Diffusion and Point Defects in Silicon Materials

  • Chapter
  • First Online:
Defects and Impurities in Silicon Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 916))

  • 2266 Accesses

Abstract

This chapter aims to provide a basic understanding on the complex diffusion behavior of self-, dopant-, and selected metal atoms in silicon (Si). The complexity of diffusion in Si becomes evident in the shape of self- and foreign-atom diffusion profiles that evolves under specific experimental conditions. Diffusion studies attempt to determine from the diffusion behavior not only the mechanisms of atomic transport but also the type of the point defects involved. This information is of pivotal interest to control the diffusion and activation of dopants during the fabrication of Si-based devices and, from a more fundamental scientific point of view, for comparison to the predictions of theoretical calculations on the properties of point defects in Si. In general, diffusion research relies both on experimental methods to accurately determine diffusion profiles established under well-defined conditions. The analysis of diffusion profiles that can be based on either analytical or numerical solutions of the considered diffusion-reaction equations provides first information about possible diffusion mechanisms. To identify the mechanisms of diffusion, studies under different experimental conditions have to be performed. This chapter on diffusion in Si starts with an introduction on the significance of diffusion research in semiconductors to determine the properties of atomic defects. Diffusion in solids is treated from a phenomenological and atomistic point of view. Experiments designed to investigate the diffusion of self- and foreign atoms are presented and typical self- and foreign-atom profiles obtained after diffusion annealing under specific conditions are illustrated. The mathematical treatment of diffusion-reaction mechanisms is introduced to understand the shape of diffusion profiles and the meaning of the diffusion coefficient deduced from experiments. Modeling of self-, dopant-, and metal-atom diffusion is described that aims at a consistent interpretation of atomic transport processes in Si based on unified properties of the native point defects involved. Finally, till unsolved questions on the properties of point defects in bulk Si and on the diffusion behavior in three-dimensional confined Si structures are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammon, W.: Defects in Monocrystalline silicon. In: Kasap, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, pp. 101–120. Springer, New York (2007). doi:10.1007/978-0-387-29185-7_5

    Chapter  Google Scholar 

  2. Car, R., Kelly, P.J., Oshiyama, A., Pantelides, S.T.: Microscopic theory of atomic diffusion mechanisms in silicon. Phys. Rev. Lett. 52, 1814 (1984). doi:10.1103/PhysRevLett.52.1814

    Article  ADS  Google Scholar 

  3. Bar-Yam, Y., Joannopoulos, J.D.: Barrier to migration of the silicon self-interstitial. Phys. Rev. Lett. 52, 1129 (1984). doi:10.1103/PhysRevLett.52.1129

    Article  ADS  Google Scholar 

  4. Blöchl, P.E., Smargiassi, E., Car, R., Laks, D.B., Andreoni, W., Pantelides, S.T.: First-principles calculations of self-diffusion constants in silicon. Phys. Rev. Lett. 70, 2435 (1993). doi:10.1103/PhysRevLett.70.2435

    Article  ADS  Google Scholar 

  5. Clark, S.J., Ackland, G.J.: Ab initio calculations of the self-interstitial in silicon. Phys. Rev. B. 56, 47 (1997). doi:10.1103/PhysRevB.56.47

    Article  ADS  Google Scholar 

  6. Sadigh, B., Lenosky, Th.J., Theiss, S.K., Caturla, M.-J., de la Rubia, T.D., Foad, M.A.: Mechanism of boron diffusion in silicon: an ab initio and Kinetic Monte Carlo study. Phys. Rev. Lett. 83, 4341 (1999). doi:10.1103/PhysRevLett.83.4341

    Article  ADS  Google Scholar 

  7. Leung, W.-K., Needs, R.J., Rajagopal, G., Itoh, S., Ihara, S.: Calculations of silicon self-interstitial defects. Phys. Rev. Lett. 83, 2351 (1999). doi:10.1103/PhysRevLett.83.2351

    Article  ADS  Google Scholar 

  8. Windl, W., Bunea, M.M., Stumpf, R., Dunham, S.T., Masquelier, M.P.: First-principles study of boron diffusion in silicon. Phys. Rev. Lett. 83, 4345 (1999). doi:10.1103/PhysRevLett.83.4345

    Article  ADS  Google Scholar 

  9. Jeong, J.-W., Oshiyama, A.: Atomic and electronic structures of a Boron impurity and its diffusion pathways in crystalline Si. Phys. Rev. B. 64, 235204 (2001). doi:10.1103/PhysRevB.64.235204

    Article  ADS  Google Scholar 

  10. Liu, X.-Y., Windl, W., Beardmore, K.M., Masquelier, M.P.: First-principles study of phosphorus diffusion in silicon: interstitial- and vacancy-mediated diffusion mechanisms. Appl. Phys. Lett. 82, 1839 (2003). doi:10.1063/1.1562342

    Article  ADS  Google Scholar 

  11. Al-Mushadani, O.K., Needs, R.J.: Free-energy calculations of intrinsic point defects in silicon. Phys. Rev. B 68, 235205 (2003). doi:10.1103/PhysRevB.68.235205

    Article  ADS  Google Scholar 

  12. Lopez, G.M., Fiorentini, V.: Structure, energetics, and extrinsic levels of small self-interstitial clusters in silicon. Phys. Rev. B 69, 155206 (2004). doi:10.1103/PhysRevB.69.155206

    Article  ADS  Google Scholar 

  13. El-Mellouhi, F., Mousseau, N., Ordejón, P.: Sampling the diffusion paths of a neutral vacancy in silicon with quantum mechanical calculations. Phys. Rev. B 70, 205202 (2004). doi:10.1103/PhysRevB.70.205202

