Log in

Thermally stable bioactive borosilicate glasses: Composition–structure–property correlations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Processing of commercial bioactive glasses in the form of scaffolds, fibers and coatings on metal implants is a major challenge due to their high crystallization tendency leading to loss of many desirable functionalities relevant to bone tissue engineering applications. In this context, this work focuses on develo** borosilicate bioactive glasses with improved thermal stability from the detailed understanding of composition–structure–property correlations. Structural studies through Raman and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy revealed the formation of a highly crosslinked network rich in B–O–Si bonds facilitating enhanced thermal stability (> 150 °C) for 17.96–35.92 mol% B2O3 containing glasses. These glasses also exhibit substantially improved in vitro biological properties such as biomineralization, cell proliferation, alkaline phosphatase (ALP) expression and antibacterial efficacy owing to predominance of B–O–Si and B–O–B bonds. However, more detailed data with pre-clinical studies are needed to confirm these observations, and for using them for specific applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request for academic use and within the limitations of the provided informed consent by the corresponding author upon acceptance.

References

  1. L.L. Hench, The story of bioglass. J. Mater. Sci. 17, 967–978 (2006). https://doi.org/10.1007/s10856-006-0432-z

    Article  CAS  Google Scholar 

  2. D. Bellucci, S. Braccini, F. Chiellini, P. Balasubramanian, A.R. Boccaccini, V. Cannillo, Bioactive glasses and glass-ceramics versus hydroxyapatite: comparison of angiogenic potential and biological responsiveness. J. Biomed. Mater. Res. Part A 107, 2601–2609 (2019). https://doi.org/10.1002/jbm.a.36766

    Article  CAS  Google Scholar 

  3. E. Munukka, H. Yla, M.K. Viljanen, D. Zhang, O. Leppa, Antibacterial effects and dissolution behavior of six bioactive glasses. Eur. Food Res. Technol. (2009). https://doi.org/10.1002/jbm.a.32564

    Article  Google Scholar 

  4. E. Fiume, J. Barberi, E. Vern, F. Baino, Bioactive glasses: from parent 45s5 composition to scaffold-assisted tissue-healing therapies. J. Funct. Biomater. (2018). https://doi.org/10.3390/jfb9010024

    Article  Google Scholar 

  5. F. Baino, S. Hamzehlou, S. Kargozar, Bioactive glasses: where are we and where are we going? J. Funct. Biomater. 9, 25 (2018)

    Article  Google Scholar 

  6. L.L. Hench, Chronology of bioactive glass development and clinical applications. N. J. Glass Cream. 2013, 67–73 (2013)

    Article  Google Scholar 

  7. L.L. Hench, J.R. Jones, A. El-fiqi, J.R. Jones, Bioactive glasses: frontiers and challenges. Front. Bioeng. Biotechnol. 3, 1–12 (2015). https://doi.org/10.3389/fbioe.2015.00194

    Article  Google Scholar 

  8. D.S. Brauer, Bioactive glasses—structure and properties. Angew. Chem. Int. Ed. 54, 2–24 (2015). https://doi.org/10.1002/anie.201405310

    Article  CAS  Google Scholar 

  9. J.R. Jones, Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  Google Scholar 

  10. H. Arstila, D. Zhang, E. Vedel, L. Hupa, H. Ylänen, M. Hupa, Bioactive glass compositions suitable for repeated heat-treatments. Key Eng. Mater. 286, 925–928 (2005). https://doi.org/10.4028/www.scientific.net/KEM.284-286.925

    Article  Google Scholar 

  11. F. Baino, J. Marchi, E. Fiume, J. Barberi, S. Kargozar, Processing methods for making porous bioactive glass-based scaffolds—a state-of-the-art review. Int. J. Appl. Ceram. Technol. 16, 1762–1796 (2019). https://doi.org/10.1111/ijac.13195

