. J. Yu, L. Fan, R. Yan, M. Zhou, Q. Wang, Redox targeting-based aqueous redox flow lithium battery. ACS Energy Lett. 3, 2314–2320 (2018)

    Article  CAS  Google Scholar 

  41. D. Aaron, Q. Liu, Z. Tang, G. Grim, A. Papandrew, A. Turhan, T. Zawodzinski, M. Mench, Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 206, 450–453 (2012)

    Article  CAS  Google Scholar 

  42. M.L. Perry, R.M. Darling, R. Zaffou, High power density redox flow battery cells. ECS Trans. 53, 7 (2013)

    Article  Google Scholar 

  43. K.E. Rodby, M.L. Perry, F.R. Brushett, Assessing capacity loss remediation methods for asymmetric redox flow battery chemistries using levelized cost of storage. J. Power Sources 506, 230085 (2021)

    Article  CAS  Google Scholar 

  44. M.L. Perry, J.D. Saraidaridis, R.M. Darling, Crossover mitigation strategies for redox-flow batteries. Curr. Opin. Electrochem. 21, 311–318 (2020)

    Article  CAS  Google Scholar 

  45. S.E. Doris, A.L. Ward, A. Baskin, P.D. Frischmann, N. Gavvalapalli, E. Chénard, C.S. Sevov, D. Prendergast, J.S. Moore, B.A. Helms, Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem. Int. Ed. 56, 1595–1599 (2017)

    Article  CAS  Google Scholar 

  46. R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao, T. Liu, C. Ye, X. Zhou, B.P. Darwich, Z. Fan, L. Turcani, E. Jackson, L. Chen, S.Y. Chong, T. Li, K.E. Jelfs, A.I. Cooper, N.P. Brandon, C.P. Grey, N.B. Mckeown, Q. Song, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020)

    Article  CAS  Google Scholar 

  47. Q. Dai, W. Lu, Y. Zhao, H. Zhang, X. Zhu, X. Li, Advanced scalable zeolite “ions-sieving” composite membranes with high selectivity. J. Membr. Sci. 595, 117569 (2020)

    Article  CAS  Google Scholar 

  48. Z. Yuan, X. Zhu, M. Li, W. Lu, X. Li, H. Zhang, A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. Int. Ed. 128, 3110–3114 (2016)

    Article  Google Scholar 

  49. J. Hu, X. Tang, Q. Dai, Z. Liu, H. Zhang, A. Zheng, Z. Yuan, X. Li, Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat. Commun. 12, 3409 (2021)

    Article  CAS  Google Scholar 

  50. S. Kim, J. Choi, C. Choi, J. Heo, D.W. Kim, J.Y. Lee, Y.T. Hong, H.-T. Jung, H.-T. Kim, Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries. Nano Lett. 18, 3962–3968 (2018)

    Article  CAS  Google Scholar 

  51. L. Zhang, Y. Ding, C. Zhang, Y. Zhou, X. Zhou, Z. Liu, G. Yu, Enabling graphene-oxide-based membranes for large-scale energy storage by controlling hydrophilic microstructures. Chemistry 4, 1035–1046 (2018)

    Article  CAS  Google Scholar 

  52. J. Liu, L. Yu, X. Cai, U. Khan, Z. Cai, J. **, B. Liu, F. Kang, Sandwiching h-BN monolayer films between sulfonated Poly(ether ether ketone) and nafion for proton exchange membranes with improved ion selectivity. ACS Nano 13(2), 2094–2102 (2019)

    CAS  Google Scholar 

  53. S. Peng, L. Zhang, C. Zhang, Y. Ding, X. Guo, G. He, G. Yu, Gradient-distributed metal-organic framework–based porous membranes for nonaqueous redox flow batteries. Adv. Energy Mater. 8, 1802533 (2018)

    Article  Google Scholar 

  54. M. Di, L. Hu, L. Gao, X. Yan, W. Zheng, Y. Dai, X. Jiang, X. Wu, G. He, Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries. Chem. Eng. J. 399, 125833 (2020)