    Article  ADS  Google Scholar 

  14. Jones, R., Briddon, P.R.: The ab initio cluster method and the dynamics of defects in semiconductors. In: Willardson, R.K., Weber, E.R., Stavola, M. (eds.) Identification of Defects in Semiconductors. Semiconductors and Semimetals. Academic Press, San Diego (1998)

    Google Scholar 

  15. Coutinho, J.: Density functional modeling of defects and impurities in silicon materials. In: Yoshida, Y., Langouche, G. (eds.) Defects and Impurities in Silicon Materials: An Introduction to Atomic-Level Silicon Engineering. Springer, Tokyo (2016)

    Google Scholar 

  16. Song, E.G., Kim, E., Lee, Y.H., Hwang, Y.G.: Fully relaxed point defects in crystalline silicon. Phys. Rev. B 48, 1486 (1993). doi:10.1103/PhysRevB.48.1486

    Article  ADS  Google Scholar 

  17. Tang, M., Colombo, L., Zhu, J., de la Rubia, T.D.: Intrinsic point defects in crystalline silicon: tight-binding molecular dynamics studiesof self-diffusion, interstitial-vacancy recombination, and formation volumes. Phys. Rev. B 55, 14279 (1997). doi:10.1103/PhysRevB.55.14279

    Article  ADS  Google Scholar 

  18. Alippi, P., Colombo, L., Ruggerone, P., Sieck, A., Seifert, G., Frauenheim, Th.: Atomic-scale characterization of boron diffusion in silicon. Phys. Rev. B 64, 075207 (2001). doi:10.1103/PhysRevB.64.075207

    Article  ADS  Google Scholar 

  19. Jääskeläinen, A., Colombo, L., Nieminen, R.: Silicon self-diffusion constants by tight-binding molecular dynamics. Phys. Rev. B 64, 233203 (2001). doi:10.1103/PhysRevB.64.233203

    Article  ADS  Google Scholar 

  20. Schober, H.R.: Extended interstitials in silicon and germanium. Phys. Rev. B 39, 13013(R) (1989). doi:10.1103/PhysRevB.39.13013

    Google Scholar 

  21. Maroudas, D., Brown, R.A.: Atomistic calculation of the self-interstitial diffusivity in silicon. Appl. Phys. Lett. 62, 172 (1993). doi:10.1063/1.109361

    Article  ADS  Google Scholar 

  22. Maroudas, D., Brown, R.A.: Calculation of thermodynamic and transport properties of intrinsic point defects in silicon. Phys. Rev. B 47, 15562 (1993). doi:10.1103/PhysRevB.47.15562

    Article  ADS  Google Scholar 

  23. Posselt, M., Gao, F., Zwicker, D.: Atomistic study of the migration of di- and tri-interstitials in silicon. Phys. Rev. B 71, 245202 (2005). doi:10.1103/PhysRevB.71.245202

    Article  ADS  Google Scholar 

  24. Watkins, G.D.: EPR and ENDOR studies of defects in semiconductors. In: Willardson, R.K., Weber, E.R., Stavola, M. (eds.) Identification of Defects in Semiconductors. Semiconductors and Semimetals. Academic Press, San Diego (1998)

    Google Scholar 

  25. Spaeth, J.-M.: Magneto-optical and electrical detection of paramagnetic resonance in semiconductors. In: Willardson, R.K., Weber, E.R., Stavola, M. (eds.) Identification of Defects in Semiconductors. Semiconductors and Semimetals. Academic Press, San Diego (1998)

    Google Scholar 

  26. Weil, J.A., Bolton, J.R.: Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn. Wiley, Hoboken (2007)

    Google Scholar 

  27. Perkowitz, S.: Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy. Elsevier Science, Burlington (2012)

    Google Scholar 

  28. Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023 (1974). doi:10.1063/1.1663719

    Article  ADS  Google Scholar 

  29. Wichert, Th., Recknagel, E.: Perturbed angular correlation. In: Microscopic Methods in Metals. Topics in Current Physics, vol. 40, pp. 317–364. Springer, Berlin/Heidelberg (1986). doi:10.1007/978-3-642-46571-0_11

    Google Scholar 

  30. Siegel, R.W.: Positron annihilation spectroscopy. Ann. Rev. Mater. Sci. 10, 393–425 (1980). doi:10.1146/annurev.ms.10.080180.002141

    Article  ADS  Google Scholar 

  31. Saarinen, K., Hautojärvi, P., Corbel, C.: Positron annihilation spectroscopy of defects in semiconductors. In: Willardson, R.K., Weber, E.R., Stavola, M. (eds.) Identification of Defects in Semiconductors. Semiconductors and Semimetals. Academic Press, San Diego (1998)

    Google Scholar 

  32. Krause-Rehberg, R., Leipner, H.S.: Positron Annihilation in Semiconductors: Defect Studies. Springer, Berlin/Heidelberg (1999)

    Book  Google Scholar 

  33. Greenwood, N.N., Gibb, T.C.: Mössbauer Spectroscopy. Chapman and Hall, London (1971). doi:10.1007/978-94-009-5697-1

    Article  Google Scholar 

  34. Würschum, R., Bauer, W., Maier, K., Seeger, A., Schaefer, H.-E.: Defects in semiconductors after electron irradiation or in high-temperature thermal equilibrium, as studied by positron annihilation. J. Phys.: Condens. Matter 1, SA33–SA48 (1989). doi:10.1088/0953-8984/1/SA/005

    Article  Google Scholar 

  35. Langouche, G., Yoshida, Y.: Nuclear methods to study defects and impurities in Si materials. In: Yoshida, Y., Langouche, G. (eds.) Defects and Impurities in Silicon Materials: An Introduction to Atomic-Level Silicon Engineering. Springer, Tokyo (2016).