    Article  CAS  Google Scholar 

  12. H. Arstila, E. Vedel, L. Hupa, M. Hupa, Factors affecting crystallization of bioactive glasses. J. Eur. Ceram. Soc. 27, 1543–1546 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.017

    Article  CAS  Google Scholar 

  13. J. Massera, S. Fagerlund, L. Hupa, M. Hupa, Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. J. Am. Ceram. Soc. 613, 607–613 (2012). https://doi.org/10.1111/j.1551-2916.2011.05012.x

    Article  CAS  Google Scholar 

  14. L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 55, 3305–3313 (2007). https://doi.org/10.1016/j.actamat.2007.01.029

    Article  CAS  Google Scholar 

  15. M. Tylkowski, D.S. Brauer, Mixed alkali effects in Bioglass ® 45S5. J. Non-Cryst. Solids. 376, 175–181 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.05.039

    Article  CAS  Google Scholar 

  16. D. Groh, F. Döhler, D.S. Brauer, Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. ACTA Biomater. (2014). https://doi.org/10.1016/j.actbio.2014.05.019

    Article  Google Scholar 

  17. F. Döhler, D. Groh, S. Chiba, J. Bierlich, J. Kobelke, D.S. Brauer, Bioactive glasses with improved processing. Part 2. Viscosity and fibre drawing. J. Non-Cryst. Solids. 432, 1–7 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.03.009

    Article  CAS  Google Scholar 

  18. D. Bellucci, A. Sola, V. Cannillo, V. Vignolese, Low temperature sintering of innovative bioactive glasses. J. Am. Ceram. Soc. 7, 1–7 (2012). https://doi.org/10.1111/j.1551-2916.2012.05100.x

    Article  CAS  Google Scholar 

  19. D. Bellucci, V. Cannillo, A novel bioactive glass containing strontium and magnesium with ultra-high crystallization temperature. Mater. Lett. (2017). https://doi.org/10.1016/j.matlet.2017.11.020

    Article  Google Scholar 

  20. C. Blaeß, D.S. Brauer, Sintering and concomitant crystallization of bioactive glasses. Int. J. Appl. Glass Sci. 10, 1–14 (2019). https://doi.org/10.1111/ijag.13477

    Article  CAS  Google Scholar 

  21. S. Prasad, A. Gaddam, A. Jana, S. Kant, P.K. Sinha, S. Tripathy, K. Annapurna, J.M.F. Ferreira, A.R. Allu, K. Biswas, Structure and stability of high CaO- and P2O5-containing silicate and borosilicate bioactive glasses. J. Phys. Chem. B (2019). https://doi.org/10.1021/acs.jpcb.9b02455

    Article  Google Scholar 

  22. S. Prasad, S. Ganisetti, A. Jana, S. Kant, P.K. Sinha, Elucidating the effect of CaF2 on structure, biocompatibility and antibacterial properties of S53P4 glass. J. Alloys Compd. 831, 154704 (2020). https://doi.org/10.1016/j.jallcom.2020.154704

    Article  CAS  Google Scholar 

  23. M. Brink, The influence of alkali and alkaline earths on the working range for bioactive glasses. J. Biomed. Mater. Res. 36, 109–117 (1997)

    Article  CAS  Google Scholar 

  24. Y. Li, M.N. Rahaman, Q. Fu, B.S. Bal, A. Yao, D.E. Day, Conversion of bioactive borosilicate glass to multilayered. J. Am. Ceram. Soc. 3810, 3804–3810 (2007). https://doi.org/10.1111/j.1551-2916.2007.02057.x

    Article  CAS  Google Scholar 

  25. Y. Li, M.N. Rahaman, B.S. Bal, D.E. Day, Q. Fu, Early stages of calcium phosphate formation on bioactive borosilicate. J. Am. Ceram. Soc. 1533, 1528–1533 (2008). https://doi.org/10.1111/j.1551-2916.2007.02140.x

