Log in

Measurements of residual stresses in Al film/silicon nitride substrate microcantilever beam systems

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microcantilevers fabricated by microelectromechanical system processes were used to study the residual stresses in the film/substrate systems. Aluminum films were deposited on silicon nitride substrates by thermal evaporation at room and elevated temperatures, and residual stresses were characterized from the deflection profiles of the Al/SiNx microcantilevers. The Al/SiNx microcantilever beam made of room-temperature-deposited Al film was found to deflect toward the substrate side, which in turn resulted in compressive residual stress in the film. In contrary, the microcantilever of Al film deposited at 105 °C was found to deflect toward the side of Al film when the thickness ratio of film to substrate was greater than 0.31 and the residual film stresses were tensile. The axes with zero bending strain component and zero stresses, i.e., the bending and the neutral axes in the film/substrate system were also investigated. The results can be applied to the arm of the atomic force microscope to characterize its deflection and stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE II.
TABLE III.

Similar content being viewed by others

REFERENCES

  1. C.H. Hsueh: Modeling of elastic deformation of multilayers due to residual stresses and external bending. J. Appl. Phys. 91, 9652 (2002).

    Article  CAS  Google Scholar 

  2. W. Fang and C.-Y. Lo: On the thermal expansion coefficients of thin films. Sens. Actuators, A 84, 310 (2000).

    Article  CAS  Google Scholar 

  3. W. Fang and J.A. Wickert: Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J. Micromech. Microeng. 6, 301 (1996).

    Article  CAS  Google Scholar 

  4. S.G. Mayr and K. Samwer: Model for intrinsic stress formation in amorphous thin films. Phys. Rev. Lett. 87, 036105 (2001).

    Article  CAS  Google Scholar 

  5. R. Koch: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys. Condens. Matter 6, 9519 (1994).

    Article  CAS  Google Scholar 

  6. W.D. Nix and B.M. Clemens: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467 (1999).

    Article  CAS  Google Scholar 

  7. T.-Y. Zhang, S. Lee, L.J. Guido, and C.H. Hsueh: Criteria for formation of interface dislocations in a finite thickness epilayer deposited on a substrate. J. Appl. Phys. 85, 7579 (1999).

    Article  CAS  Google Scholar 

  8. R.C. Cammarata and T.M. Trimble: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 2468 (2000).

    Article  CAS  Google Scholar 

  9. M. Pletea, R. Koch, H. Wendrock, R. Kaltofen, and O.G. Schmidt: In situ stress evolution during and after sputter deposition of Al thin films. J. Phys. Condens. Matter 21, 1 (2009).

    Article  Google Scholar 

  10. S.P. Kim, H.M. Choi, and S.K. Choi: A study on the crystallographic orientation with residual stress and electrical property of Al films deposited by sputtering. Thin Solid Films 322, 298 (1998).

    Article  CAS  Google Scholar 

  11. J.H. Lee, W.M. Kim, T.S. Lee, M.K. Chung, B.K. Cheong, and S.G. Kim: Mechanical and adhesion properties of Al/AlN multilayered thin films. Surf. Coat. Tech. 133, 220 (2000).

    Article  Google Scholar 

  12. C.H. Hsueh and S. Lee: Effects of viscous flow on residual stresses in film/substrate systems. J. Appl. Phys. 91, 2760 (2002).

    Article  CAS  Google Scholar 

  13. Y.Y. Hu and W.M. Huang: Elastic and elastic-plastic analysis of multilayer thin films: Closed-form solutions. J. Appl. Phys. 96, 4154 (2004).

    Article  CAS  Google Scholar 

  14. C.H. Hsueh, S. Lee, and H.-Y. Lin: Analyses of mode I edge delamination by thermal stresses in multilayer systems. Compos. Eng. 37, 1 (2006).

    Article  Google Scholar 

  15. J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chu: Measurements of alloy composition and strain in thin GexSi1-x layers. J. Appl. Phys. 75, 8098 (1994).

    Article  CAS  Google Scholar 

  16. T.S. Perova, K. Lyutovich, E. Kasper, A. Waldron, M. Oehme, and R.A. Moore: Stress determination in strained-Si grown on ultra-thin SiGe virtual substrates. Mater. Sci. Eng., B 135, 192 (2006).

