Log in

Wet etch, dry etch, and MacEtch of β-Ga2O3: A review of characteristics and mechanism

  • Invited Feature Paper Review
  • Focus Issue: Ultra-wide Bandgap Materials, Devices, and Systems
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

β-Ga2O3, a promising ultra-wide bandgap material for future high-power electronics and deep-ultraviolet optoelectronics applications, has drawn tremendous attention in recent years due to its wide bandgap of ~ 4.8 eV, high breakdown electric field, and availability of substrates. However, the reported etch behavior of β-Ga2O3 and the quality of etched surfaces, as well as the associated interface characteristics, could limit the performance of β-Ga2O3 devices. In this article, the etchings of β-Ga2O3, including regular wet etching, photoelectrochemical etching (PEC), reactive ion etching (RIE) and metal-assisted chemical etching (MacEtch), are reviewed. A comparison of the etch rate, orientation dependence, aspect ratio, etching mechanism, and surface quality for each of these etching methods is presented and the step-by-step reactions in PEC and MacEtch are proposed to elucidate the etch mechanism. The challenges for these etching techniques for β-Ga2O3 are discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

© 2018 AIP. Reprinted with permission. (d) SEM image of unetched β-Ga2O3 sample with Pt mesh pattern on top. (e) Top-view SEM image of β-Ga2O3 surface after 6 h MacEtch with Pt mesh catalyst pattern [32]. © 2019 ACS. Reprinted with permission.

Figure 3
Figure 4

© 2019 ACS. Reprinted with permission.

Figure 5

© 2019 ACS. Reprinted with permission.

Figure 6

© 2018 ELSEVIER. Reprinted with permission.

Figure 7

© 2018 ELSEVIER. Reprinted with permission.

Figure 8
Figure 9

© 2018, AIP Publishing. Reprinted with permission.

Figure 10

© 2019, Elsevier B.V. (b) Reverse I–V characteristics of dry-etched β-Ga2O3 diodes and annealed at 450 °C before/after the deposition of metal [56]. © 2017, American Vacuum Society.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Orita, H. Ohta, M. Hirano, H. Hosono, Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 77(25), 4166–4168 (2000). https://doi.org/10.1063/1.1330559

    Article  CAS  Google Scholar 

  2. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74(19), 195123 (2006). https://doi.org/10.1103/PhysRevB.74.195123

    Article  CAS  Google Scholar 

  3. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. **ng, D. Jena, Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 109(21), 1–6 (2016). https://doi.org/10.1063/1.4968550

    Article  CAS  Google Scholar 

  4. K. Arora, N. Goel, M. Kumar, M. Kumar, Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics 5(6), 2391–2401 (2018). https://doi.org/10.1021/acsphotonics.8b00174

    Article  CAS  Google Scholar 

  5. M. Ma, D. Zhang, Y. Li, R. Lin, W. Zheng, F. Huang, High-performance solar blind ultraviolet photodetector based on single crystal orientation mg-alloyed Ga2O3 film grown by a nonequilibrium MOCVD scheme. ACS Appl. Electron. Mater. 1(8), 1653–1659 (2019). https://doi.org/10.1021/acsaelm.9b00343

    Article  CAS  Google Scholar 

  6. X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, D. Shen, Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl. Mater. Interfaces 8(6), 4185–4191 (2016). https://doi.org/10.1021/acsami.5b11956

    Article  CAS  Google Scholar 

  7. M. Si, L. Yang, H. Zhou, P.D. Ye, β-Ga2O3 nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega 2, 49 (2017). https://doi.org/10.1021/acsomega.7b01289

    Article  CAS  Google Scholar 

  8. K.D. Chabak, J.P. McCandless, N.A. Moser, A.J. Green, K. Mahalingam, A. Crespo, N. Hendricks, B.M. Howe, S.E. Tetlak, K. Leedy, R.C. Fitch, D. Wakimoto, K. Sasaki, A. Kuramata, G.H. Jessen, Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 39(1), 67–70 (2018). https://doi.org/10.1109/LED.2017.2779867

    Article  CAS  Google Scholar 

  9. J. Noh, M. Si, H. Zhou, M.J. Tadjer, P.D. Ye, The impact of substrates on the performance of top-gate p-Ga2O3 field-effect transistors: record high drain current of 980 MA/Mm on diamond. In 2018 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2. https://doi.org/10.1109/DRC.2018.8442276.