    Article  CAS  Google Scholar 

  26. Y.A.O. Aihua, W. De**, F.U. Qiang, H. Wenhai, M.N. Rahaman, Preparation of bioactive glasses with controllable degradation behavior and their bioactive characterization. Chin. Sci. Bull. 52, 2–6 (2007). https://doi.org/10.1007/s11434-007-0023-5

    Article  CAS  Google Scholar 

  27. A. Gharbi, H. El Feki, H. Oudadesse, Novel alkali borosilicate glasses: preparation, structural investigation and thermal study. Int. J. Appl. Glass Sci. (2016). https://doi.org/10.1007/s11814-015-0287-4

    Article  Google Scholar 

  28. X. Chen, X. Chen, D.S. Brauer, R.M. Wilson, R.V. Law, R.G. Hill, N. Karpukhina, Sodium is not essential for high bioactivity of glasses. Int. J. Appl. Glas. Sci. 8, 428–437 (2017). https://doi.org/10.1111/ijag.12323

    Article  CAS  Google Scholar 

  29. P. Balasubramanian, T. Büttner, V.M. Pacheco, A.R. Boccaccini, Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 38, 855–869 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.001

    Article  CAS  Google Scholar 

  30. M. Ottomeyer, A. Mohammadkah, D. Day, D. Westenberg, Broad-spectrum antibacterial characteristics of four novel borate-based bioactive glasses. Adv. Microbiol. 06, 776–787 (2016). https://doi.org/10.4236/aim.2016.610076

    Article  CAS  Google Scholar 

  31. S.P.S.S. Datta, T. Adarsh, P. Diwan, K. Annapurna, Effect of boron oxide addition on structural, therma, in vitro bioactivity and antibacterial properties of bioactive glasses in the base S53P4 composition. J. Non-Cryst. Solids. 498, 204–215 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.06.027

    Article  CAS  Google Scholar 

  32. V. Stani, Boron-Containing Bioactive Glasses for Bone Regeneration (Woodhead Publishing, Sawston, 2019). https://doi.org/10.1016/B978-0-08-102196-5.00008-2

    Book  Google Scholar 

  33. H. Bradtmüller, B.M. Cerrutti, M.T. Souza, E.D. Zanotto, Structural characterization of boron-containing glassy and semi-crystalline Biosilicate ® by multinuclear NMR. J. Non. Cryst. Solids. 505, 390–399 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.10.045

    Article  CAS  Google Scholar 

  34. F.J. Hmood, O. Goerke, F. Schmidt, J.D. Ep**, J. Günster, Structure and crystallization characterization of chemically developed bioactive glass based on ICIE16. J. Open Ceram. (2020). https://doi.org/10.1016/j.oceram.2020.100027

    Article  Google Scholar 

  35. M. Arango-ospina, L. Hupa, A.R. Boccaccini, Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. Biomed. Glasses 5, 124–139 (2019)

    Article  Google Scholar 

  36. A. Manuscript, Mater. Chem. B (2017). https://doi.org/10.1039/C7TB00106A

    Article  Google Scholar 

  37. M. Anastasopoulou, K.C. Vasilopoulos, D. Anagnostopoulos, I. Koutselas, D.K. Papayannis, M.A. Karakassides, Structural and theoretical study of strontium borophosphate glasses using Raman spectroscopy and ab initio molecular orbital method. J. Phys. Chem. B (2017). https://doi.org/10.1021/acs.jpcb.7b01563

    Article  Google Scholar 

  38. M. Seshadri, C. Batesttin, I.L. Silva, M.J.V. Bell, V. Anjos, Vibrational spectroscopy effect of compositional changes on the structural properties of borophosphate glasses: ATR-FTIR and Raman spectroscopy. Vib. Spectrosc. 110, 103137 (2020). https://doi.org/10.1016/j.vibspec.2020.103137

    Article  CAS  Google Scholar 

  39. K. Schuhladen, U. Pantulap, K. Engel, P. Jeleń, Z. Olejniczak, L. Hupa, M. Sitarz, A.R. Boccaccini, Influence of the replacement of silica by boron trioxide on the properties of bioactive glass scaffolds. Int. J. Appl. Glass Sci. 12, 293–312 (2021). https://doi.org/10.1111/ijag.15894