    Google Scholar 

  36. Ueki, T., Itsumi, M., Takeda, T.: Octahedral void defects observed in the bulk of Czochralski silicon. Appl. Phys. Lett. 70, 1248 (1997). doi:10.1063/1.118543

    Article  ADS  Google Scholar 

  37. Nishimura, M., Yamaguchi, Y., Nakamura, K., Jablonski, J., Wantanabe, M.: The role of oxygen impurities in the formation of grown-in laser scattering tomography defects in silicon single crystals. In: Claeys, C.L., Rai-Choudhury, P., Watanabe, M., Stallhofer, P., Dawson, H.J. (eds.) High Purity Silicon V, Proceedings Volume 98-13, pp. 188–199. The Electrochemical Society, Pennington (1998)

    Google Scholar 

  38. Abe, T., Kato, Y.: The effects of polishing damage and oxygen concentration on gate oxide integrity in silicon crystals. Jpn. J. Appl. Phys. 32, 1879–1883 (1993). doi:10.1143/JJAP.32.1879

    Article  ADS  Google Scholar 

  39. Sugra, H., Abe, H., Koya, H., Yoshimi, T., Suzuki, I., Yoshioka, H., Kagawa, N.: Proceedings of the 2nd Symposium on Physics and Chemistry of SiO2 and Si-SiO2 Interfaces, vol. 2, p. 279 (1993)

    Google Scholar 

  40. Ammon, W.v., Ehlert, A., Lambert, U., Gräf, D., Brohl, M., Wagner, P.: Gate oxide related bulk properties of oxygen doped floating zone and Czochralski silicon. In: Huff, H.R., Bergholz, W., Sumino, K. (eds.) Semiconductor Silicon/1994: Proceedings of the Seventh International Symposium on Silicon Materials Science and Technology. Electrochemical Society Proceedings vol. 94–10, pp. 136–147, Pennington (1994)

    Google Scholar 

  41. Bracht, H., Stolwijk, N.A., Mehrer, H.: Properties of intrinsic point defects in silicon determined by zinc diffusion experiments under nonequilibrium conditions. Phys. Rev. B 52, 16542–16560 (1995). doi:10.1103/PhysRevB.52.16542

    Article  ADS  Google Scholar 

  42. Edelin, G., Mathiot, D.: A model for the determination of the defect concentrations in III-V compounds. Philos. Mag. B 42, 95–110 (1980). doi:10.1080/01418638008225641

    Article  ADS  Google Scholar 

  43. Tan, T.Y.: Point defect thermal equilibria in GaAs. Mater. Sci. Eng. B 10, 227–239 (1991). doi:10.1016/0921-5107(91)90130-N

    Article  Google Scholar 

  44. Tan, T.Y., You, H.-M., Gösele, U.M.: Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs. Appl. Phys. A 56, pp. 249–258 (1993). doi:10.1007/BF00539483

    Article  ADS  Google Scholar 

  45. More generally, the diffusion flux is proportional to the gradient of the chemical potential (see e.g. [46]). For ideal solid solutions such as doped semiconductors the chemical potential is proportional to the concentration gradient. Accordingly, dopant diffusion in semiconductors is generally described in terms of concentration gradients. On the other hand, in case of e.g. binary diffusion couples the gradient in the chemical potential is considered for the treatment of the interdiffusion process

    Google Scholar 

  46. Mehrer, H.: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer Series in Solid-State Sciences. Springer, Berlin/New York (2007).

    Book  Google Scholar 

  47. Crank, J.: The Mathematics of Diffusion. Oxford Science Publications/Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  48. Philibert, J.M., Atom Movements – Diffusion and Mass Transport in Solids, Hors Collection, EDP Sciences. Editions de Physique, Les Ulis (2012)

    Google Scholar 

  49. Beke, D.L., Landolt, H., Börnstein, R. (eds.): Diffusion in Semiconductors and Non-Metallic Solids. New Series, Group III, vol. 33A. Springer, Berlin (1998)

    Google Scholar 

  50. Schulz, M., Landolt, H., Börnstein, R. (eds.): Impurities and Defects in Group IV Elements, IV-IV and III-V Compounds. New Series, Group III, vol. 41A2, Part α. Springer, Berlin (2002)

    Google Scholar 

  51. Compaan, K., Haven, Y.: Correlation factors for diffusion in solids. Trans. Faraday Soc. 52, 786–801 (1956). doi:10.1039/TF9565200786

    Article  Google Scholar 

  52. Frank, W., Gösele, U., Mehrer, H., Seeger, A.: In: Murch, G.E., Nowick, A.S. (eds.) Diffusion in Crystalline Solids. Academic Press, New York (1984)

    Google Scholar 

  53. Landolt, H., Börnstein, R.: In: Mehrer, H. (ed.) Diffusion in Solids Metals and Alloys, New Series III, vol. 26. Springer, Berlin (1990)

    Google Scholar 

  54. Heumann, Th.: In: Ilschner, B. (ed.) Diffusion in Metallen, Werkstoff-Forschung und -Technik Bd., vol. 10. Springer, Berlin (1992)

    Google Scholar 

  55. Compaan, K., Haven, Y.: Correlation factors for diffusion in solids. Part 2. – indirect interstitial mechanism. Trans. Faraday Soc. 54, 1498–1508 (1958). doi:10.1039/TF9585401498

    Google Scholar 

  56. Posselt, M., Gao, F., Bracht, H.: Correlation between self-diffusion in Si and the migration mechanisms of vacancies and self-interstitials: an atomistic study. Phys. Rev. B 78, 035208 (2008). doi:10.1103/PhysRevB.78.035208

