Log in

Effect of the gradient on the deflection of functionally graded microcantilever beams with surface stress

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The surface stress-induced deflection of a microcantilever beam with arbitrary axial nonhomogeneity and varying cross section is investigated. The surface stresses are assumed to be uniformly distributed on the upper surface of the beam. Based on the small deformation and Euler–Bernoulli beam theory, the second-order integral–differential governing equation is derived. A simple Taylor series expansion method is proposed to calculate the static deformation. The approximate solution of functionally graded microbeams can degenerate into the solution of homogeneous microbeams, and the explicit expressions for the static deflection, slope angle curvature, and surface stress are derived. Particularly, the influence of the gradient parameters on the static deformation of functionally graded rectangular and triangular microbeams is presented by Figures primarily. Obtained results indicate that choosing an appropriate gradient parameter is beneficial for different surface stresses. The proposed method and derived solution can be used as a theoretical benchmark for validating the obtained results of microcantilever beams as micro-mechanical sensors and atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liao, H.S., Juang, B.J., Chang, W.C., Lai, W.C., Huang, K.Y., Chang, C.S.: Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties. Rev. Sci. Instrum. 82(11), 113710 (2011)

    Article  Google Scholar 

  2. Huang, G.Y., Liu, J.P.: Effect of surface stress and surface mass on elastic vibrations of nanoparticles. Acta Mech. 224(5), 985–994 (2013)

    Article  MathSciNet  Google Scholar 

  3. Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nature. Nanotech. 6(4), 203–215 (2011)

    Article  Google Scholar 

  4. Zhao, B., Chen, J., Liu, T., Song, W.H., Zhang, J.R.: A new Timoshenko beam model based on modified gradient elasticity: shearing effect and size effect of micro-beam. Compos. Struct. 223, 110946 (2019)

    Article  Google Scholar 

  5. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. J. Mater. Eng. 56, 930–933 (2018)

    Google Scholar 

  6. Jaschke, M., Butt, H.-J., Manne, S., Gaub, H.E., Hasemann, O., Krimphove, F., Wolff, E.K.: The atomic force microscope as a tool to study and manipulate local surface properties. Biosens. Bioelectron. 11(6–7), 601–612 (2015)

    Google Scholar 

  7. Ansari, M.Z., Cho, C.: On accuracy of sensitivity relations for piezoresistive microcantilevers used in surface stress studies. Int. J. Pr. Eng. Man. 15(10), 20130449–2140 (2014)

    Google Scholar 

  8. Zhang, Y., Zhuo, L.J., Zhao, H.S.: Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Math. Phys. Eng. Sci. 469(2159), 65–79 (2013)

    MATH  Google Scholar 

  9. Sader, J.E.: Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates. J. Appl. Phys. 91, 9354–9361 (2002)

    Article  Google Scholar 

  10. Li, X.F., Peng, X.L.: Theoretical analysis of surface stress for a microcantilever with varying widths. J. Phys. D Appl. Phys. 41, 065301 (2008)

    Article  Google Scholar 

  11. Stoney, G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 2–9 (1909)

    Google Scholar 

  12. Javier, T.D.M.F., Ruz, M., José, J., Pini, V., Kosaka, P.M., Calleja, M.: Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012)

    Article  Google Scholar 

  13. Sohi, A.N., Nieva, P.M.: Frequency response of curved bilayer microcantilevers with applications to surface stress measurement. J. Appl. Phys. 119(4), 044503 (2016)

    Article  Google Scholar 

  14. Knowles, K.M.: The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain. J. Elast. 124(1), 1–25 (2016)

    Article  MathSciNet  Google Scholar 

  15. Blech, I.A., Blech, I., Finot, M.: The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain. J. Appl. Phys. 97(11), 113525 (2005)

    Article  Google Scholar 

  16. Evans, D.R., Craig, V.S.J.: The origin of surface stress induced by adsorption of iodine on gold. J. Phys. Chem. B. 110(39), 19507–19514 (2006)

