Log in

Crystal Growth, Structural, Hirshfeld Surface, Computational, Nonlinear Optical and Photoluminescence Properties of Lithium D-isoascorbate Monohydrate Crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The lithium D-isoascorbate monohydrate (LDAM) crystal has been grown by the solution growth technique. The lattice parameter of the LDAM crystal was confirmed by X-ray diffraction analysis. The functional groups of the grown crystal were confirmed by Fourier transform infrared(FTIR) and Fourier transform Raman (FT-Raman) spectral analyses. In the dnorm surface, red represents the negative value and blue indicates the positive value. The highest occupied molecular orbital (HOMO) energy is determined to be -5.5306 eV. From the ultraviolet–visible-near-infrared (UV–Vis-NIR) analysis, the grown crystal has no absorption in the entire Vis–NIR region. The density of states (DOS) spectra is used to find out the density states of the molecular interaction. The Mulliken atomic charges vary from 0.5303 to -0.0170. The total electron density is characterised by the molecular electrostatic potential (MEP) surface. The inter- and intramolecular interactions of the LDAM were studied using natural bond orbital (NBO) analysis. The nonlinear behaviour of the grown crystal is confirmed using second harmonic generation (SHG). The photoluminescence(PL) analysis shows that the grown crystal has blue, violet and green emission peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support this study’s findings may be accessed upon request from the corresponding author.

References

  1. K.R. Rao, C. Aneesh, H.L. Bhat, S. Elizabeth, M.S. Pavan, T.N.G. Row, Lithium D-isoascorbate monohydrate, a new nonlinear optical material. Cryst. Growth Des. 13, 97–105 (2013). https://doi.org/10.1021/cg301214n

    Article  CAS  Google Scholar 

  2. S. Chandran, R. Paulraj, P. Ramasamy, K.K. Maurya, Determination of nucleation kinetics and crystal perfection, optical, piezoelectric properties of semi-organic NLO single crystal-sodium acid phthalate hemihydrate. J. Inorg. Organomet. Polym. Mater. 27, 1383–1390 (2017). https://doi.org/10.1007/s10904-017-0592-y

    Article  CAS  Google Scholar 

  3. S. Chandran, G.J. James, M. Magesh, N. Prasanna, Synthesis, crystal growth, structural, spectral, laser threshold energy and dielectric properties of lithium L-tartrate monohydrate crystal. J. Mol. Struct. 1223, 128988 (2020). https://doi.org/10.1016/j.molstruc.2020.128988

    Article  CAS  Google Scholar 

  4. S.K. Chandran, R. Paulraj, P. Ramasamy, Crystal growth, spectral, optical, laser damage, photoconductivity and dielectric properties of semiorganic L-cystine hydrochloride single crystal. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 432–437 (2015). https://doi.org/10.1016/j.saa.2015.06.113

    Article  CAS  Google Scholar 

  5. K.R. Rao, R. Sanathkumar, H.L. Bhat,·S. Elizabeth, The nonlinear optical properties of the monoclinic d-isoascorbicacid crystal. Appl. Phys. B 122 (2016) 270. https://doi.org/10.1007/s00340-016-6539-0

  6. K.R. Rao, H.L. Bhat, S. Elizabeth, Crystal growth and nonlinear optical properties of sodium D-isoascorbate monohydrate. CrystEngComm 13, 6594–6601 (2013). https://doi.org/10.1039/c3ce40751a

    Article  CAS  Google Scholar 

  7. R.K. Saripalli, S. Kumar, H.L. Bhat, S. Elizabeth, Investigations on growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of guanidinium L-ascorbate. Nonlinear Opt. Appl. IX: SPIE 9503, 179–186 (2015)

    Google Scholar 

  8. D. Bairwa, K.R. Rao, D. Swain, T.N.G. Row, H.L. Bhat, S. Elizabeth, Potassium L-ascorbate monohydrate: a new metal-organic nonlinear optical crystal. Appl. Phys. B. 127, 1–7 (2021). https://doi.org/10.1007/s00340-020-07561-x