    Article  CAS  Google Scholar 

  55. I.S. Chae, T. Luo, G.H. Moon, W. Ogieglo, Y.S. Kang, M. Wessling, Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv. Energy Mater. 6, 1600517 (2016)

    Article  Google Scholar 

  56. K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75–83 (2008)

    Article  CAS  Google Scholar 

  57. Z. Yuan, Y. Duan, H. Zhang, X. Li, H. Zhang, I. Vankelecom, Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 9, 441–447 (2016)

    Article  CAS  Google Scholar 

  58. Y. Zhao, M. Li, Z. Yuan, X. Li, H. Zhang, I.F. Vankelecom, Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries. Adv. Funct. Mater. 26, 210–218 (2016)

    Article  CAS  Google Scholar 

  59. L. Hu, L. Gao, C. Zhang, X. Yan, X. Jiang, W. Zheng, X. Ruan, X. Wu, G. Yu, G. He, “Fishnet-like” ion-selective nanochannels in advanced membranes for flow batteries. J. Mater. Chem. A 7, 21112–21119 (2019)

    Article  CAS  Google Scholar 

  60. Z. Li, Y.-C. Lu, Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021)

    Article  CAS  Google Scholar 

  61. T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015)

    Article  CAS  Google Scholar 

  62. W. Wu, J. Luo, F. Wang, B. Yuan, T.L. Liu, A self-trap**, bipolar viologen bromide electrolyte for redox flow batteries. ACS Energy Lett. 6, 2891–2897 (2021)

    Article  CAS  Google Scholar 

  63. J. Winsberg, C. Stolze, S. Muench, F. Liedl, M.D. Hager, U.S. Schubert, TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett. 1, 976–980 (2016)

    Article  CAS  Google Scholar 

  64. T. Hagemann, M. Strumpf, E. Schröter, C. Stolze, M. Grube, I. Nischang, M.D. Hager, U.S. Schubert, (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-containing zwitterionic polymer as catholyte species for high-capacity aqueous polymer redox flow batteries. Chem. Mater. 31, 7987–7999 (2019)

    Article  CAS  Google Scholar 

  65. J. Luo, B. Hu, C. Debruler, Y. Bi, Y. Zhao, B. Yuan, M. Hu, W. Wu, T.L. Liu, Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries. Joule 3, 149–163 (2019)

    Article  CAS  Google Scholar 

  66. E.R. Nightingale, Phenomenological theory of ion solvation. Effective RADII OF HYDRATED IONS. J. Phys. Chem. 63, 1381–1387 (1959)

    Article  CAS  Google Scholar 

  67. B. Naskar, O. Diat, V. Nardello-Rataj, P. Bauduin, Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces. J. Phys. Chem. C 119, 20985–20992 (2015)

    Article  CAS  Google Scholar 

  68. Z. Liu, R. Li, J. Chen, X. Wu, K. Zhang, J. Mo, X. Yuan, H. Jiang, R. Holze, Y. Wu, Theoretical investigation into suitable pore sizes of membranes for vanadium redox flow batteries. ChemElectroChem 4, 2184–2189 (2017)

    Article  CAS  Google Scholar 

  69. H. Zhang, H. Zhang, X. Li, Z. Mai, J. Zhang, Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? Energy Environ. Sci. 4, 1676–1679 (2011)

    Article  CAS  Google Scholar 

  70. F.R. Brushett, M.J. Aziz, K.E. Rodby, On lifetime and cost of redox-active organics for aqueous flow batteries. ACS Energy Lett. 5, 879–884 (2020)

    Article  CAS  Google Scholar 

  71. V. Dieterich, J.D. Milshtein, J.L. Barton, T.J. Carney, R.M. Darling, F.R. Brushett, Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid. Transl. Mater. Res. 5, 034001 (2018)

    Article  Google Scholar 

  72. X. Li, P. Gao, Y.-Y. Lai, J.D. Bazak, A. Hollas, H.-Y. Lin, V. Murugesan, S. Zhang, C.-F. Cheng, W.-Y. Tung, Y.-T. Lai, R. Feng, J. Wang, C.-L. Wang, W. Wang, Y. Zhu, Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nat. Energy 6, 873–881 (2021)