    Article  Google Scholar 

  17. Sader, J.E.: Surface stress induced deflections of force microscope: rectangular plates. J. Appl. Phys. 89(5), 2911–2921 (2001)

    Article  Google Scholar 

  18. Zeng, X., Deng, J., Luo, X.: Deflection of a cantilever rectangular plate induced by surface stress with applications to surface stress measurement. J. Appl. Phys. 111(8), 1–8 (2012)

    Article  Google Scholar 

  19. Zhang, Y., Ren, Q., Zhao, Y.P.: Modelling analysis surface stress on a rectangular cantilever of beam. J. Phys. D Appl. Phys. 37(15), 2140–2145 (2004)

    Article  Google Scholar 

  20. Ansari, M.Z., Cho, C.: Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors 9(8), 6046–6057 (2009)

    Article  Google Scholar 

  21. Zhang, G.M., Zhao, L.B., Jiang, Z.D., Yang, S.M., Zhao, Y.L., Huang, E.Z., Hebibul, R., Wang, X.P., Liu, Z.G.J.: Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification. J. Phys. D Appl. Phys. 44(42), 425402 (2011)

    Article  Google Scholar 

  22. Shafiei, N., Kazemi, M.M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ramesh, M.N.V., Rao, N.M.: Free vibration analysis of pre-twisted rotating FGM beams. Int. J. Mech. Mater. Des. 9(4), 367–383 (2013)

    Article  Google Scholar 

  24. Su, J., **ang, Y., Ke, L.L., Wang, Y.S.: Surface effect on static bending of functionally graded porous nanobeams based on Reddy’s beam theory. Int. J. Struct. Stab. Dyn. 19(06), 1950062 (2019)

    Article  MathSciNet  Google Scholar 

  25. Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)

    Article  Google Scholar 

  26. Li, X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound. Vib. 318(4–5), 1210–1229 (2008)

    Article  Google Scholar 

  27. Benatta, M.A., Mechab, I., Tounsi, A., Bedia, E.A.A.: Static analysis of functionally graded short beams including war** and shear deformation effects. Comput. Mater. Sci. 44(2), 765–773 (2008)

    Article  Google Scholar 

  28. Chen, G.Y., Thundat, T., Wachter, E.A., Warmack, R.J.: Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77(8), 3618–3622 (1995)

    Article  Google Scholar 

  29. Mcfarland, A.W., Poggi, M.A., Doyle, M.J., Bottomley, L.A., Colton, J.S.: Influence of surface stress on the resonance behavior of microcantilevers. J. Appl. Phys. 87(5), 053505 (2005)

    Google Scholar 

  30. Freund, L.B., Floro, J.A., Chason, E.: Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74(14), 1987–1989 (1999)

    Article  Google Scholar 

  31. Evans, D.R., Craig, V.S.J.: Incremental viscosity bynon-equilibrium molecular dynamics and the Eyring model. J. Phys. Chem. 110, 19507–19514 (2006)

    Article  Google Scholar 

  32. Li, X.F.: Approximate solution of linear ordinary differential equations with variable coefficients. Math. Comput. Simulat. 75(3–4), 113–25 (2007)

    Article  MathSciNet  Google Scholar 

  33. Sander, D.: Surface stress: implications and measurements. Curr. Opin. Solid. St. M. 7(1), 51–57 (2003)

    Article  MathSciNet  Google Scholar 

  34. Moulin, A.M., O’Shea, S.J., Welland, M.E.: Microcantilever-based biosensors. Ultramicroscopy 82(1), 23–31 (2000)

    Article  Google Scholar 

  35. Li, X.F., Peng, X.L.: A pressurized functionally graded hollow cylinder with arbitrarily varying material properties. J. Elast. 96(1), 81–95 (2009)

    Article  MathSciNet  Google Scholar 

  36. Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014)

