Log in

Boron Diffusion and Silicon Self-Interstitial Recycling between SiGeC layers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Substitutional carbon is known to locally reduce silicon self-interstitial concentrations and act as a barrier to self-interstitial migration through the carbon rich regions. A silicon spacer between two carbon rich SiGe layers is fabricated in this work to examine self-interstitial generation in a region that is isolated from self-interstitial formation at the surface or in the silicon bulk. Boron marker layers above, below and in between two SiGeC layers are used to monitor the self-interstitial concentration between the substitutional carbon. No evidence of self- interstitial depletion in the silicon spacer is observed, despite annealing in conditions believed sufficient to allow the self-interstitials to reach and react with surrounding substitutional carbon. Simulations of the self-interstitial and carbon indicate that the silicon self interstitial concentration in the spacer layer can be sustained in part due to a silicon self-interstitial recycling process through a reverse “kick-out” reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-J. Gossmann, T. E. Haynes, P. A. Stolk, D. C. Jacobson, G. H. Gilmer, J. M. Poate, H. S. Luftman, T. K. Mogi, and M. O. Thompson, Appl. Phys. Lett., vol. 71, pp. 3862, 1997.

    Article  CAS  Google Scholar 

  2. W. T. C. Fang, T. T. Fang, P. B. Griffin, and J. D. Plummer, Appl. Phys. Lett., vol. 68, pp. 2085, 1996.

    Article  CAS  Google Scholar 

  3. A. Ural, P. B. Griffin, and J. D. Plummer, J. Appl. Phys., vol. 85, pp. 6440, 1999.

    Article  CAS  Google Scholar 

  4. H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett., vol. 81, pp. 393, 1998.

    Article  CAS  Google Scholar 

  5. M. R. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, Tech. Digest IEDM, pp. 923, 1992.

    Google Scholar 

  6. M. Carroll, J. C. Sturm, E. Napolitani, D. De Salvador, M. Berti, J. Stangl, and K. Bauer, Phys. Rev. B, vol. 64, pp. 3308, 2001.

    Google Scholar 

  7. S. T. Dunham and J. D. Plummer, J. Appl. Phys., vol. 71, pp. 685, 1992.

    Article  CAS  Google Scholar 

  8. P. Kuo, J. L. Hoyt, J. F. Gibbons, J. E. Turner, and D. Lefforge, Appl. Phys. Lett., vol. 67, pp. 706, 1995.

    Article  CAS  Google Scholar 

  9. M. Carroll, J. C. Sturm, and T. Buyuklimanli, Phys. Rev. B, vol. 64, pp. 5316, 2001.

    Google Scholar 

  10. M. Carroll, C.-L. Chang, J. C. Sturm, and T. Buyuklimanli, Appl. Phys. Lett., vol. 73, pp. 3695, 1998.

    Article  CAS  Google Scholar 

  11. R. Scholz, U. Goesele, J. Y. Huh, and T. Y. Tan, Appl. Phys. Lett., vol. 72, pp. 2, 1998.

    Article  Google Scholar 

  12. P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys., vol. 61, pp. 289, 1989.

    Article  CAS  Google Scholar 

  13. D. J. Roth and J. D. Plummer, J. Electrochem. Soc., vol. 141, pp. 1074, 1994.

    Article  CAS  Google Scholar 

  14. S. Pindl, M. Biebl, and E. Hammerl, J. Electrochemical Soc., vol. 144, pp. 4022, 1997.

    Article  CAS  Google Scholar 

  15. H.-J. Gossmann, C. S. Rafferty, H. S. Luftmann, F. C. Unterwald, T. Boone, and J. M. Poate, Appl. Phys. Lett., vol. 63, pp. 639, 1993.

    Article  CAS  Google Scholar 

  16. R. F. Scholz, P. Werner, U. Goesele, and T. Y. Tan, Appl. Phys. Lett., vol. 74, pp. 392, 1999.

    Article  CAS  Google Scholar 

  17. H. Ruecker, B. Heinemann, and R. Kurps, Phys. Rev. B, vol. 64, pp. 073202, 2001.

    Article  Google Scholar 

  18. A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett., vol. 83, pp. 3454, 1999.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Carroll would like to thank H. Ruecker and C. S. Rafferty for helpful discussions regarding PROPHET and its use for carbon simulation. This work was supported by ARO and DARPA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, M.S., Sturm, J.C. Boron Diffusion and Silicon Self-Interstitial Recycling between SiGeC layers. MRS Online Proceedings Library 810, 148–153 (2003). https://doi.org/10.1557/PROC-810-C3.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-810-C3.5

Navigation