    Article  ADS  Google Scholar 

  57. Chen, R., Dunham, S.T.: Correlation factors for interstitial-mediated self-diffusion in the diamond lattice: kinetic lattice Monte Carlo approach. Phys. Rev. B 83, 134124, (2011). doi:10.1103/PhysRevB.83.134124

    Article  ADS  Google Scholar 

  58. Bracht, H., Haller, E.E., Clark-Phelps, R.: Silicon self-diffusion in isotope heterostructures. Phys. Rev. Lett. 81, 393 (1998). doi:10.1103/PhysRevLett.81.393

    Article  ADS  Google Scholar 

  59. Ural, A., Griffin, P.B., Plummer, J.D.: Self-diffusion in silicon: similarity between the properties of native point defects. Phys. Rev. Lett. 83, 3454 (1999). doi:10.1103/PhysRevLett.83.3454

    Article  ADS  Google Scholar 

  60. Bracht, H., Haller, E.E.: Comment on “Self-Diffusion in silicon: similarity between the properties of native point defects”. Phys. Rev. Lett. 85, 4835 (2000). doi:10.1103/PhysRevLett.85.4835

    Article  ADS  Google Scholar 

  61. Ural, A., Griffin, P.B., Plummer, J.D.: Ural, griffin, and plummer reply. Phys. Rev. Lett. 85, 4836 (2000). doi:10.1103/PhysRevLett.85.4836

    Article  ADS  Google Scholar 

  62. Aid, S.R., Sakaguchi, T., Toyonaga, K., Nakabayashi, Y., Matumoto, S., Sakuraba, M., Shimamune, Y., Hashiba, Y., Murota, J., Wada, K., Abe, T.: Si self-diffusivity using isotopically pure30Si epitaxial layers. Mater. Sci. Eng. B 114–115, 330 (2004). doi:10.1016/j.mseb.2004.07.055

    Article  Google Scholar 

  63. Shimizu, Y., Uematsu, M., Itoh, K.M.: Experimental evidence of the vacancy-mediated silicon self-diffusion in single-crystalline silicon. Phys. Rev. Lett. 98, 095901 (2007). doi:10.1103/PhysRevLett.98.095901

    Article  ADS  Google Scholar 

  64. Bracht, H., Silvestri, H.H., Sharp, I.D., Haller, E.E.: Self- and foreign-atom diffusion in semiconductor isotope heterostructures. II. Experimental results for silicon. Phys. Rev. B 75, 035211 (2007). doi:10.1103/PhysRevB.75.035211

    Google Scholar 

  65. Kube, R., Bracht, H., Hüger, E., Schmidt, H., Lundsgaard Hansen, J., Nylandsted Larsen, A., Ager III, J.W., Haller, E.E., Geue, T., Stahn, J.: Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions. Phys. Rev. B. 88, 085206 (2013). doi:10.1103/PhysRevB.88.085206

    Article  ADS  Google Scholar 

  66. Suezawa, M., Iijima, Y., Yonenaga, I.: Comment on “Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions”. Phys. Rev. B 90, 117201 (2014). doi:10.1103/PhysRevB.90.117201

    Article  ADS  Google Scholar 

  67. Kube, R., Bracht, H., Hüger, E., Schmidt, H., Lundsgaard Hansen, J., Nylandsted Larsen, A., Ager III, J.W., Haller, E.E., Geue, T., Stahn, J., Uematsu, M., Itoh, K.M.: Reply to “Comment on ‘Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions”’. Phys. Rev. B 90, 117202 (2014). doi:10.1103/PhysRevB.90.117202

    Article  ADS  Google Scholar 

  68. Fahey, P.M., Griffin, P.B., Plummer, J.D.: Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289 (1989). doi:10.1103/RevModPhys.61.289

    Article  ADS  Google Scholar 

  69. Watkins, G.D., Corbett, J.W.: Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E center. Phys. Rev. 134, A1359 (1964). doi:10.1103/PhysRev.134.A1359

    Article  ADS  Google Scholar 

  70. Manning, J.R.: Correlation factors for impurity diffusion. bcc, Diamond, and fcc Structures. Phys. Rev. 136, A1758 (1964). doi:10.1103/PhysRev.136.A1758

    Google Scholar 

  71. Hu, S.M.: On interaction potential, correlation factor, vacancy mobility, and activation energy of impurity diffusion in diamond lattice. Phys. Stat. Sol. B 60, 595 (1973). doi:10.1002/pssb.2220600215

    Article  ADS  Google Scholar 

  72. Dunham, S.T., Wu, C.D.: Atomistic models of vacancy-mediated diffusion in silicon. J. Appl. Phys. 78, 2362 (1995). doi:10.1063/1.360156

    Article  ADS  Google Scholar 

  73. Brotzmann, S., Bracht, H.: Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium. J. Appl. Phys. 103, 033508 (2008). doi:10.1063/1.2837103

    Article  ADS  Google Scholar 

  74. Chroneos, A., Bracht, H., Grimes, R.W., Uberuaga, B.P.: Vacancy-mediated dopant diffusion activation enthalpies for germanium. Appl. Phys. Lett. 92, 172103 (2008). doi:10.1063/1.2918842

    Article  ADS  Google Scholar 

  75. Brotzmann, S., Bracht, H., Lundsgaard Hansen, J., Nylandsted Larsen, A., Simoen, E., Haller, E.E., Christensen, J.S., Werner, P.: Diffusion and defect reactions between donors, C, and vacancies in Ge. I. Experimental results. Phys. Rev. B 77, 235207 (2008). doi:10.1103/PhysRevB.77.235207