    Article  CAS  Google Scholar 

  40. D. Manara, A. Grandjean, D.R. Neuville, Advances in understanding the structure of borosilicate glasses: a Raman spectroscopy study. Am. Mineral. 94, 777–784 (2009)

    Article  CAS  Google Scholar 

  41. O.N. Koroleva, L.A. Shabunina, V.N. Bykov, Structure of borosilicate glass according to Raman spectroscopy data. Glass Cream. 67, 340–342 (2011)

    Article  CAS  Google Scholar 

  42. T. Furukawa, W.B. White, Raman spectroscopic investigation of sodium borosilicate glass structure. J. Mater. Sci. 16, 2689–2700 (1981). https://doi.org/10.1007/bf00552951

    Article  CAS  Google Scholar 

  43. E.I. Kamitsos, G.D. Chryssikos, Borate glass structure by Raman and infrared spectroscopies. J. Mol. Struct. 247, 1–16 (1991)

    Article  CAS  Google Scholar 

  44. Y.D. Yiannopoulos, G.D. Chryssikos, E.I. Kamitsos, Structure and properties of alkaline earth borate glasses. Phys. Chem. Glass 42, 164–172 (2001)

    CAS  Google Scholar 

  45. B. Łagowska, I. Wacławska, M. Sitarz, M. Szumera, Spectroscopic studies of structural interactions in silicate–borate–phosphate glass. J. Mol. Struct. 1171, 110–116 (2018)

    Article  Google Scholar 

  46. L.S. Du, J.F. Stebbins, Nature of silicon–boron mixing in sodium borosilicate glasses: a high-resolution 11B and 17O NMR study. J. Phys. Chem. B 107, 10063–10076 (2003). https://doi.org/10.1021/jp034048l

    Article  CAS  Google Scholar 

  47. L.S. Du, J.F. Stebbins, Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses. J. Non-Cryst. Solids 315, 239–255 (2003). https://doi.org/10.1016/S0022-3093(02)01604-6

    Article  CAS  Google Scholar 

  48. P.M. Aguiar, S. Kroeker, Boron speciation and non-bridging oxygens in high-alkali borate glasses. J. Non-Cryst. Solids 353, 1834–1839 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.02.013

    Article  CAS  Google Scholar 

  49. G. Tricot, The structure of Pyrex® glass investigated by correlation NMR spectroscopy. Phys. Chem. Chem. Phys. 18, 26764–26770 (2016). https://doi.org/10.1039/c6cp02996e

    Article  CAS  Google Scholar 

  50. S. Kroeker, J.F. Stebbins, Three-coordinated boron-11 chemical shifts in borates. Inorg. Chem. 40, 6239–6246 (2001). https://doi.org/10.1021/ic010305u

    Article  CAS  Google Scholar 

  51. R.E. Youngman, J.W. Zwanziger, Network modification in potassium borate glasses: structural studies with NMR and Raman spectroscopies. J. Phys. Chem. 100, 16720–16728 (1996). https://doi.org/10.1021/jp961439+

    Article  CAS  Google Scholar 

  52. Y. Yu, M. Edén, Structure–composition relationships of bioactive borophosphosilicate glasses probed by multinuclear 11B, 29Si, and 31P solid state NMR. RSC Adv. 6, 101288–101303 (2016). https://doi.org/10.1039/c6ra15275a

    Article  CAS  Google Scholar 

  53. Y. Yu, B. Stevensson, M. Edén, Medium-range structural organization of phosphorus-bearing borosilicate glasses revealed by advanced solid-state NMR experiments and MD simulations: consequences of B/Si substitutions. J. Phys. Chem. B 121, 9737–9752 (2017). https://doi.org/10.1021/acs.jpcb.7b06654