  10. C. Joishi, Z. ** on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl. Phys. Lett 113, 123501 (2018). https://doi.org/10.1063/1.5039502

    Article  CAS  Google Scholar 

  11. M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Depletion-mode Ga2 O3 metal-oxide-semiconductor field-effect transistors on β-Ga2 O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103(12), 123511 (2013). https://doi.org/10.1063/1.4821858

    Article  CAS  Google Scholar 

  12. K.D. Chabak, N. Moser, A.J. Green, D.E. Walker, S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, G. Jessen, Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl. Phys. Lett. 109(21), 213501 (2016). https://doi.org/10.1063/1.4967931

    Article  CAS  Google Scholar 

  13. Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, H.G. **ng, Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 KV. IEEE Electron Device Lett. 39(6), 869–872 (2018). https://doi.org/10.1109/LED.2018.2830184

    Article  CAS  Google Scholar 

  14. W. Li, K. Nomoto, Z. Hu, T. Nakamura, D. Jena, H. G. **. IEEE Electron Device Lett. 40, 431–434 (2018). https://doi.org/10.1109/LED.2018.2884542

    Article  Google Scholar 

  15. K. Sasaki, Q.T. Thieu, D. Wakimoto, Y. Koishikawa, A. Kuramata, S. Yamakoshi, Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl. Phys. Express 10(12), 124201 (2017). https://doi.org/10.7567/APEX.10.124201

    Article  Google Scholar 

  16. Q.N. Abdullah, A.R. Ahmed, A.M. Ali, F.K. Yam, Z. Hassan, M. Bououdina, Novel SnO2-coated β-Ga2O3 nanostructures for room temperature hydrogen gas sensor. Int. J. Hydrogen Energy 46(9), 7000–7010 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.109

    Article  CAS  Google Scholar 

  17. S. Nakagomi, T. Sai, Y. Kokubun, Hydrogen gas sensor with self temperature compensation based on β-Ga2O3 thin film. Sens. Actuators B 187, 413–419 (2013). https://doi.org/10.1016/j.snb.2013.01.020

    Article  CAS  Google Scholar 

  18. X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 77(16), 2572–2574 (2000). https://doi.org/10.1063/1.1319191

    Article  CAS  Google Scholar 

  19. M. Kim, S. Yi, J.D. Kim, W. Zhou, X. Yin, J. Li, J. Bong, D. Liu, S.-C. Liu, A. Kvit, W. Zhou, Z. Yu,  Z. Ma, X. Li, Enhanced performance of Ge photodiodes via monolithic antireflection texturing and α-Ge self-passivation by inverse metal-assisted chemical etching. ACS Nano 12(7), 6748–6755 (2018). https://doi.org/10.1021/acsnano.8b01848

    Article  CAS  Google Scholar 

  20. S.H. Kim, P.K. Mohseni, Y. Song, T. Ishihara, X. Li, Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures. Nano Lett. 15(1), 641–648 (2015). https://doi.org/10.1021/nl504136c

    Article  CAS  Google Scholar 

  21. K. Balasundaram, K. Hsu, P. Ferreira, B. Azeredo, J.C. Shin, J.S. Sadhu, D. Chanda, S. Sinha, X. Li, M. Malik, J.A. Rogers, Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires. Nanotechnology 23(30), 305304 (2012). https://doi.org/10.1088/0957-4484/23/30/305304

    Article  CAS  Google Scholar 

  22. C.Y. Chan, S. Namiki, J.K. Hite, M.A. Mastro, S.B. Qadri, X. Li, Homoepitaxial GaN micropillar array by plasma-free photo-enhanced metal-assisted chemical etching. J. Vac. Sci. Technol. A (2021). https://doi.org/10.1116/6.0001231

    Article  Google Scholar 

  23. J.D. Kim, M. Kim, C. Chan, N. Draeger, J.J. Coleman, X. Li, CMOS-compatible catalyst for MacEtch: titanium nitride-assisted chemical etching in vapor phase for high aspect ratio silicon nanostructures. ACS Appl. Mater. Interfaces 11(30), 27371–27377 (2019). https://doi.org/10.1021/acsami.9b00871