    Article  CAS  Google Scholar 

  73. J.J. Chen, M.D. Symes, L. Cronin, Highly reduced and protonated aqueous solutions of [P2W18O62](6-) for on-demand hydrogen generation and energy storage. Nat. Chem. 10, 1042–1047 (2018)

    Article  CAS  Google Scholar 

  74. Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016)

    Article  CAS  Google Scholar 

  75. D.G. Kwabi, Y. Ji, M.J. Aziz, Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467–6489 (2020)

    Article  CAS  Google Scholar 

  76. E.W. Zhao, E. Jónsson, R.B. Jethwa, D. Hey, D. Lyu, A. Brookfield, P.A.A. Klusener, D. Collison, C.P. Grey, Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries. J. Am. Chem. Soc. 143, 1885–1895 (2021)

    Article  CAS  Google Scholar 

  77. Z. Chang, D. Henkensmeier, R. Chen, One-step cationic grafting of 4-hydroxy-TEMPO and its application in a Hybrid Redox Flow battery with a crosslinked PBI membrane. Chemsuschem 10, 3193–3197 (2017)

    Article  CAS  Google Scholar 

  78. T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, A total organic aqueous redox flow battery employing a low cost and sustainable Methyl Viologen Anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2016)

    Article  Google Scholar 

  79. J. Winsberg, C. Stolze, A. Schwenke, S. Muench, M.D. Hager, U.S. Schubert, Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett. 2, 411–416 (2017)

    Article  CAS  Google Scholar 

  80. Y. Liu, M.-A. Goulet, L. Tong, Y. Liu, Y. Ji, L. Wu, R.G. Gordon, M.J. Aziz, Z. Yang, T. Xu, A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 5, 1861–1870 (2019)

    Article  CAS  Google Scholar 

  81. T. Janoschka, N. Martin, M.D. Hager, U.S. Schubert, An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system. Angew. Chem. Int. Ed. 55, 14427–14430 (2016)

    Article  CAS  Google Scholar 

  82. C. **e, Y. Duan, W. Xu, H. Zhang, X. Li, A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage. Angew. Chem. Int. Ed. 56, 14953–14957 (2017)

    Article  CAS  Google Scholar 

  83. B. Hu, C. Debruler, Z. Rhodes, T.L. Liu, Long-cycling Aqueous Organic Redox Flow Battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139, 1207–1214 (2017)

    Article  CAS  Google Scholar 

  84. B. Yang, L. Hoober-Burkhardt, S. Krishnamoorthy, A. Murali, G.K.S. Prakash, S.R. Narayanan, High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes. J. Electrochem. Soc. 163, A1442–A1449 (2016)

    Article  CAS  Google Scholar 

  85. M. Park, E.S. Beh, E.M. Fell, Y. **g, E.F. Kerr, D. Porcellinis, M.A. Goulet, J. Ryu, A.A. Wong, R.G. Gordon, J. Cho, M.J. Aziz, A high voltage aqueous zinc-organic hybrid flow battery. Adv. Energy Mater. 9, 1900694 (2019)

    Article  Google Scholar 

  86. M.R. Gerhardt, L. Tong, R. Gómez-Bombarelli, Q. Chen, M.P. Marshak, C.J. Galvin, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Anthraquinone derivatives in aqueous flow batteries. Adv. Energy Mater. 7, 1601488 (2017)

    Article  Google Scholar 

  87. Y. Ji, M.A. Goulet, D.A. Pollack, D.G. Kwabi, S. **, D. Porcellinis, E.F. Kerr, R.G. Gordon, M.J. Aziz, A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019)

    Article  Google Scholar 

  88. L. Tong, M.-A. Goulet, D.P. Tabor, E.F. Kerr, D. De Porcellinis, E.M. Fell, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Molecular engineering of an alkaline naphthoquinone flow battery. ACS Energy Lett. 4, 1880–1887 (2019)