    Article  CAS  Google Scholar 

  54. N. Stone-weiss, E.M. Pierce, R.E. Youngman, O. Gulbiten, N.J. Smith, J. Du, A. Goel, N. Stone-weiss, E.M. Pierce, R.E. Youngman, O. Gulbiten, N.J. Smith, J. Du, A. Goel, Understanding the structural drivers governing glass–water interactions in borosilicate based model bioactive glasses. Acta Biomater. (2017). https://doi.org/10.1016/j.actbio.2017.11.006

    Article  Google Scholar 

  55. E. Dietrich, H. Oudadesse, A. Lucas-Girot, M. Mami, In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J. Biomed. Mater. Res. Part A 88, 1087–1096 (2009). https://doi.org/10.1002/jbm.a.31901

    Article  CAS  Google Scholar 

  56. D.S. Brauer, Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 44(2010), 3275–3282 (2010)

    Article  Google Scholar 

  57. F. Ren, Y. Leng, Carbonated apatite, Type-A or Type-B? Key Eng. Mater. 493–494, 293–297 (2012). https://doi.org/10.4028/www.scientific.net/KEM.493-494.293

    Article  CAS  Google Scholar 

  58. M.A. Azooz, I. Introduction, Infrared absorption spectroscopy of some bio-glasses before and after immersion in various solutions. (2000) 741–761.

  59. Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. C 31, 1245–1256 (2011). https://doi.org/10.1016/j.msec.2011.04.022

    Article  CAS  Google Scholar 

  60. Y. Gu, W. **ao, L. Lu, W. Huang, Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution. J. Mater. Sci. 46, 47–54 (2011). https://doi.org/10.1007/s10853-010-4792-x

    Article  CAS  Google Scholar 

  61. A.K. Varshneya, J.C. Mauro, Inorganic glasses, 2019.

  62. Y. Lai, Y. Zeng, X. Tang, H. Zhang, J. Han, H. Su, Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy. RSC Adv. 6, 93722–93728 (2016)

    Article  CAS  Google Scholar 

  63. B.C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids. 179, 300–308 (1994). https://doi.org/10.1016/0022-3093(94)90708-0

    Article  CAS  Google Scholar 

  64. B.C. Bunker, G.W. Arnold, D.E. Day, P.J. Bray, The effect of molecular structure on borosilicate glass leaching. J. Non-Cryst. Solids. 87, 226–253 (1986). https://doi.org/10.1016/S0022-3093(86)80080-1

    Article  CAS  Google Scholar 

  65. P. Zapol, H. He, K.D. Kwon, L.J. Criscenti, First-principles study of hydrolysis reaction barriers in a sodium borosilicate. Glass 407, 395–407 (2013). https://doi.org/10.1111/ijag.12052

    Article  CAS  Google Scholar 

  66. C.R. Kruse, M. Singh, S. Targosinski, I. Sinha, J.A. Sørensen, E. Eriksson, K. Nuutila, The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study. Wound Repair Regen. 25, 260–269 (2017). https://doi.org/10.1111/wrr.12526

    Article  Google Scholar 

  67. A.M. Galow, A. Rebl, D. Koczan, S.M. Bonk, W. Baumann, J. Gimsa, Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem. Biophys. Reports. 10, 17–25 (2017). https://doi.org/10.1016/j.bbrep.2017.02.001

    Article  Google Scholar 

  68. L.L. Hench, Genetic design of bioactive glass. J. Eur. Ceram. Soc. 29, 1257–1265 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.002

    Article  CAS  Google Scholar 

  69. P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25, 2941–2948 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.086

    Article  CAS  Google Scholar 

  70. R.F. Brown, M.N. Rahaman, A.B. Dwilewicz, W. Huang, D.E. Day, Y. Li, B.S. Bal, Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J. Biomed. Mater. Res. (2008). https://doi.org/10.1002/jbm.a.31679