    Article  CAS  Google Scholar 

  9. H. Yadav, N. Sinha, B. Kumar, Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals. Mater. Res. Bull. 64, 194–199 (2015). https://doi.org/10.1016/j.materresbull.2014.12.065

    Article  CAS  Google Scholar 

  10. J. Dalal, B. Kumar, Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal. Opt. Mater. 1(51), 139–147 (2016). https://doi.org/10.1016/j.optmat.2015.11.033

    Article  CAS  Google Scholar 

  11. K.R. Rao, H.L. Bhat, S. Elizabeth, Studies on lithium L-ascorbate dihydrate: An interesting chiral nonlinear optical crystal. Mater. Chem. Phys. 137, 756–763 (2013). https://doi.org/10.1016/j.matchemphys.2012.10.011

    Article  CAS  Google Scholar 

  12. A. Arunkumar, P. Ramasamy, Synthesis, crystal growth and structural characterization of lithium fumarate semi-organic single crystals. Mater. Lett. 123, 246–249 (2014). https://doi.org/10.1016/j.matlet.2014.03.011

    Article  CAS  Google Scholar 

  13. S. Chandran, R. Paulraj, P. Ramasamy, Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal. J. Cryst. Growth 468, 68–72 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.006

    Article  CAS  Google Scholar 

  14. G. Sun, Y. Sun, C. Yu, Z. Liu, C. Huang, L. Xu, Synthesis, crystal structure, vibrational spectral and density functional studies of 4-(2,5-dioxo-2H-pyrrol-1(5H)-yl)antipyrine. J. Mol. Struct. 1006, 383–394 (2011). https://doi.org/10.1016/j.molstruc.2011.09.036

    Article  CAS  Google Scholar 

  15. M. Yilmaz, B. Aydin, O. Dogan, O. Dereli, Molecular Structure and Spectral Investigations of 3,5-Di-tert-butyl-o-benzoquinone. J. Mater. Struct. 1128, 345–354 (2017). https://doi.org/10.1016/j.molstruc.2016.08.067

    Article  CAS  Google Scholar 

  16. S. Chinnasami, M. Manikandan, S. Chandran, R. Paulraj, P. Ramasamy, Growth, Hirshfeld surfaces, spectral, quantum chemical calculations, photoconductivity and chemical etching analyses of nonlinear optical p-toluidine p-toluenesulfonate single crystal. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 340–349 (2019). https://doi.org/10.1016/j.saa.2018.08.015

    Article  CAS  Google Scholar 

  17. S. Chinnasami, S. Chandran, R. Paulraj, P. Ramasamy, Structural, vibrational, Hirshfeld surfaces and optical studies of nonlinear optical organic imidazolium L-tartrate single crystal. J. Mol. Struct. 1179, 506–513 (2019). https://doi.org/10.1016/j.molstruc.2018.11.042

    Article  CAS  Google Scholar 

  18. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Crystal Explorer (University of Western Australia, Perth, 2012)

    Google Scholar 

  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian Inc, Wallingford CT, 2009)

    Google Scholar 

  20. A. Frisch, A.B. Nielson, A.J. Holder, GAUSS VIEW User’s Manual (Gaussian Inc., Pittsburgh PA, 2000)

    Google Scholar 

  21. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Compd. Chem. 29, 839–845 (2008)

    Article  CAS  Google Scholar 

  22. R. Shahidha, A.A. Al-Saadi, S. Muthu, Vibrational spectroscopic studies, normal co-ordinate analysis, first-order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochim. Acta Part A 134, 127–142 (2015). https://doi.org/10.1016/j.saa.2014.06.033

    Article  CAS  Google Scholar 

  23. R.W. Berg, Investigation of L (+)-ascorbic acid with Raman spectroscopy in visible and UV light. Appl. Spectrosc. Rev. 50, 193–239 (2015). https://doi.org/10.1080/05704928.2014.952431

    Article  CAS  Google Scholar 

  24. M.A. Spackman, Molecules in crystals. Phys. Scr. 87, 048103 (2013). https://doi.org/10.1088/0031-8949/87/04/048103

    Article  CAS  Google Scholar 

  25. E.J. Chan, S. Grabowsky, J.M. Harrowfield, M.W. Shi, B.W. Skelton, A.N. Sobolev, A.H. White, Hirshfeld surface analysis of crystal packing in aza-aromatic picrate salts. CrystEngComm 16, 4508 (2014). https://doi.org/10.1039/c4ce00095a