    Article  CAS  Google Scholar 

  89. C. Wang, Z. Yang, Y. Wang, P. Zhao, W. Yan, G. Zhu, L. Ma, B. Yu, L. Wang, G. Li, J. Liu, Z. **, High-performance alkaline organic redox flow batteries based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Lett. 3, 2404–2409 (2018)

    Article  CAS  Google Scholar 

  90. S. **, Y. **g, D.G. Kwabi, Y. Ji, L. Tong, D. De Porcellinis, M.-A. Goulet, D.A. Pollack, R.G. Gordon, M.J. Aziz, A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4, 1342–1348 (2019)

    Article  CAS  Google Scholar 

  91. J. Luo, B. Hu, C. Debruler, T.L. Liu, A pi-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem. Int. Ed. 57, 231–235 (2018)

    Article  CAS  Google Scholar 

  92. J. Luo, W. Wu, C. Debruler, B. Hu, M. Hu, T.L. Liu, A 1.51 V pH neutral redox flow battery towards scalable energy storage. J. Mater. Chem. A 7, 9130–9136 (2019)

    Article  CAS  Google Scholar 

  93. B. Hu, Y. Tang, J. Luo, G. Grove, Y. Guo, T.L. Liu, Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Chem. Commun. 54, 6871–6874 (2018)

    Article  CAS  Google Scholar 

  94. W. Liu, Y. Liu, H. Zhang, C. **e, L. Shi, Y.G. Zhou, X. Li, A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density. Chem. Commun. 55, 4801–4804 (2019)

    Article  CAS  Google Scholar 

  95. A. Orita, M.G. Verde, M. Sakai, Y.S. Meng, A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 7, 13230 (2016)

    Article  CAS  Google Scholar 

  96. J. Xu, S. Pang, X. Wang, P. Wang, Y. Ji, Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 5, 2437–2449 (2021)

    Article  CAS  Google Scholar 

  97. C. Wang, X. Li, B. Yu, Y. Wang, Z. Yang, H. Wang, H. Lin, J. Ma, G. Li, Z. **, Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries. ACS Energy Lett. 5, 411–417 (2020)

    Article  CAS  Google Scholar 

  98. A. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508–514 (2018)

    Article  CAS  Google Scholar 

  99. K. Lin, R. Gómez-Bombarelli, E.S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M.J. Aziz, R.G. Gordon, A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1, 16102 (2016)

    Article  CAS  Google Scholar 

  100. R. Feng, X. Zhang, V. Murugesan, A. Hollas, Y. Chen, Y. Shao, E. Walter, N.P.N. Wellala, L. Yan, K.M. Rosso, W. Wang, Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science 372, 836–840 (2021)

    Article  CAS  Google Scholar 

  101. L. Su, A.F. Badel, C. Cao, J.J. Hinricher, F.R. Brushett, Toward an inexpensive aqueous polysulfide-polyiodide redox flow battery. Ind. Eng. Chem. Res. 56, 9783–9792 (2017)

    Article  CAS  Google Scholar 

  102. S. Weber, J.F. Peters, M. Baumann, M. Weil, Life cycle assessment of a vanadium redox flow battery. Environ. Sci. Technol. 52, 10864–10873 (2018)

    Article  CAS  Google Scholar 

  103. L. Da Silva Lima, M. Quartier, A. Buchmayr, D. Sanjuan-Delmás, H. Laget, D. Corbisier, J. Mertens, J. Dewulf, Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustain. Energy Technol. Assess. 46, 101286 (2021)

    Google Scholar 

  104. J. Gouveia, A. Mendes, R. Monteiro, T.M. Mata, N.S. Caetano, A.A. Martins, Life cycle assessment of a vanadium flow battery. Energy Rep. 6, 95–101 (2020)

    Article  Google Scholar 

Download references

Funding

The work described herein was supported by a grant from the Research Grant Council (RGC) of the Hong Kong Special Administrative Region, China (Project no. T23-601/17-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chun Lu.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lu, YC. Advanced aqueous redox flow batteries design: Ready for long-duration energy storage applications?. MRS Energy & Sustainability 9, 171–182 (2022). https://doi.org/10.1557/s43581-022-00027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-022-00027-x

Keywords

Navigation