    Article  Google Scholar 

  37. Li, X.F., Kang, Y.A., Wu, J.X.: Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust. 74(3), 413–420 (2013)

    Article  Google Scholar 

  38. Tang, A.Y., Wu, J.X., Li, X.-F., Lee, K.Y.: Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int. J. Mech. Sci. 89, 1–11 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 11202038) and the China Scholarship Council (201908430028), the State Key Development Program for Basic Research of China (Grant No. 015CB057705), the Civil Engineering Key Subject Foundation of Changsha University of Science and Technology (No. 18ZDXK04), and the Postgraduate research innovation project of Changsha University of Science & Technology (Grant No. CX2020SS22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **an-Fang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

When using the fourth-order Taylor expansion, the matrixes H, Y, and B in Eq. (26) are replaced by the following ones:

$$\begin{aligned} {\mathbf {H}}= & {} \left[ {{\begin{array}{c} {h_{\left( 2 \right) } (\xi )} \\ {h_{\left( 1 \right) } (\xi )} \\ {h\left( \xi \right) } \\ {-\frac{1}{E(\xi )}} \\ {-\frac{{b}'\left( \xi \right) }{E(\xi )b\left( \xi \right) }} \\ \end{array} }} \right] ,\nonumber \\ Y= & {} \left[ {{\begin{array}{c} {Y\left( \xi \right) } \\ {{Y}'\left( \xi \right) } \\ {{Y}''\left( \xi \right) } \\ {{Y}'''\left( \xi \right) } \\ {Y^{IV}\left( \xi \right) } \\ \end{array} }} \right] , \end{aligned}$$
(A.1)
$$\begin{aligned} B= & {} \left[ {\begin{array}{l} 0 \quad B_{\left( 2 \right) } \left( {\xi ,1} \right) \quad B_{\left( 2 \right) } \left( {\xi ,2} \right) \qquad \qquad \quad B_{\left( 2 \right) } \left( {\xi ,3} \right) \quad B_{\left( 2 \right) } \left( {\xi ,4} \right) \\ 0 \quad B_{\left( 1 \right) } \left( {\xi ,1} \right) \quad B_{\left( 1 \right) } \left( {\xi ,2} \right) \qquad \qquad \quad B_{\left( 1 \right) } \left( {\xi ,3} \right) \quad B_{\left( 1 \right) } \left( {\xi ,4} \right) \\ 0\quad B_{\left( 0 \right) } \left( {\xi ,1} \right) \quad B_{\left( 0 \right) } \left( {\xi ,2} \right) \qquad \qquad \quad B_{\left( 0 \right) } \left( {\xi ,3} \right) \quad B_{\left( 0 \right) } \left( {\xi ,4} \right) \\ 0\quad -h(\xi ) \qquad \quad \frac{\left[ {{\overline{E}} \left( \xi \right) b\left( \xi \right) } \right] ^{\prime }}{q{\overline{E}} \left( \xi \right) b\left( \xi \right) }\quad \quad \quad \quad \quad 0\quad \quad \quad \quad \quad \quad 0 \\ 0\quad \frac{1}{{\overline{E}} (\xi )} \qquad \qquad \frac{\left[ {{\overline{E}} \left( \xi \right) b\left( \xi \right) } \right] ^{\prime \prime }}{q{\overline{E}} \left( \xi \right) b\left( \xi \right) } -h\left( \xi \right) \quad \frac{2\left[ {{\overline{E}} \left( \xi \right) b\left( \xi \right) } \right] ^{\prime }}{q{\overline{E}} \left( \xi \right) b\left( \xi \right) } \quad 0 \\ \end{array}} \right] . \end{aligned}$$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, XL., Zhang, L., Yang, ZX. et al. Effect of the gradient on the deflection of functionally graded microcantilever beams with surface stress. Acta Mech 231, 4185–4198 (2020). https://doi.org/10.1007/s00707-020-02759-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02759-8

Navigation