    Article  CAS  Google Scholar 

  24. J.A. Michaels, L. Janavicius, X. Wu, C. Chan, H.C. Huang, S. Namiki, M. Kim, D. Sievers, X. Li, Producing silicon carbide micro and nanostructures by plasma-free metal-assisted chemical etching. Adv. Funct. Mater. 31(32), 89 (2021). https://doi.org/10.1002/adfm.202103298

    Article  CAS  Google Scholar 

  25. H. Han, Z. Huang, W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3), 271–304 (2014). https://doi.org/10.1016/j.nantod.2014.04.013

    Article  CAS  Google Scholar 

  26. Y. Song, P.K. Mohseni, S.H. Kim, J.C. Shin, T. Ishihara, I. Adesida, X. Li, Ultra-high aspect ratio InP junctionless FinFETs by a novel wet etching method. IEEE Electron Device Lett. 37(8), 970–973 (2016). https://doi.org/10.1109/LED.2016.2577046

    Article  CAS  Google Scholar 

  27. M. Kim, H.-C. Huang, J.D. Kim, K.D. Chabak, A. Raj, K. Kalapala, W. Zhou, X. Li, Nanoscale groove textured β-Ga2O3 by room temperature inverse metal-assisted chemical etching and photodiodes with enhanced responsivity. Appl. Phys. Lett 113, 222104 (2018). https://doi.org/10.1063/1.5053219

    Article  CAS  Google Scholar 

  28. I.S. Chun, E.K. Chow, X. Li, Nanoscale three dimensional pattern formation in light emitting porous silicon. Appl. Phys. Lett. 92(19), 191113 (2008). https://aip.scitation.org/doi/abs/10.1063/1.2924311

  29. X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 16(2), 71–81 (2012). https://doi.org/10.1016/j.cossms.2011.11.002

    Article  CAS  Google Scholar 

  30. A. Mallavarapu, P. Ajay, C. Barrera, S.V. Sreenivasan, Ruthenium-assisted chemical etching of silicon: enabling CMOS-compatible 3D semiconductor device nanofabrication. ACS Appl. Mater. Interfaces 13(1), 1169–1177 (2021). https://doi.org/10.1021/acsami.0c17011

    Article  CAS  Google Scholar 

  31. H.-C. Huang, M. Kim, X. Zhan, K. Chabak, J.D. Kim, A. Kvit, D. Liu, Z. Ma, J.-M. Zuo, X. Li, High aspect ratio β-Ga2O3 fin arrays with low-interface charge density by inverse metal-assisted chemical etching. ACS Nano 13, 8784 (2019). https://doi.org/10.1021/acsnano.9b01709

    Article  CAS  Google Scholar 

  32. Y. Zhang, A. Mauze, J. Speck, Anisotropic etching of β-Ga2O3 using hot phosphoric acid. Appl. Phys. Lett. 115(1), 013501 (2019). https://doi.org/10.1063/1.5093188

    Article  CAS  Google Scholar 

  33. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 11301 (2018). https://doi.org/10.1063/1.5006941

    Article  CAS  Google Scholar 

  34. P.K. Mohseni, S. Hyun Kim, X. Zhao, K. Balasundaram, J. Dong Kim, L. Pan, J.A. Rogers, J.J. Coleman, X. Li, GaAs pillar array-based light emitting diodes fabricated by metal-assisted chemical etching. J. Appl. Phys. 114(6), 064909 (2013). https://doi.org/10.1063/1.4817424

    Article  CAS  Google Scholar 

  35. S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S.J. Pearton, K.H. Baik, A comparative study of wet etching and contacts on (-201) and (010) oriented β-Ga2O3. J. Alloys Compd. 731, 118–125 (2018). https://doi.org/10.1016/J.JALLCOM.2017.09.336

    Article  CAS  Google Scholar 

  36. X. Geng, B.K. Duan, D.A. Grismer, L. Zhao, P.W. Bohn, Monodisperse GaN nanowires prepared by metal-assisted chemical etching with in situ catalyst deposition. Electrochem. Commun. 19(1), 39–42 (2012). https://doi.org/10.1016/j.elecom.2012.03.011

