Electron Diffraction and Crystal Orientation Phase Map** Under Scanning Transmission Electron Microscopy

  • Chapter
Advanced Transmission Electron Microscopy

Abstract

Electron diffraction pattern acquisition in scanning transmission electron microscopy (STEM) mode is a very attractive technique for the study of the crystallographic characteristics of nanostructured materials. One of the most important aspects of this technique is to ensure an illumination on the sample as parallel as possible, which translates into reducing the convergence angle of the electron beam as much as possible. Different parameters of electron microscopes have a direct impact on the convergence angle of the electron beam; once these parameters are identified, and their effect on the convergence angle is studied, optimum conditions for the acquisition of electron diffraction patterns while in STEM mode (D-STEM) can be identified. In the present study, several of these parameters were identified and assessed; among these parameters we can mention the condenser aperture 2 size, the excitation of the condenser minilens, and the spot size used, among others. The results obtained allowed to identify the optimum conditions to produce a convergence angle smaller than 1 mrad, with an electron probe size smaller than 3 nm. When combined with precession electron diffraction (PED), this D-STEM technique allows obtaining crystal orientation phase maps with a spatial resolution determined mainly by the electron probe size. Several examples of these combined techniques applied to different nanostructured systems, like lead chalcogenide nanoparticles, Au clusters, GaN nanofilms, Co nanowires, and Au decahedral nanoparticles, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Cowley, Electron nanodiffraction: progress and prospects. J. Electron Microsc. (Tokyo) 45(1), 3 (1996)

    Article  Google Scholar 

  2. J.M. Cowley, Electron nanodiffraction. Microsc. Res. Tech. 46, 75 (1999)

    Article  Google Scholar 

  3. J.M. Cowley, D.E. Janney, R.C. Gerkin, P.R. Buseck, The structure of ferritin cores determined by electron nanodiffraction. J. Struct. Biol. 131, 210 (2000)

    Article  Google Scholar 

  4. J.M. Cowley, Applications of electron nanodiffraction. Micron 34, 345 (2004)

    Article  Google Scholar 

  5. J.M. Cowley, P. Nikolaev, A. Thess, R.E. Smalley, Electron nano-diffraction study of carbon single-walled nanotube ropes. Chem. Phys. Lett. 265, 379–384 (1997)

    Article  Google Scholar 

  6. U. Kolb, T. Gorelik, C. Kubel, M.T. Otten, D. Hubert, Towards automated diffraction tomography: Part I—data acquisition. Ultramicroscopy 107, 507 (2007)

    Article  Google Scholar 

  7. H. He, C. Nelson, A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging. Ultramicroscopy 107, 3404 (2007)

    Google Scholar 

  8. D. Alloyeau, C. Ricolleau, T. Okiawa, C. Lanlois, Y.L. Bouar, A. Loiseau, STEM nanodiffraction technique for structural analysis of CoPt nanoparticles. Ultramicroscopy 108, 656 (2008)

    Article  Google Scholar 

  9. K.J. Ganesh, M. Kawasaki, J.P. Zhou, P.J. Ferreira, D-STEM: a parallel electron diffraction technique applied to nanomaterials. Microsc. Microanal. 16, 614–621 (2010)

    Article  Google Scholar 

  10. K.J. Ganesh, S. Rajasekhara, D. Bultreys, P.J. Ferreira, Rapid and Automated Grain Orientation and Grain Boundary Analysis in Nanoscale Copper Interconnects. IEEE IRPS Proceedings, IRPS11 (2011), pp. 500–502

    Google Scholar 

  11. K.J. Ganesh, A.D. Darbal, S. Rajasekhara, G.S. Rohrer, K. Barmak, P.J. Ferreira, Effect of downscaling nano-copper interconnects on the microstructure revealed by high resolution TEM-orientation-map**. Nanotechnology 23, 135702 (2012)

    Article  Google Scholar 

  12. L. Cao, K.J. Ganesh, L. Zhang, O. Aubel, C. Hennesthal, M. Hauschildt, P.J. Ferreira, P.S. Ho, Grain structure analysis and effect on electromigration reliability in nanoscale Cu interconnects. Appl. Phys. Lett. 102, 131907 (2013)

    Article  Google Scholar 

  13. K.A. Jarvis, Z. Deng, L.F. Allard, A. Manthiram, P.J. Ferreira, Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011)

    Article  Google Scholar 

  14. K.A. Jarvis, C.-C. Wang, A. Manthiram, P.J. Ferreira, The role of composition in the atomic structure, oxygen loss, and capacity of layered Li–Mn–Ni oxide cathodes. J. Mater. Chem. A 2, 1353 (2014)

    Article  Google Scholar 

  15. A.D. Daral, K.J. Ganesh, X. Liu, S.-B. Lee, J. Ledonne, T. Sun, B. Yao, A.P. Warren, G.S. Rohrer, A.D. Rollett, P.J. Ferreira, K.R. Coffey, K. Barmak, Grain boundary character distribution of nanocrystalline Cu thin films using stereological analysis of transmission electron microscope orientation maps. Microsc. Microanal. 19(01), 111–119 (2013)