    Article  CAS  Google Scholar 

  26. J.V. Manonmoni, G. Ramasamy, A.A. Prasad, S.P. Meenakshisundaram, M. Amutha, Synthesis, growth, structure and characterization of potassium lithium hydrogen phthalate mixed crystals. RSC Adv. 5, 46282 (2015). https://doi.org/10.1039/c5ra05634a

    Article  CAS  Google Scholar 

  27. S.K. Seth, Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. CrystEngComm 15, 1772 (2013). https://doi.org/10.1039/c2ce26682b

    Article  CAS  Google Scholar 

  28. K. Sathya, P. Dhamodharan, M. Dhandapani, Computational, spectral and structural studies of a new non linear optical crystal: 2-hydroxy pyridinium 3,5-dinitrobenzoate. J. Mol. Struct. 1130, 414–424 (2016). https://doi.org/10.1016/j.molstruc.2016.10.018

    Article  CAS  Google Scholar 

  29. C.S. Abraham, J.C. Prasana, S. Muthu, Quantum mechanical, spectroscopic and docking studies of 2-Amino-3-Bromo-5-nitropyridine by density functional method. Spectrochim Acta Part A 181, 153–163 (2017)

    Article  CAS  Google Scholar 

  30. D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94, 195–242 (1994)

    Article  CAS  Google Scholar 

  31. T. Hughbanks, R. Hoffmann, Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems. J. Am. Chem. Soc. 105, 3528–3537 (1983)

    Article  CAS  Google Scholar 

  32. S. Muthu, E. Isac Paulraj, Spectroscopic and molecular structure (monomeric and dimeric structure) investigation of 2-[(2hydroxyphenyl) carbonyloxy] benzoic acid by DFT method: a combined experimental and theoretical study. J. Mol. Struc. 1038, 145–162 (2013)

    Article  CAS  Google Scholar 

  33. V. Balachandran, A. Lakshmi, A. Janaki, Conformational stability, vibrational spectral studies, HOMO-LUMO and NBO analyses of 2-hydroxy-4-methyl-3-nitropyridine and 2-hydroxy-4-methyl-5-nitropyridine based on density functional theory. J. Mol. Struct 1013, 75–85 (2012)

    Article  CAS  Google Scholar 

  34. U.D. Thangaraj, M. Rajagantham, K. Govindarajulu, J.P. Arulsamy, Synthesis, crystal structure and vibrational spectral analysis of guanidinium hydrogen L-aspartate single crystal. J. Phys. Sci. 28, 27–47 (2017)

    Article  CAS  Google Scholar 

  35. Y. Sheena Mary, C. Yohannan Panicker, C.N. Kavitha, H.S. Yathirajan, M.S. Siddegowda, Sandra M.A. Cruz, Helena I.S. Nogueira, A.A. Al-Saadi, C. Van Alsenoy, J.A. War, Spectrochim. Acta Part A (2014).

  36. T. Arumanayagam, P. Murugakoothan, Studies on optical and mechanical properties of new organic NLO crystal: guanidinium4-aminobenzoate (GuAB). Mater Lett. 65, 2748–2750 (2011). https://doi.org/10.1016/j.matlet.2011.05.081

    Article  CAS  Google Scholar 

  37. J. Chengmin, C. Tianliang, S. Zhihua, G. Yan, L. Wenxiong, L. Junhua, S. Qian, H. Maochun, Bulk crystal growth and characterization of imidazolium L-tartrate (IMLT): a novel organic nonlinear optical material with a high laser-induced damage threshold. CrystEngComm 15, 2157 (2013). https://doi.org/10.1039/c3ce26942f

    Article  CAS  Google Scholar 

  38. M. Rajkumar, A. Chandramohan, Synthesis, growth and characterization of o-phenylinediaminium benzilate: an SHG material with high laser damage threshold for NLO applications. Opt. Mater. 64, 436–444 (2017). https://doi.org/10.1016/j.optmat.2017.01.015