    Article  CAS  Google Scholar 

  37. K.C. Wang, G.D. Yuan, R.W. Wu, H.X. Lu, Z.Q. Liu, T.B. Wei, J.X. Wang, J.M. Li, W.J. Zhang, GaN nanowire arrays by a patterned metal-assisted chemical etching. J. Cryst. Growth 440, 96–101 (2016). https://doi.org/10.1016/j.jcrysgro.2016.01.017

    Article  CAS  Google Scholar 

  38. D.M. Dryden, R.J. Nikolic, M.S. Islam, Photogalvanic etching of N-GaN for three-dimensional electronics. J. Electron. Mater. 48(5), 3345–3350 (2019). https://doi.org/10.1007/s11664-019-06982-5

    Article  CAS  Google Scholar 

  39. C.Y. Chan, S. Namiki, J.K. Hite, X. Li, Photoinduced open-circuit metal-assisted chemical etching of homoepitaxial GaN. In 2021 Compound Semicondutor Week (2021).

  40. X. Li, Y. Kim, P. Bohn, I. Adesida, In-plane bandgap control in porous GaN through electroless wet chemical etching. Appl. Phys. Lett. 80(6), 980–982 (2002). https://doi.org/10.1063/1.1448860

    Article  CAS  Google Scholar 

  41. H.-C. Huang, Z. Ren, A. Green, K. Chabak, X. Li, Metal-assisted chemical etching of (001) β-Ga2O3, in 2021 Compound Semicondutor Week (2021)

  42. S. Ohira, N. Arai, Wet chemical etching behavior of β-Ga2O3 single crystal. Phys. Status Solidi 5(9), 3116–3118 (2008). https://doi.org/10.1002/pssc.200779223

    Article  CAS  Google Scholar 

  43. M.L. Schnoes, G.J. Zydzik, A Ga2O3 films for electronic and optoelectronic applications. J. Appl. Phys. 686(1), 686–693 (2018)

    Google Scholar 

  44. T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, S. Fujita, Wet etching of β-Ga2O3 substrates. Jpn. J. Appl. Phys. 48(4), 1–4 (2009). https://doi.org/10.1143/JJAP.48.040208

    Article  CAS  Google Scholar 

  45. F. Ren, M. Hong, J.P. Mannaerts, J.R. Lothian, A.Y. Cho, Wet chemical and plasma etching of Ga2O3(Gd2O3). J. Electrochem. Soc. 144(9), 239–241 (1997)

    Article  Google Scholar 

  46. M.G.S.O. Mesfets, G.T. Dang, T. Kawaharamura, M. Furuta, M.W. Allen, Mist-CVD grown Sn-doped. IEEE Trans. Electrons Dev. 62(11), 3640–3644 (2015)

    Article  Google Scholar 

  47. Y. Yao, Y. Ishikawa, Y. Sugawara, Revelation of dislocations in β-Ga2O3 substrates grown by edge-defined film-fed growth. Phys. Status Solidi Appl. Mater. Sci. 217(3), 2–7 (2020). https://doi.org/10.1002/pssa.201900630

    Article  CAS  Google Scholar 

  48. B. Alhalaili, R. Vidu, H. Mao, O. Kamoun, M. Saif Islam, Photoelectrochemical (PEC) etching of Ga2O3. Ceram. Int. 47(1), 479–486 (2021). https://doi.org/10.1016/j.ceramint.2020.08.155

    Article  CAS  Google Scholar 

  49. S.L. Ou, D.S. Wuu, Y.C. Fu, S.P. Liu, R.H. Horng, L. Liu, Z.C. Feng, Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition. Mater. Chem. Phys. 133(2–3), 700–705 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.060

    Article  CAS  Google Scholar 

  50. Y.H. Choi, K.H. Baik, S. Kim, J. Kim, Photoelectrochemical etching of ultra-wide bandgap β-Ga2O3 semiconductor in phosphoric acid and its optoelectronic device application. Appl. Surf. Sci. 539, 148130 (2021). https://doi.org/10.1016/j.apsusc.2020.148130

    Article  CAS  Google Scholar 

  51. J.E. Hogan, S.W. Kaun, E. Ahmadi, Y. Oshima, J.S. Speck, Chlorine-based dry etching of β-Ga2O3 To. Semicond. Sci. Technol. (2016). https://doi.org/10.1016/S0169-4332(01)00593-1

