Log in

Towards 3D image-based nanocrystallography by means of transmission electron goniometry

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

It is well known that the crystallographic phase and morphology of many materials changes with the crystal size in the tens of nanometer range and that many nanocrystals possess structural defects in excess of their equilibrium levels. A need to determine the ideal and real structure of individual nanoparticles, therefore, arises. High-resolution phase-contrast transmission electron microscopy (TEM) and atomic resolution Z-contrast scanning TEM (STEM) when combined with transmission electron goniometry offer the opportunity of develop dedicated methods for the crystallographic characterization of nanoparticles in three dimensions. This paper describes tilt strategies for taking data from individual nanocrystals “as found”, so as to provide information on their lattice structure and orientation, as well as on the structure and orientation of their surfaces and structural defects. Internet based java applets that facilitate the application of this technique for cubic crystals with calibrated tilt-rotation and double-tilt holders are mentioned briefly. The enhanced viability of image-based nanocrystallography in future aberration-corrected TEMs and STEMs is illustrated on a nanocrystal model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fraundorf, Determining the 3D Lattice Parameters of Nanometer-sized Single Crystals from Images, Ultramicroscopy 22, 225–230 (1987)

    Article  CAS  Google Scholar 

  2. P. Möck, Verfahren zur Durchführung und Auswertung von elektronenmikroskopischen Untersuchungen, German patents DE 4037346 A1 and DD 301839 A7, priority date: 21 November, 1989

    Google Scholar 

  3. P. Fraundorf, Stereo Analysis of Single Crystal Electron Diffraction Data, Ultramicroscopy 6, 227–236 (1981)

    Article  CAS  Google Scholar 

  4. P. Fraundorf, Stereo Analysis of Electron Diffraction Pattern from Known Crystals, Ultramicroscopy 7, 203–206 (1981)

    Article  CAS  Google Scholar 

  5. P. Möck, A Direct Method for Orientation Determination Using TEM (I), Description of the Method, Cryst. Res. Technol. 26, 653–658 (1991); A Direct Method for Orientation Determination Using TEM (II), Experimental Example, Cryst. Res. Technol. 26, 797–801 (1991)

    Article  Google Scholar 

  6. P. Möck, A Direct Method for the Determination of Orientation Relationships Using TEM, Cryst. Res. Technol. 26, 975–962 (1991)

    Google Scholar 

  7. P. Möck and W. Hoppe, ELCRYSAN - A program for direct crystallographic analyses, Proc. 10th European Conference on Electron Microscopy Vol. 1, 193–194 (1992)

    Google Scholar 

  8. P. Möck, Estimation of Crystal Textures using Electron Microscopy, Beitr. Elektronenmikroskop. Direktabb. Oberfl. 28, 31–36 (1995).

    Google Scholar 

  9. W. Prantl, A computer program for the evaluation of orientation relationships from simple electron-diffraction spot patterns, J. Appl. Cryst. 20, 439–440 (1987)

    Article  Google Scholar 

  10. W. Prantl, A computer program for trace analyses in transmission electron microscopy, J. Appl. Cryst. 20, 440441 (1987)

    Google Scholar 

  11. C.T. Chou, Computer Software for Specimen Orientation Adjustment Using Double-Tilt or Rotation Holders, J. Electron. Microsc. Technique 7, 263–268 (1987).

    Article  CAS  Google Scholar 

  12. W. Qin and P. Fraundorf, Lattice parameters from direct-space images at two tilts, Ultramicroscopy 94, 245–262 (2003)

    Article  CAS  Google Scholar 

  13. W. Qin, Direct space nano(crystallography) via high-resolution Transmission Electron Microscopy, PhD thesis, University of Missouri-Rolla, 2000

    Google Scholar 

  14. R.C. Pond. Line Defects in Interfaces; in Dislocations in Solids 8, 1 (1989), ed. F.R.N. Nabarro (Elsevier)

    Google Scholar 

  15. T.V. Barker, Systematic Crystallography: An Essay on Crystal Description, Classification and identification, (Thomas Murby & Co, London, 1930)

    Google Scholar 

  16. M.W. Porter and R.C. Spiller, The Barker Index of Crystals, (W. Heffer and Sons, Cambridge, 1951)

  17. A.K. Boldyrew, Bestimmungstabellen für Kristalle, Band I, (Leningrad, 1936)

    Google Scholar 

  18. O. Johari and Thomas G., The stereographic projection and its application (Wiley, 1969)

    Google Scholar 

  19. J.F.C. Hessel, Krystallometrie, oder Krystallonomie und Krystallographie auf eigenthümliche Weise und mit Zugrundelegung neuerer allgemeiner Lehren der reinen Gestaltenkunde, sowie mit vollständiger Berücksichtigung der wichtigsten Arbeitern und Methoden anderer Krystallographen, 1830, (Ostwald’s Klassiker der exakten Wissenschaften Nr. 88, Wilhelm Englemann, Leipzig, 1897)

    Google Scholar 

  20. V. Goldschmidt, Krystallographische Winkeltabellen, (Berlin, 1897)

    Book  Google Scholar 

  21. E.S. Fedorow, Das Kristallreich: Tabellen zur Kristallochemischen Analyse, mit Atlas (1920)

    Google Scholar 

  22. P. Terpstra and L.W. Godd, Crystallometry, (Academic Press, New York, 1961)

    Google Scholar 

  23. X.Z. Li, JECP/SP: a computer program for generating stereographic projections, applicable to specimen orientation adjustment in TEM experiments, J. Appl. Cryst. 37 (2004) 506–507

    Article  CAS  Google Scholar 

  24. http://www.physics.pdx.edu/~pmoeck/tilt-rotationgoniometersimulation.htm

  25. http://www.physics.pdx.edu/~pmoeck/double/double-tiltgoniometersimulation.htm

  26. K.J. Batenburg, Electronic notes in discrete mathematics 12 (2003), Elsevier online

  27. C. Kisielowski, private communications

  28. P. Moeck, M. Kapilashrami, A. Rao, K. Aldushin, J. Lee, J.E. Morris, N.D. Browning, and P.J. McCann, Nominal PbSe nano-islands on PbTe: grown by MBE, analyzed by AFM and TEM, Mat. Res. Soc. Symp. Proc. Vol. 839 (2005) P.4.3.1–P.4.3.6

    Google Scholar 

  29. P. Moeck, W. Qin, and P.B. Fraundorf, Image-based nanocrystallography in future aberration corrected transmission electron microscopes, Mat. Res. Soc. Symp. Proc. Vol. 818 (2004) M11.3.1–M11.3.6

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by an award from Research Corporation. Additional support was provided by faculty enhancement and development awards from Portland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Moeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeck, P., Qin, W. & Fraundorf, P.B. Towards 3D image-based nanocrystallography by means of transmission electron goniometry. MRS Online Proceedings Library 839, 89–94 (2004). https://doi.org/10.1557/PROC-839-P4.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-839-P4.3

Navigation