    Article  CAS  Google Scholar 

  39. M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, J. Chem. Phys. 109, 6654–6660 (1998)

    Google Scholar 

  40. M.U. Kumar, A.P. Jeyakumari, M. Suresh, S. Chandran, G. Vinitha, Synthesis, spectroscopic and DFT studies of Schiff based (E)-N′-(Benzo[d][1, 3]Dioxol-5-ylmethylene)nicotinohydrazide monohydrate single crystal: a promising organic nonlinear optical material. Mater. Res. Express 6, 075102 (2019). https://doi.org/10.1088/2053-1591/ab13c

    Article  CAS  Google Scholar 

  41. R. Shahidha, A.A. Al-Saadi, S. Muthu, Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochim. Acta Part A 134, 127–142 (2015). https://doi.org/10.1016/j.saa.2014.06.033

    Article  CAS  Google Scholar 

  42. P. Karuppasamy, T. Kamalesh, C.S. Kumar, M.S. Pandian, P. Ramasamy, S. Verma, S.V. Rao, Growth, structural, optical, thermal, laser damage threshold and theoretical investigations of organic nonlinear optical 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) single crystal. J. Mater. Sci. 30, 1553–1570 (2019). https://doi.org/10.1007/s10854-018-0427-9

    Article  CAS  Google Scholar 

  43. H. Saleem, A.R. Krishnan, Y. Erdogdu, S. Subashchandrabose, V. Thanikachalam, G. Manikandan, Density functional theory studies on 2,5-bis(4-hydroxy-3-methoxybenzylidene)-cyclopentanone. J. Mol. Struct. 999, 2–9 (2011). https://doi.org/10.1016/j.molstruc.2011.02.039

    Article  CAS  Google Scholar 

  44. V. Balachandran, G. Santhi, V. Karpagam, V.K. Rastogi, Structural features of the 2-amino-5-nitrobenzophenone by means of vibrational spectroscopy HF and DFT, first order hyperpolarizability, NBO, HOMO–LUMO and theromodynamic properties. Spectrochim. Acta Part A 118, 835–846 (2014). https://doi.org/10.1016/j.saa.2013.09.071

    Article  CAS  Google Scholar 

  45. G. Mahalakshmi, V. Balachandran, FT-IR, FT-Raman and DFT study of 3,30-bis (trifluoromethyl) benzophenone and its biological activity with other halogen (Cl, Br) atoms. Spectrochim. Acta Part A 124, 328–340 (2014). https://doi.org/10.1016/j.saa.2014.01.038

    Article  CAS  Google Scholar 

  46. T. Karthick, V. Balachandran, S. Perumal, A. Nataraj, Vibrational (FT-IR and FT-Raman) spectra and quantum chemical studies on the molecular orbital calculations, chemical reactivity and thermodynamic parameters of 2-chloro-5-(trifluoromethyl) aniline. Spectrochim. Acta Part A 107, 72–81 (2013). https://doi.org/10.1016/j.saa.2013.01.034

    Article  CAS  Google Scholar 

  47. A.E. Reed, F. Weinhold, Natural localized molecular orbitals. J. Chem. Phys. 78, 4066–4073 (1983). https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  48. J. Chocholou Sova, V. Spirko, P. Hobza, First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H⋯ O and improper blue-shifted C–H⋯ O hydrogen bonds. Phys. Chem. 6, 37–41 (2004). https://doi.org/10.1039/B314148A

    Article  CAS  Google Scholar 

  49. N.J. Long, Organometallic compounds for nonlinear optics—the search for en-light-enment! Angew. Chem., Int. Ed. Engl. 34(1), 21–38 (1995). https://doi.org/10.1002/anie.199500211

    Article  CAS  Google Scholar 

  50. S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials.". J. Appl. Phys. 39, 3798–3812 (1968). https://doi.org/10.1063/1.1656857

    Article  CAS  Google Scholar 

  51. R.W. Boyd, Nonlinear Optics (Academic, New York, 2003)

    Google Scholar 

  52. G. Lanzani, Photophysics of Molecular Materials: From Single Molecules to Single Crystals (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006), pp.429–496