    Article  Google Scholar 

  52. J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D. Geerpuram, A. Kuramata, Inductively coupled plasma etching of bulk, single-crystal Ga2O3. J. Vac. Sci. Technol. B 35(3), 031205 (2017). https://doi.org/10.1116/1.4982714

    Article  CAS  Google Scholar 

  53. L. Zhang, A. Verma, H.G. **ng, D. Jena, Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga2O3. Jpn. J. Appl. Phys. 56, 030304 (2017)

    Article  Google Scholar 

  54. J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S.J. Pearton, A. Kuramata, Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes. Appl. Phys. Lett. 110(14), 1–5 (2017). https://doi.org/10.1063/1.4979592

    Article  CAS  Google Scholar 

  55. J. Yang, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, L.-C. Tung, J. Lin, H. Jiang, J. Lee, E. Flitsiyan, L. Chernyak, S.J. Pearton, A. Kuramata, Annealing of dry etch damage in metallized and bare (-201) Ga2O3. J. Vac. Sci. Technol. B 35(5), 051201 (2017). https://doi.org/10.1116/1.4986300

    Article  CAS  Google Scholar 

  56. H.K. Lee, H.J. Yun, K.H. Shim, H.G. Park, T.H. Jang, S.N. Lee, C.J. Choi, Improvement of dry etch-induced surface roughness of single crystalline β-Ga2O3 using post-wet chemical treatments. Appl. Surf. Sci. 2020(506), 144673 (2019). https://doi.org/10.1016/j.apsusc.2019.144673

    Article  CAS  Google Scholar 

  57. H. Okumura, T. Tanaka, Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination. Jpn. J. Appl. Phys. 58(12), 89 (2019). https://doi.org/10.7567/1347-4065/ab4f90

    Article  CAS  Google Scholar 

  58. H. Liang, Y. Chen, X. **a, C. Zhang, R. Shen, Y. Liu, Y. Luo, G. Du, A preliminary study of SF6 based inductively coupled plasma etching techniques for beta gallium trioxide thin film. Mater. Sci. Semicond. Process. 39, 582–586 (2015). https://doi.org/10.1016/j.mssp.2015.05.065

    Article  CAS  Google Scholar 

  59. Y. Kwon, G. Lee, S. Oh, J. Kim, S.J. Pearton, F. Ren, Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching. Appl. Phys. Lett. 110(13), 89 (2017). https://doi.org/10.1063/1.4979028

    Article  CAS  Google Scholar 

  60. A.P. Shah, A. Bhattacharya, Inductively coupled plasma reactive-ion etching of β-Ga2O3: comprehensive investigation of plasma chemistry and temperature. J. Vac. Sci. Technol. 35(4), 041301 (2017). https://doi.org/10.1116/1.4983078

    Article  CAS  Google Scholar 

  61. R.J. Shul, S.J. Pearton, Handbook of Advanced Plasma Processing Techniques (Springer, Berlin, 2000)

    Book  Google Scholar 

  62. A.Y. Polyakov, I.H. Lee, N.B. Smirnov, E.B. Yakimov, I.V. Shchemerov, A.V. Chernykh, A.I. Kochkova, A.A. Vasilev, P.H. Carey, F. Ren, D.J. Smith, S.J. Pearton, Defects at the surface of β-Ga2O3 produced by Ar plasma exposure. APL Mater. (2019). https://doi.org/10.1063/1.5109025

    Article  Google Scholar 

  63. Z. Hu, K. Nomoto, W. Li, Z. Zhang, N. Tanen, Q.T. Thieu, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, H.G. **ng, Breakdown mechanism in 1 KA/Cm2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl. Phys. Lett. 113(12), 122103 (2018). https://doi.org/10.1063/1.5038105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under Grant No. 18-09946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **uling Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HC., Ren, Z., Chan, C. et al. Wet etch, dry etch, and MacEtch of β-Ga2O3: A review of characteristics and mechanism. Journal of Materials Research 36, 4756–4770 (2021). https://doi.org/10.1557/s43578-021-00413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00413-0

Keywords

Navigation