    Article  Google Scholar 

  76. Bracht, H.: Self- and foreign-atom diffusion in semiconductor isotope heterostructures. I. Continuum theoretical calculations. Phys. Rev. B 75, 035210 (2007). doi:10.1103/PhysRevB.75.035210

    Google Scholar 

  77. Frank, F.C., Turnbull, D.: Mechanism of diffusion of copper in germanium. Phys. Rev. 104, 617 (1956). doi:10.1103/PhysRev.104.617

    Article  ADS  Google Scholar 

  78. Stolwijk, N.A., Frank, W., Hölzl, J., Pearton, S.J., Haller, E.E.: Diffusion and solubility of copper in germanium. Appl. Phys. 57, 5211 (1985). doi: 10.1063/1.335259

    Article  Google Scholar 

  79. Bracht, H.: Copper related diffusion phenomena in germanium and silicon. Mater. Sci. Semicond. Process. 7, 113 (2004). doi:10.1016/j.mssp.2004.06.001

    Article  Google Scholar 

  80. Equation (4) in Ref. [79] should read \(D_{\mathrm{Cu(1)}}^{\mathrm{eff}} = 7.8 \times 10^{-5}\exp \left (-\frac{0.084\,\mathrm{eV}} {k_{\mathrm{B}}T} \right )\) cm2s−1

    Google Scholar 

  81. Bracht, H., Stolwijk, N.A., Mehrer, H.: Diffusion and solubility of copper, silver, and gold in germanium. Phys. Rev. B 43, 14465 (1991). doi:10.1103/PhysRevB.43.14465

    Article  ADS  Google Scholar 

  82. Gösele, U., Frank, W., Seeger, A.: Mechanism and kinetics of the diffusion of gold in silicon. Appl. Phys. 23, 361 (1980). doi:10.1007/BF00903217

    Article  ADS  Google Scholar 

  83. Stolwijk, N.A., Schuster, B., Hölzl, J., Mehrer, H., Frank, W.: Diffusion and solubility of gold in silicon. Physica B+C 116, 335 (1983). doi:10.1016/0378-4363(83)90271-1

    Google Scholar 

  84. Morehead, F., Stolwijk, N.A., Meyberg, W., Gösele, U.: Self-interstitial and vacancy contributions to silicon self-diffusion determined from the diffusion of gold in silicon. Appl. Phys. Lett. 42, 690 (1983). doi:10.1063/1.94074

    Article  ADS  Google Scholar 

  85. Stolwijk, N.A., Schuster, B., Hölzl, J.: Diffusion of gold in silicon studied by means of neutron-activation analysis and spreading-resistance measurements. Appl. Phys. A 33, 133 (1984). doi:10.1007/BF00617619

    Article  ADS  Google Scholar 

  86. Stolwijk, N.A., Hölzl, J., Frank, W., Weber, E.R., Mehrer, H.: Diffusion of gold in dislocation-free or highly dislocated silicon measured by the spreading-resistance technique. Appl. Phys. A. 39, 37 (1986). doi:10.1007/BF01177162

    Article  ADS  Google Scholar 

  87. Hauber, J., Stolwijk, N.A., Tapfer, L., Mehrer, H., Frank, W.: U- and W-shaped diffusion profiles of gold in silicon. J. Phys. C; Solid State Phys. 19, 5817 (1986). doi:10.1088/0022-3719/19/29/007

    Article  ADS  Google Scholar 

  88. Stolwijk, N.A., Hölzl, J., Frank, W., Hauber, J., Mehrer, H.: Decoration of defects in silicon with gold, and related subjects. Phys. Stat. Sol. (A) 104, 225 (1987). doi:10.1002/pssa.2211040117

    Google Scholar 

  89. Föll, H., Gösele, U., Kolbesen, B.O.: Microdefects in silicon and their relation to point defects. J. Cryst. Growth 52, 907 (1981). doi:10.1016/0022-0248(81)90397-3

    Article  ADS  Google Scholar 

  90. Meyberg, W., Frank, W., Seeger, A., Peretti, H.A., Mondino, M.A.: The migration of interstitials to immobile vacancies and dislocations, with application to plastically deformed tantalum. Cryst. Lattice Defects Amorph. Mater. 10, 1 (1983)

    Google Scholar 

  91. Bracht, H., Overhof, H.: Kinetics of interstitial-substitutional exchange of Zn, Pt, and Au in Si: experimental results and theoretical calculations. Phys. Stat. Sol. (A) 158, 47 (1996). doi:10.1002/pssa.2211580107

    Google Scholar 

  92. Perret, M., Stolwijk, N.A., Cohausz, L.: Kick-out diffusion of zinc in silicon at 1262 K. J. Phys.: Condens. Matter 1, 6347 (1989). doi:10.1088/0953-8984/1/36/004

    Article  ADS  Google Scholar 

  93. Grünebaum, D., Czekalla, Th., Stolwijk, N.A., Mehrer, H., Yonenaga, I., Sumino, K.: Diffusion and solubility of zinc in dislocation-free and plastically deformed silicon crystals. Appl. Phys. A 53, 65 (1991). doi:10.1007/BF00323437

    Article  ADS  Google Scholar 

  94. Bracht, H., Stolwijk, N.A., Yonenage, I., Mehrer, H.: Interstitial-substitutional diffusion kinetics and dislocation-induced trap** of zinc in plastically deformed silicon. Phys. Stat. Sol. (A) 137, 499 (1993). doi:10.1002/pssa.2211370220

