Log in

Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Borate bioactive glasses are receiving increasing attention as scaffold materials for bone repair and regeneration. In this study, the kinetics and mechanisms of converting three groups of sodium–calcium–borate glasses with varying CaO:B2O3 ratio to hydroxyapatite (HA) in 0.25 M K2HPO4 solution were investigated at 10–70 °C. Glass disks with the composition 2Na2O·(2 − x)CaO·(6 + x)B2O3 (x = 0, 0.5, and 1.0) were immersed for up to 8 days in the potassium phosphate solution. The conversion kinetics to HA were monitored by measuring the weight loss of the glass, while X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to study structural and compositional changes. All three groups of glasses formed HA on their surfaces, showing that the glasses were bioactive. At 10–37 °C, the conversion kinetics was well fitted by the contracting sphere model. Also, the contracting sphere model has a good fit for the early stage of conversion at 70 °C, whereas a three-dimensional (3D) diffusion model provided a good fit to the data of the later stage. The results of this study provide kinetic and structural data for the design of borate bioactive glasses for potential applications in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matsuda T, Davies JE (1987) Biomaterials 8:275

    Article  CAS  Google Scholar 

  2. Vrouwenvelder WCA, Groot CG, de Groot K (1992) Biomaterials 13:382

    Article  CAS  Google Scholar 

  3. Hench LL, Paschall HA (1973) J Biomed Mater Res 7:25

    Article  CAS  Google Scholar 

  4. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 5:117

    Article  Google Scholar 

  5. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413

    Article  CAS  Google Scholar 

  6. Jones JR, Hench LL (2003) Curr Opin Solid State Mater Sci 7:301

    Article  CAS  Google Scholar 

  7. Boccaccini AR, Notingher I, Maquet V, Jérôme R (2003) J Mater Sci: Mater Med 14:443

    Article  CAS  Google Scholar 

  8. Kokubo T (1991) Biomaterials 12:155

    Article  CAS  Google Scholar 

  9. Day DE (2002) Glass Res 12:21

    CAS  Google Scholar 

  10. Han X, Day D (2007) J Mater Sci: Mater Med 18:1837

    Article  CAS  Google Scholar 

  11. Huang W, Rahaman MN, Day DE (2006) Ceram Eng Sci Proc 27:131

    Article  Google Scholar 

  12. Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE (2007) J Am Ceram Soc 90:303

    Article  CAS  Google Scholar 

  13. Marion NW, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ (2005) Mech Adv Mater Struct 12:239

    Article  CAS  Google Scholar 

  14. Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y, Bal BS (2009) J Biomed Mater Res A 88A:392

    Article  CAS  Google Scholar 

  15. Jia W-T, Zhang X, Luo S-H, Liu X, Huang W-H, Rahaman MN, Day DE, Zhang C-Q, **e Z-P, Wang J-Q (2009) Acta Biomater. doi:10.1016/j.actbio.2009.09.011

  16. **e Z, Liu X, Jia W, Zhang C, Huang W, Wang J (2009) J Control Release 139:118

    Article  CAS  Google Scholar 

  17. McCoy H, Kenney MA, Montgomery C, Irwin A, Williams L, Orrell R (1994) Environ Health Perspect 102(Suppl 7):49

    Article  CAS  Google Scholar 

  18. Murray FJ (1995) Regul Toxicol Pharmacol 22:221

    Article  CAS  Google Scholar 

  19. Huang W, Rahaman MN, Day DE, Li Y (2006) Phys Chem Glasses Part B 47:647

    CAS  Google Scholar 

  20. Yao AH, Lin J, Duan X, Huang WH, Rahaman MN (2008) Chin J Inorg Chem 24:1132

    CAS  Google Scholar 

  21. Huang W, Day D, Kittiratanapiboon K, Rahaman M (2006) J Mater Sci: Mater Med 17:583

    Article  CAS  Google Scholar 

  22. Jung SB, Day DE (2009) Phys Chem Glasses Part B 50:85

    CAS  Google Scholar 

  23. Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu W, Jiang X, Zhang X (2009) J Mater Sci: Mater Med 20:1237

    Article  CAS  Google Scholar 

  24. Zhao D, Huang W, Rahaman MN, Day DE, Wang D (2009) Acta Biomater 5:1265

    Article  CAS  Google Scholar 

  25. Regina M, Filgueiras T, LaTorre G, Hench LL (1993) J Biomed Mater Res 27:1485

    Article  CAS  Google Scholar 

  26. Rahaman MN (2006) Ceramic processing. Taylor & Francis Group, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Dr. Qiang Fu from Lawrence Berkeley National Laboratory for useful discussion. This research was supported by the Shanghai Committee of Science and Technology (Grant No. 08441900500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., **ao, W., Lu, L. et al. Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution. J Mater Sci 46, 47–54 (2011). https://doi.org/10.1007/s10853-010-4792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4792-x

Keywords

Navigation