Log in

Density functional theory calculations, growth, structure, and optical properties of birefringent LiNaV2O6

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A congruent melting compound LiNaV2O6 has been synthesized by high-temperature solution reaction and it has been grown with sizes up to 11 × 6 × 2 mm3 by the top-seeded growth method for the first time. LiNaV2O6 crystallizes in the monoclinic system with space group C2/c, with a = 10.184(2) Å, b = 9.067(2) Å, c = 5.8324(11) Å, β = 108.965(14)°. UV-Vis-NIR diffuse reflectance spectrum of LiNaV2O6 shows that it has a wide transmittance range from 385 to 2500 nm. The ab initio calculations show that the birefringence of LiNaV2O6 is 0.136 at 589.3 nm. Therefore, LiNaV2O6 may be a new birefringent material. Based on the analysis of the relationship between crystal structure and linear optical properties, it is found that the large birefringence is attributed to the particular arrangement of V-O anionic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. G. Chartier: Introduction to Optics (Springer Science + Business Media, Inc., 1955).

  2. X.Z. Li, C. Wang, X.L. Chen, H. Li, L.S. Jia, L. Wu, Y.X. Du, and Y.P. Xu: Syntheses, thermal stability, and structure determination of the novel isostructural RBa3B9O18 (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Inorg. Chem. 43, 8555 (2004).

    Article  CAS  Google Scholar 

  3. H. Nomura and Y. Furutono: Polarimetry of illumination for 193 nm immersion lithography. Microelectron. Eng. 85, 1671 (2008).

    Article  CAS  Google Scholar 

  4. K. Aoki, H.T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi: Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2, 117 (2003).

    Article  CAS  Google Scholar 

  5. M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning: Birefringent waveplates photo-induced in silica by femtosecond laser. Micromachines 5, 825 (2014).

    Article  Google Scholar 

  6. R.K. Li: On the calculation of refractive indices of borate crystals based on group approximation. Z. Kristallogr. 228, 526 (2013).

    CAS  Google Scholar 

  7. M.L. Levy, A.A. Jalali, and X.Y. Huang: Magnetophotonic crystals: Nonreciprocity, birefringence and confinement. J. Mater. Sci. 20, 43 (2009).

    CAS  Google Scholar 

  8. H. Zhang, M. Zhang, S.L. Pan, Z.H. Yang, Z. Wang, Q. Bian, X.L. Hou, H.W. Yu, F.F. Zhang, K. Wu, Y. Feng, Q.J. Peng, Z.Y. Xu, K.B. Chang, and K.R. Poeppelmeier: Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 15, 523 (2015).

    Article  Google Scholar 

  9. G. Ghosh: Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95 (1999).

    Article  CAS  Google Scholar 

  10. H.T. Luo, T. Tkaczyka, R. Sampsonb, and E.L. Dereniaka: Birefringence of yttrium vanadate single crystals in the middle wavelength infrared. Proc. SPIE 6119, 61190J1 (2006).

    Article  Google Scholar 

  11. G.Q. Zhou, J. Xu, X.D. Chen, H.Y. Zhong, S.T. Wang, K. Xu, P.Z. Deng, and F.X. Gan: Growth and spectrum of a novel birefringent α-BaB2O4 crystal. Cryst. Growth Des. 191, 517 (1998).

    Article  CAS  Google Scholar 

  12. R. Appel, C.D. Dyer, and J.N. Lockwood: Design of a broadband UV-visible alpha-barium borate polarizer. Appl. Opt. 41, 2470 (2002).

    Article  CAS  Google Scholar 

  13. D. Cyranoski: Materials science: China’s crystal cache. Nature 457, 953 (2009).

    Article  CAS  Google Scholar 

  14. Q. Bian, Z.H. Yang, S.L. Pan, H. Zhang, H.P. Wu, H.W. Yu, W.W. Zhao, and Q. **g: First principle assisted prediction of the birefringence values of functional inorganic borate materials. J. Phys. Chem. C 118, 25651 (2014).

    Article  CAS  Google Scholar 

  15. F.L. Qin and R.K. Li: Predicting refractive indices of the borate optical crystals. Cryst. Growth Des. 318, 642 (2011).

    Article  CAS  Google Scholar 

  16. L. Kang, S.Y. Luo, H.W. Huang, N. Ye, Z.S. Lin, J.G. Qin, and C.T. Chen: Prospects for fluoride carbonate nonlinear optical crystals in the UV and deep-UV regions. J. Phys. Chem. C. 117, 25684 (2013).

    Article  CAS  Google Scholar 

  17. M. Luo, N. Ye, G.H. Zou, C.S. Lin, and W.D. Cheng: Na8Lu2(CO3)6F2 and Na3Lu(CO3)2F2: Rare earth fluoride carbonates as deep-UV nonlinear optical materials. Chem. Mater. 25, 3147 (2013).