    Google Scholar 

  95. Hauber, J., Frank, W., Stolwijk, N.A.: Diffusion and solubility of platinum in silicon. Mater. Sci. Forum 38–41, 707 (1989). doi:10.4028/www.scientific.net/MSF.38-41.707

    Article  Google Scholar 

  96. Zimmermann, H., Ryssel, H.: Observation of inverse U-shaped profiles after platinum diffusion in silicon. Appl. Phys. Lett. 59, 1209 (1991). doi:10.1063/1.105505

    Article  ADS  Google Scholar 

  97. Zimmermann, H., Ryssel, H.: Gold and platinum diffusion: the key to the understanding of intrinsic point defect behavior in silicon. Appl. Phys. A 55, 121 (1992). doi:10.1007/BF00334210

    Article  ADS  Google Scholar 

  98. Zimmermann, H., Ryssel, H.: The modeling of platinum diffusion in silicon under non-equilibrium conditions. J. Electrochem. Soc. 139, 256 (1992). doi:10.1149/1.2069180

    Article  ADS  Google Scholar 

  99. Lerch, W., Stolwijk, N.A., Mehrer, H., Poisson, Ch.: Diffusion of platinum into dislocated and non-dislocated silicon. Semicond. Sci. Technol. 10, 1257 (1995). doi:10.1088/0268-1242/10/9/009

    Article  ADS  Google Scholar 

  100. Mantovani, S., Nava, F., Nobili, S., Ottaviani, G.: In-diffusion of Pt in Si from the PtSi/Si interface. Phys. Rev. B 33, 5536 (1986). doi:10.1103/PhysRevB.33.5536

    Article  ADS  Google Scholar 

  101. Giese, A., Bracht, H., Stolwijk, N.A., Walton, J.T.: Out-diffusion of Zn from Si: a method to study vacancy properties in Si. J. Appl. Phys. 83, 8062 (1998). doi:10.1063/1.367900

    Article  ADS  Google Scholar 

  102. Giese, A., Bracht, H., Stolwijk, N.A., Baither, D.: Microscopic defects in silicon induced by zinc out-diffusion. Mater. Sci. Eng. B 71, 160 (2000). doi:10.1016/S0921-5107(99)00367-0

    Article  Google Scholar 

  103. Gösele, U., Frank, W., Seeger, A.: An entropy barrier against vacancy-interstitial recombination in silicon. Solid State Commun. 45, 31 (1983). doi:10.1016/0038-1098(83)90878-5

    Article  ADS  Google Scholar 

  104. Cowern, N.E.B., Janssen, K.T.F., van de Walle, G.F.A., Gravesteijn, D.J.: Impurity diffusion via an intermediate species: the B-Si system. Phys. Rev. Lett. 65, 2434 (1990). doi:10.1103/PhysRevLett.65.2434

    Article  ADS  Google Scholar 

  105. Cowern, N.E.B., van de Walle, G.F.A., Gravesteijn, D.J., Vriezema, C.J.: Experiments on atomic-scale mechanisms of diffusion. Phys. Rev. Lett. 67, 212 (1991). doi:10.1103/PhysRevLett.67.212

    Article  ADS  Google Scholar 

  106. Gossmann, H.-J., Gilmer, G.H., Rafferty, C.S., Unterwald, F.C., Boone, T., Poate, J.M., Luftman, H.S., Frank, W.: Determination of Si self-interstitial diffusivities from the oxidation-enhanced diffusion in B do**-superlattices: the influence of the marker layers. J. Appl. Phys. 77, 1948 (1995). doi:10.1063/1.358828

    Article  ADS  Google Scholar 

  107. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraíz, M., Poate, J.M., Luftman, H.S., Haynes, T.E.: Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon. J. Appl. Phys. 81, 6031 (1997). doi:10.1063/1.364452

    Article  ADS  Google Scholar 

  108. Gossmann, H.-J.: Dopants and intrinsic point-defects during Si device processing. In: Huff, H.R., Gösele, U., Tsuya, H. (eds.) Silicon Materials Science and Technology. Electrochemical Society Proceedings, vol. 98-1, p. 884, Pennington (1998)

    Google Scholar 

  109. Ural, A., Griffin, P.B., Plummer, J.D.: Fractional contributions of microscopic diffusion mechanisms for common dopants and self-diffusion in silicon. J. Appl. Phys. 85, 6440 (1999). doi:10.1063/1.370285

    Article  ADS  Google Scholar 

  110. Cowern, N., Rafferty, C.: Enhanced diffusion in silicon processing. MRS Bull. 25, 39 (2000). doi:10.1557/mrs2000.97

    Article  ADS  Google Scholar 

  111. Bracht, H., Stolwijk, N.A., Mehrer, H., Yonenaga, I.: Short-time diffusion of zinc in silicon for the study of intrinsic point defects. Appl. Phys. Lett. 59, 3559 (1991). doi:10.1063/1.106393

    Article  ADS  Google Scholar 

  112. Stolwijk, N.A., Grünebaum, D., Perret, M., Brohl, M.: Zinc and sulfur in silicon, experimental evidence for kick-out diffusion behavior. Mater. Sci. Forum 38–41, 701 (1989). doi:10.4028/www.scientific.net/MSF.38-41.701

    Article  Google Scholar 

  113. Rollert, F., Stolwijk, N.A., Mehrer, H.: Diffusion of sulfur-35 into silicon using an elemental vapor source. Appl. Phys. Lett. 63, 506 (1993). doi:10.1063/1.109987

    Article  ADS  Google Scholar 

  114. Shockley, W., Moll, J.L.: Solubility of Flaws in Heavily-Doped Semiconductors. Phys. Rev. 119, 1480 (1960). doi:10.1103/PhysRev.119.1480