    Google Scholar 

  53. C.W. Dirk, R.J. Twieg, G. Wagniere, The contribution of. pi. electrons to second harmonic generation in organic molecules. J. Am. Chem. Soc. 108, 5387–5395 (1986). https://doi.org/10.1021/ja00278a002

    Article  CAS  Google Scholar 

  54. S.M. Dhas, S. Natarajan, Growth and characterization of Lithium hydrogen oxalate monohydrate, a new semiorganic NLO material. Mater. Lett. 62, 1136–1138 (2008). https://doi.org/10.1016/j.matlet.2007.07.069

    Article  CAS  Google Scholar 

  55. D.J. Daniel, P. Ramasamy, Studies on semi-organic non linear optical single crystal: lithium formate monohydrate (HCO2Li⋅ H2O). Opt. Mater. 36, 971–976 (2014). https://doi.org/10.1016/j.optmat.2014.01.004

    Article  CAS  Google Scholar 

  56. R. Sathyanarayanan, M. Selvapandiyan, C. Senthilkumar, M. Srinivasan, P. Ramasamy, Crystal growth, Hirshfeld surface, quantum chemical calculations, optical, photoluminescence and thermal analyses of sodium D-isoascorbate monohydrate single crystal. J. Mol. Struct. 1275, 134637 (2023). https://doi.org/10.1016/j.molstruc.2022.134637

    Article  CAS  Google Scholar 

  57. D. Narayana, E.D. D’silva Reji, J. Rao Ray, P. Butcher, S.M. Rajnikan Dharmaprakash, Phys. B 406, 2206–2210 (2011)

    Article  Google Scholar 

  58. M. Dhavamurthy, G. Peramaiyan, R. Mohan, Synthesis, growth, structural, optical, thermal, dielectric and mechanical studies of an organic guanidinium p-nitrophenolate crystal. J. Cryst. Growth 399, 13–18 (2014). https://doi.org/10.1016/j.jcrysgro.2014.04.013

    Article  CAS  Google Scholar 

  59. G. Senthil-Murugan, P. Ramasamy, Crystal growth, stability and photoluminescence studies of tetra aqua diglycine magnesium (II) hexa aqua magnesium (II) bis sulfate crystal. Phys. B 406, 1169–1172 (2011). https://doi.org/10.1016/j.physb.2010.12.075

    Article  CAS  Google Scholar 

  60. P. Maadeswaran, S. Thirumalairajan, P. Karthika, J. Chandrasekaran, Growth and characterization of a semiorganic nonlinear optical crystal-Cadmium thiosemicarbazide bromide. J. Optoelectron. Biomed. Mater. 1, 180–187 (2009)

    Google Scholar 

  61. J. Dalal, N. Sinha, H. Yadav, B. Kumar, Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal. RSC Adv. 5, 57735–57748 (2015). https://doi.org/10.1039/C5RA10501C

    Article  CAS  Google Scholar 

  62. E.S. Rorem, Ultraviolet fluorescence for detection of organic compounds on paper. J. Chromatogr. A 4, 162–165 (1960). https://doi.org/10.1016/S0021-9673(01)98388-8

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RS contributed to conceptualization, methodology, validation, formal analysis, investigation, resources, writing—original draft, writing—original draft, and writing—review & editing; MS contributed to conceptualization, methodology, validation, formal analysis, writing—original draft, writing—review & editing, and supervision; CS contributed to methodology, validation, formal analysis, writing—original draft, and writing—review & editing; T.Keerthivasan contributed to formal analysis and writing—original draft & review; MS contributed to formal analysis and writing—original draft & review; PR contributed to formal analysis and writing—original draft & review.

Corresponding author

Correspondence to M. Selvapandiyan.

Ethics declarations

Competing Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyanarayanan, R., Selvapandiyan, M., Senthilkumar, C. et al. Crystal Growth, Structural, Hirshfeld Surface, Computational, Nonlinear Optical and Photoluminescence Properties of Lithium D-isoascorbate Monohydrate Crystal. J Mater Sci: Mater Electron 34, 825 (2023). https://doi.org/10.1007/s10854-023-10222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10222-2

Navigation