    Article  Google Scholar 

  71. H. Fu, Q. Fu, N. Zhou, W. Huang, M.N. Rahaman, D. Wang, X. Liu, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C 29, 2275–2281 (2009). https://doi.org/10.1016/j.msec.2009.05.013

    Article  CAS  Google Scholar 

  72. R.J. Miron, Y.F. Zhang, Osteoinduction: a review of old concepts with new standards. J. Dent. Res. 91, 736–744 (2012). https://doi.org/10.1177/0022034511435260

    Article  CAS  Google Scholar 

  73. A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  CAS  Google Scholar 

  74. J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, P.V. Hatton, Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Mater. (2017). https://doi.org/10.1016/j.actbio.2017.06.046

    Article  Google Scholar 

  75. I. Allan, H. Newman, M. Wilson, Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Biomaterials 22, 1683–1687 (2001). https://doi.org/10.1016/S0142-9612(00)00330-6

    Article  CAS  Google Scholar 

  76. L. Drago, M. Toscano, M. Bottagisio, Recent evidence on bioactive glass antimicrobial. Materials 11, 1–11 (2018). https://doi.org/10.3390/ma11020326

    Article  CAS  Google Scholar 

  77. R.D. Houlsby, M. Ghajar, G.O. Chavez, Antimicrobial activity of borate-buffered solutions. Antimicrob. Agents Chemother. 29, 803–806 (1986)

    Article  CAS  Google Scholar 

  78. R. Zan, I. Hubbezoglu, A.K. Ozdemir, T. Tunc, Z. Sumer, O. Alici, Antibacterial effect of different concentration of boric acid against Enterococcus faecalis biofilms in root canal, marmara. Dent. J. 1, 76–80 (2013)

    Google Scholar 

  79. A.L.B. Mac, B.K. Esther, M.V. Kathryn, R.K. Brow, D.E. Day, A. Hoppe, A.R. Boccaccini, M. Vallet-regı, A.V. Teixeira, Y. Vueva, R.M. Almeida, M. Miola, J.R. Jones, C.V.E. Verne, A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J. Mater. Sci. 26, 1–10 (2015). https://doi.org/10.1007/s10856-015-5403-9

    Article  CAS  Google Scholar 

  80. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 24, 721–734 (1990). https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  81. A. Satpathy, A. Pal, S. Sengupta, A. Das, M.M. Hasan, I. Ratha, A. Barui, S. Bodhak, Bioactive nano-hydroxyapatite doped electrospun PVA-chitosan composite nanofibers for bone tissue engineering applications. J. Indian Inst. Sci. 99, 289–302 (2019). https://doi.org/10.1007/s41745-019-00118-8

    Article  Google Scholar 

  82. S. Paul, A. Pal, A.R. Choudhury, S. Bodhak, V.K. Balla, A. Sinha, M. Das, Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceram. Int. 43, 15678–15684 (2017). https://doi.org/10.1016/j.ceramint.2017.08.127

    Article  CAS  Google Scholar 

  83. C. Khatua, S. Bodhak, B. Kundu, V.K. Balla, In vitro bioactivity and bone mineralization of bismuth ferrite reinforced bioactive glass composites. Materialia. 4, 361–366 (2018). https://doi.org/10.1016/j.mtla.2018.10.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the CSIR FBR research grant (MLP0108) and CSIR-HRDG Extramural Research GATE fellowship and DBT Ramalingaswami Re-Entry Fellowship (BT/RLF/Reentry/13/2016) of Government of India for financial support. Authors are also very much thankful to Dr. Vamsi Krishna Balla, Bioceramics and Coatings Division, CGCRI for his valuable suggestions on the manuscript. The authors thank Dr. Somoshree Sengupta, Bioceramics and Coatings Division, CGCRI for her help in cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Biswas.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2034 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Prasad, S., Kant, S. et al. Thermally stable bioactive borosilicate glasses: Composition–structure–property correlations. Journal of Materials Research 38, 2969–2985 (2023). https://doi.org/10.1557/s43578-023-01017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01017-6

Navigation