    Article  ADS  Google Scholar 

  115. Gösele, U.M.: Fast diffusion in semiconductors. Ann. Rev. Mater. Sci. 18, 257 (1988). doi:10.1146/annurev.ms.18.080188.001353

    Article  ADS  Google Scholar 

  116. Bracht, H., Stolwijk, N.A., Laube, M., Pensl, G.: Diffusion of boron in silicon carbide: evidence for the kick-out mechanism. Appl. Phys. Lett. 77, 3188 (2000). doi:10.1063/1.1325390

    Article  ADS  Google Scholar 

  117. Rüschenschmidt, K., Bracht, H., Laube, M., Stolwijk, N.A., Pensl, G.: Diffusion of boron in silicon carbide. Physica B 308–310, 734 (2001). doi:10.1016/S0921-4526(01)00889-4

    Article  ADS  Google Scholar 

  118. Rüschenschmidt, K., Bracht, H., Stolwijk, N.A., Laube, M., Pensl, G., Brandes, G.R.: Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion. J. Appl. Phys. 96, 1458 (2004). doi:10.1063/1.1766101

    Article  ADS  Google Scholar 

  119. Yu, S., Tan, T.Y., Gösele, U.: Diffusion mechanism of chromium in GaAs. J. Appl. Phys. 70, 4827 (1991). doi:10.1063/1.349049

    Article  ADS  Google Scholar 

  120. Uematsu, M., Wada, K., Gösele, U.: Non-equilibrium point defect phenomena influencing beryllium and zinc diffusion in GaAs and related compounds. Appl. Phys. A 55, 301 (1992). doi:10.1007/BF00324076

    Article  ADS  Google Scholar 

  121. Uematsu, M., Werner, P., Schultz, M., Tan, T.Y., Gösele, U.M.: Sulfur diffusion and the interstitial contribution to arsenic self-diffusion in GaAs. Appl. Phys. Lett. 67, 2863 (1995). doi:10.1063/1.114810

    Article  ADS  Google Scholar 

  122. Tan, T.Y.: Point defects and diffusion mechanisms pertinent to the Ga sublattice of GaAs. Mater. Chem. Phys. 40, 245 (1995). doi:10.1016/0254-0584(95)01488-8

    Article  Google Scholar 

  123. Bösker, G., Stolwijk, N.A., Thordson, J.V., Södervall, U., Andersson, T.G.: Diffusion of nitrogen from a buried do** layer in gallium arsenide revealing the prominent role of as interstitials. Phys. Rev. Lett. 81, 3443 (1998). doi:10.1103/PhysRevLett.81.3443

    Article  ADS  Google Scholar 

  124. Bracht, H., Brotzmann, S.: Zinc diffusion in gallium arsenide and the properties of gallium interstitials. Phys. Rev. B 71, 115216 (2005). doi:10.1103/PhysRevB.71.115216

    Article  ADS  Google Scholar 

  125. Sunder, K., Bracht, H., Nicols, S.P., Haller, E.E.: Zinc and gallium diffusion in gallium antimonide. Phys. Rev. B 75, 245210 (2007). doi:10.1103/PhysRevB.75.245210

    Article  ADS  Google Scholar 

  126. Ural, A., Griffin, P.B., Plummer, J.D.: Atomic-scale diffusion mechanisms via intermediate species. Phys. Rev. B 65, 134303 (2002). doi:10.1103/PhysRevB.65.134303

    Article  ADS  Google Scholar 

  127. Mizuo, S., Higuchi, H.: Retardation of Sb Diffusion in Si during Thermal Oxidation. Jpn. J. Appl. Phys. 20, 739 (1981). doi:10.1143/JJAP.20.739

    Article  ADS  Google Scholar 

  128. Mizuo, S., Higuchi, H.: Effects of Oxidation on Aluminum Diffusion in Silicon. Jpn. J. Appl. Phys. 21, 56 (1982). doi:10.1143/JJAP.21.56

    Article  ADS  Google Scholar 

  129. Mizuo, S., Kusaka, T., Shintani, A., Nanba, M., Higuchi, H.: Effect of Si and SiO2 thermal nitridation on impurity diffusion and oxidation induced stacking fault size in Si. J. Appl. Phys. 54, 3860 (1983). doi:10.1063/1.332611

    Article  ADS  Google Scholar 

  130. Matsumoto, S., Ishikawa, Y., Niimi, T.: Oxidation enhanced and concentration dependent diffusions of dopants in silicon. J. Appl. Phys. 54, 5049 (1983). doi:10.1063/1.332776

    Article  ADS  Google Scholar 

  131. Ishikawa, Y., Tomisato, M., Honma, H., Matsumoto, S., Niimi, T.: The retarded diffusion of arsenic in silicon by thermal oxidation in extrinsic conditions. J. Electrochem. Soc. 130, 2109 (1983). doi:10.1149/1.2119532

    Article  ADS  Google Scholar 

  132. Fahey, P., Barbuscia, G., Moslehi, M., Dutton, R.W.: Kinetics of thermal nitridation processes in the study of dopant diffusion mechanisms in silicon. Appl. Phys. Lett. 46, 784 (1985). doi:10.1063/1.95909

    Article  ADS  Google Scholar 

  133. Miyake, M.: Oxidation-enhanced diffusion of ion-implanted boron in silicon in extrinsic conditions. J. Appl. Phys. 57, 1861 (1985). doi:10.1063/1.334416

    Article  ADS  Google Scholar 

  134. Ishikawa, Y., Nakamichi, I., Matsumoto, S., Niimi, T.: The effect of thermal oxidation of silicon on boron diffusion in extrinsic conditions. Jpn. J. Appl. Phys. 26, 1602 (1987). doi:10.1143/JJAP.26.1602