    Article  CAS  Google Scholar 

  17. Y. Zoo, D. Adams, J.W. Mayer, and T.L. Alford: Investigation of coefficient of thermal expansion of silver thin film on different substrates using x-ray diffraction. Thin Solid Films 513, 170 (2006).

    Article  CAS  Google Scholar 

  18. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  19. W. Fang and J.A. Wickert: Comments on measuring thin-film stresses using bi-layer micromachined beams. J. Micromech. Microeng. 5, 276 (1995).

    Article  Google Scholar 

  20. W. Fang, H.-C. Tsai, and C.-Y. Lo: Determining thermal expansion coefficients of thin films using micromachined cantilevers. Sens. Actuators, A 77, 21 (1999).

    Article  CAS  Google Scholar 

  21. M.T.-K. Hou and R. Chen: Effect of width on the stress-induced bending of micromachined bilayer cantilevers. J. Micromech. Microeng. 13, 141 (2003).

    Article  Google Scholar 

  22. J. McCarthy, Z. Pei, M. Becker, and D. Atteridge: FIB micromachined submicron thickness cantilevers for the study of thin film properties. Thin Solid Films 358, 146 (2000).

    Article  CAS  Google Scholar 

  23. F.L. Riley: Silicon nitride and related materials. J. Am. Ceram. Soc. 83, 245 (2000).

    Article  CAS  Google Scholar 

  24. S. Akamine, R.C. Barrett, and C.F. Quate: Improved atomic force microscope images using microcantilevers with sharp tips. Appl. Phys. Lett. 57, 316 (1990).

    Article  CAS  Google Scholar 

  25. R.J. Grow, S.C. Minne, S.R. Manalis, and C.F. Quate: Silicon nitride cantilevers with oxidation-sharpened silicon tips for atomic force microscopy. J. Microelectromech. Syst. 11, 317 (2002).

    Article  CAS  Google Scholar 

  26. A. Khan, J. Philip, and P. Hess: Young’s modulus of silicon nitride used in scanning force microscope cantilevers. J. Appl. Phys. 95, 1667 (2004).

    Article  CAS  Google Scholar 

  27. M.B. Viani, T.E. Schäffer, A. Chand, M. Rief, H.E. Gaub, and P.K. Hansma: Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258 (1999).

    Article  CAS  Google Scholar 

  28. Y. Toivola, J. Thurn, R.F. Cook, G. Cibuzar, and K. Roberts: Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films. J. Appl. Phys. 94, 6915 (2003).

    Article  CAS  Google Scholar 

  29. S. Habermehl: Stress relaxation in Si-rich silicon nitride thin films. J. Appl. Phys. 83, 4672 (1998).

    Article  CAS  Google Scholar 

  30. W. Shi, H. Zhang, G. Zhang, and Z. Li: Modifying residual stress and stress gradient in LPCVD Si3N4 film with ion implantation. Sens. Actuators, A 130, 352 (2006).

    Article  Google Scholar 

  31. H. Bouridah, F. Mansour, M.R. Beghoul, R. Mahamdi, and P. Temple-Boyer: Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films. Cryst. Res. Technol. 45, 119 (2010).

    Article  CAS  Google Scholar 

  32. W.-H. Chuang, T. Luger, R.K. Fettig, and R. Ghodssi: Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperatures. J. Microelectromech. Syst. 13, 870 (2004).

    Article  Google Scholar 

  33. C.-K. Huang, W.-M. Lou, C.-J. Tsai, T.-C. Wu, and H.-Y. Lin: Mechanical properties of polymer thin film measured by the bulge test. Thin Solid Films 515, 7222 (2007).

    Article  CAS  Google Scholar 

  34. G.G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R Soc. Lond., Ser. A 82, 172 (1909).

    Article  CAS  Google Scholar 

  35. C.A. Klein: How accurate are Stoney’s equation and recent modifications. J. Appl. Phys. 88, 5487 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was performed under the auspices of the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanboh Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Fang, W., Lin, HY. et al. Measurements of residual stresses in Al film/silicon nitride substrate microcantilever beam systems. Journal of Materials Research 26, 1279–1284 (2011). https://doi.org/10.1557/jmr.2011.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.111

Navigation