    Article  Google Scholar 

  16. X. Zou, S. Hovmöller, P. Oleynikov, Electron Crystallography: Electron Microscopy and Electron Diffraction, vol. 16 (Oxford University Press, Oxford, 2010)

    Google Scholar 

  17. C.B. Carter, D. Williams, Transmission Electron Microscopy: A Textbook for Materials Science. Diffraction. II, vol. 2 (Springer, Berlin, 1996)

    Google Scholar 

  18. S.J. Pennycook, P.D. Nellist, Z-contrast scanning transmission electron microscopy, in Impact of electron scanning probe microscopy on materials research, ed. by D. Rickerby, G. Valdrè, U. Valdrè (Kluwer Academic, Amsterdam, 1999), p. 161. ISBN 0-7923-5939-9

    Google Scholar 

  19. T. Mulvey, B. Kazan, P.W. Hawkes, The Growth of Electron Microscopy, vol. 96 (Academic Press, San Diego, 1996)

    Google Scholar 

  20. D.I. Garcia-Gutierrez, L.M. De Leon-Covian, D.F. Garcia-Gutierrez, M. Treviño-Gonzalez, M.A. Garza-Navarro, S. Sepulveda-Guzman, On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles. J. Nanopart. Res. 15, 1620 (2013)

    Article  Google Scholar 

  21. I. Dolamic, S. Knoppe, A. Dass, T. Bürgi, First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 3, 798 (2012)

    Article  Google Scholar 

  22. D. Bahena, N. Bhattarai, U. Santiago, A. Tlahuice, A. Ponce, S.B.H. Bach, B. Yoon, R.L. Whetten, U. Landman, M. Jose-Yacaman, STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J. Phys. Chem. Lett. 4, 975–981 (2013)

    Article  Google Scholar 

  23. R. Vincent, P.A. Midgley, Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271 (1994)

    Article  Google Scholar 

  24. X. Zou, S. Hovmöller, P. Oleynikov, Electron Crystallography: Electron Microscopy and Electron Diffraction (Oxford University Press, Oxford, 2011), pp. 113–117

    Book  Google Scholar 

  25. E.F. Rauch, M. Véron, J. Portillo, D. Bultreys, Y. Maniette, S. Nicolopoulos, Automatic crystal orientation and phase map** in TEM by precession diffraction. Microsc. Anal. 22, S5 (2008)

    Google Scholar 

  26. D. Viladot, M. Véron, M. Gemmi, F. Peiró, J. Portillo, S. Estradé, J. Mendoza, N. Llorca-Isern, S. Nicolopoulos, Orientation phase map** in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results. J. Microsc. 252, 23 (2013)

    Article  Google Scholar 

  27. S. Estradé, J. Portillo, J. Mendoza, I. Kosta, M. Serret, C. Müller, F. Peiró, Assessment of misorientation in metallic and semiconducting nanowires using precession electron diffraction. Micron 43, 910 (2012)

    Article  Google Scholar 

  28. G. Brunetti, D. Robert, P. Bayle-Guillemaud, J.L. Rouviere, E.F. Rauch, J.F. Martin, J.F. Colin, F. Bertin, C. Cayron, Confirmation of the domino-cascade model by LiFePO(4)/FePO(4) precession electron diffraction. Chem. Mater. 23, 4515 (2011)

    Article  Google Scholar 

  29. E.F. Rauch, M. Veron, Coupled microstructural observations and local texture measurements with an automated crystallographic orientation map** tool attached to a tem. Materwiss. Werksttech. 36, 552 (2005)

    Article  Google Scholar 

  30. E.F. Rauch, K. Barmak, K.J. Ganesh, P.J. Ferreira, A. Darbal, D. Choi, T. Sun, B. Yao, K.R. Coffey, S. Nicolopoulos, Automated crystal orientation and phase map** for thin film applications by transmission electron microscopy. Microsc. Microanal. 17, 1086 (2011)

    Article  Google Scholar 

  31. F. Ruiz‐Zepeda, Y.L. Casallas‐Moreno, J. Cantu‐Valle, D. Alducin, U. Santiago, M. José‐Yacaman, M. López‐López, A. Ponce, Precession electron diffraction-assisted crystal phase map** of metastable c-GaN films grown on (001) GaAs. Microsc. Res. Tech. 77(12), 980–985 (2014). doi:10.1002/jemt.22424

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the CONACYT Mexico (project number 154303), National Center for Research Resources (5 G12RR013646-12), and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health. The authors would like to acknowledge to the NSF for support with grants DMR-1103730 and PREM: NSF PREM Grant # DMR 0934218. Finally, the authors would like to acknowledge to the Department of Defense #64756-RT-REP and the Welch Foundation grant award # AX-1615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo I. Garcia-Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruiz-Zepeda, F., Arizpe-Zapata, J.A., Bahena, D., Ponce, A., Garcia-Gutierrez, D.I. (2015). Electron Diffraction and Crystal Orientation Phase Map** Under Scanning Transmission Electron Microscopy. In: Deepak, F., Mayoral, A., Arenal, R. (eds) Advanced Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-15177-9_2

Download citation

Publish with us

Policies and ethics

Navigation