    Article  CAS  Google Scholar 

  18. SAINT, Version 7.60A (Bruker analytical X-ray instruments. Inc., Madison, WI, 2008).

  19. G.M. Sheldrick: SHELXTL, Version 6.14 (Bruker Analytical X-ray Instruments. Inc., Madison, WI, 2003).

    Google Scholar 

  20. APEX 2, v2008.6-RC3, SADABS, Version 2008/1 (Bruker Analytical X-ray Systems, Inc., Madison, 2008).

  21. A.L. Spek: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).

    Article  CAS  Google Scholar 

  22. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).

    CAS  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  24. J.S. Lin, A. Qteish, M.C. Payne, and V. Heine: Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 47, 4174 (1993).

    Article  CAS  Google Scholar 

  25. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  26. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  27. T. Chen, G.L. Wang, X.Y. Wang, and Z.Y. Xu: Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl. Phys. B 97, 9 (2009).

    Article  CAS  Google Scholar 

  28. R.S. Bubnova, S.K. Filatov, V.S. Grunin, and Z.N. Zonn: The crystal structure of a new clinopyroxene LiNaV2O6. Z. Kristallogr. 25, 1287 (1980).

    CAS  Google Scholar 

  29. Z.H. Chen, S.L. Pan, H.P. Wu, Y. Yang, and X.Y. Fan: New bidentate non-centrosymmetric borate–malate: Synthesis, structure and characterization of RbB(DL-C4H4O5)2·H2O. Mater. Chem. Phys. 129, 649 (2011).

    Article  CAS  Google Scholar 

  30. Y. Yang, S.L. Pan, X. Su, Y. Wang, Z.H. Yang, J. Han, M. Zhang, and Z.H. Chen: Crystal growth and calculation of the electronic band structure, density of states of Li3Cs2B5O10. CrystEngComm 16, 1978 (2014).

    Article  CAS  Google Scholar 

  31. H.Y. Li, S.L. Pan, H.P. Wu, and Z.H. Yang: Growth, structure and properties of the non-centrosymmetric hydrated borate CaN2B8O26H32. Mater. Chem. Phys. 129, 176 (2011).

    Article  CAS  Google Scholar 

  32. R.E. Sykora, K.M. Ok, P.S. Halasyamani and D.M. Wells, and T.E. Albrecht-Schmitt: New one-dimensional vanadyl iodates: Hydrothermal preparation, structures, and NLO properties of A[VO2(IO3)2] (A = K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs). Chem. Mater. 14, 2741 (2002).

    Article  CAS  Google Scholar 

  33. Y. Shan and S.D. Huang: A potassium sodium double salt of metavanadate, KNa(VO3)2. Acta. Crystallogr. C 55, 1048 (1999).

    Article  Google Scholar 

  34. J.R. DeVore: Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416 (1951).

    Article  CAS  Google Scholar 

  35. D.E. Zelmon, D.L. Small, and D. Jundt: Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B 14, 3319 (1997).

    Article  CAS  Google Scholar 

  36. T. Sivakumar, H.Y. Chang, and P.S. Halasyamani: Synthesis, structure, and characterization of a new two-dimensional lead(II) vanadate, Ba3PbV4O14. Solid State Sci. 9, 370 (2007).

    Article  CAS  Google Scholar 

  37. J. Yeon, S. Kim, and P.S. Halasyamani: A3V5O14 (A = K+, Rb+, or Tl+), new polar oxides with a tetragonal tungsten bronze related structural topology: Synthesis, structure, and functional properties. Inorg. Chem. 49, 6986 (2010).

    Article  CAS  Google Scholar 

  38. J. Kang, Y. Yang, S.L. Pan, H.W. Yu, and Z.X. Zhou: Synthesis, crystal structure and optical properties of Ba5V3O12F. J. Mol. Struct. 1056, 79 (2014).

    Article  Google Scholar 

  39. T. Sivakumar, H.Y. Chang, J. Baek, and P.S. Halasyamani: Two new noncentrosymmetric polar oxides: Synthesis, characterization, second-harmonic generating, and pyroelectric measurements on TlSeVO5 and TlTeVO5. Chem. Mater. 19, 4710 (2007).

    Article  CAS  Google Scholar 

  40. J. Yeon, A.S. Sefat, T.T. Tran, P.S. Halasyamani, and H-C. Zur Loye: Crystal growth, structure, polarization, and magnetic properties of cesium vanadate, Cs2V3O8: A structure–property study. Inorg. Chem. 52, 6179 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant No. U1303193), 973 Program of China (Grant No. 2014CB648400) and ** Li & Zhihua Yang

  • Authors

    Corresponding authors

    Correspondence to Yun Yang, Zhi Su or Shilie Pan.

    Supporting Information

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Kong, Q., Yang, Y., Liu, L. et al. Density functional theory calculations, growth, structure, and optical properties of birefringent LiNaV2O6. Journal of Materials Research 31, 488–494 (2016). https://doi.org/10.1557/jmr.2016.29

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1557/jmr.2016.29

    Navigation