    Article  ADS  Google Scholar 

  135. Giles, M.D.: Extrinsic transient diffusion in silicon. Appl. Phys. Lett. 58, 2399 (1991). doi:10.1063/1.104883

    Article  ADS  Google Scholar 

  136. Gossmann, H.-J., Haynes, T.E., Stolk, P.A., Jacobson, D.C., Gilmer, G.H., Poate, J.M., Luftman, H.S., Mogi, T.K., Thompson, M.O.: The interstitial fraction of diffusivity of common dopants in Si. Appl. Phys. Lett. 71, 3862 (1997). doi:10.1063/1.120527

    Article  ADS  Google Scholar 

  137. Sharp, I.D., Bracht, H.A., Silvestri, H.H., Nicols, S.P., Beeman, J.W., Hansen, J., Nylandsted Larsen, A., Haller, E.E.: Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures. Mater. Res. Soc. Symp. Proc. 719, F13.11 (2002). doi:10.1557/PROC-719-F13.11

    Article  Google Scholar 

  138. Silvestri, H.H., Sharp, I.D., Bracht, H.A., Nicols, S.P., Beeman, J.W., Hansen, J., Nylandsted Larsen, A., Haller, E.E.: Dopant and Self-Diffusion in Extrinsic n-Type Silicon Isotopically Controlled Heterostructures. Mater. Res. Soc. Symp. Proc. 719, F13.10 (2002). doi:10.1557/PROC-719-F13.10

    Article  Google Scholar 

  139. Silvestri, H.H., Bracht, H., Sharp, I.D., Lundsgaard Hansen, J., Nylandsted Larsen, A., Haller, E.E.: Simultaneous phosphorus and Si self-diffusion in extrinsic, isotopically controlled silicon heterostructures. Mater. Res. Soc. Symp. Proc. 810, C3.3. (2004) C3.3. doi:10.1557/PROC-810-C3.3

    Google Scholar 

  140. Bracht, H., Silvestri, H.H., Haller, E.E.: Advanced diffusion studies with isotopically controlled materials. Solid State Commun. 133, 727 (2005). doi:10.1016/j.ssc.2004.12.024

    Article  ADS  Google Scholar 

  141. Bracht, H., Diffusion mediated by do** and radiation-induced point defects. Physica B 376–377, 11 (2006). doi:10.1016/j.physb.2005.12.006

    Article  ADS  Google Scholar 

  142. Bracht, H., Rodriguez Schachtrup, A., Yonenaga, I.: Segregation of gold at dislocations confirmed by gold diffusion into highly dislocated silicon. Mater. Sci. Forum 258–263, 1783 (1997)

    Article  Google Scholar 

  143. Rodriguez, A., Bracht, H., Yonenaga, I.: Impact of high B concentrations and high dislocation densities on Au diffusion in Si. J. Appl. Phys. 95, 7841 (2004). doi:10.1063/1.1751235

    Article  ADS  Google Scholar 

  144. Yoshida, M., Arai, E., Nakamura, H., Terunuma, Y.: Excess vacancy generation mechanism at phosphorus diffusion into silicon. J. Appl. Phys. 45, 1498 (1974). doi:10.1063/1.1663450

    Article  ADS  Google Scholar 

  145. Yoshida, M.: Numerical solution of phosphorus diffusion equation in silicon. Jpn. J. Appl. Phys. 18, 479 (1979). doi:10.1143/JJAP.18.479

    Article  ADS  Google Scholar 

  146. Uematsu, M.: Simulation of boron, phosphorus, and arsenic diffusion in silicon based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism. J. Appl. Phys. 82, 2228 (1997). doi:10.1063/1.366030

    Article  ADS  Google Scholar 

  147. Mirabella, S., De Salvador, D., Napolitani, E., Bruno, E., Priolo, F.: Mechanisms of boron diffusion in silicon and germanium. J. Appl. Phys. 113, 031101 (2013). doi:10.1063/1.4763353

    Article  ADS  Google Scholar 

  148. Masters, B.J., Fairfield, J.M.: Arsenic isoconcentration diffusion studies in silicon. J. Appl. Phys. 40, 2390 (1969). doi:10.1063/1.1658001

    Article  ADS  Google Scholar 

  149. Yoshida, M., Tanaka, S.: Simulation of phosphorus diffusion profiles with different phosphorus surface concentration at the same diffusion temperature in silicon. Jpn. J. Appl. Phys. 41, 5493 (2002). doi:10.1143/JJAP.41.5493

    Article  ADS  Google Scholar 

  150. Makris, J.S., Masters, B.J.: Phosphorus isoconcentration diffusion studies in silicon. J. Electrochem. Soc. 120, 1252 (1973). doi:10.1149/1.2403672

    Article  ADS  Google Scholar 

  151. Fair, R.B., Tsai, J.C.C.: A Quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect. J. Electrochem. Soc. 124, 1107 (1977). doi:10.1149/1.2133492

    Article  ADS  Google Scholar 

  152. Tan, T.Y., Gösele, U.: Point defects, diffusion processes, and swirl defect formation in silicon. Appl. Phys. A 37, 1 (1985). doi:10.1007/BF00617863

    Article  ADS  Google Scholar 

  153. Ager III, J.W., Beeman, J.W., Hansen, W.L., Haller, E.E., Sharp, I.D., Liao, C., Yang, A., Thewalt, M.L.W., Riemann, H.: High-purity, isotopically enriched bulk silicon. J. Electrochem. Soc. 152, G448 (2005). doi:10.1149/1.1901674

    Article  Google Scholar 

  154. see International Technology Roadmap for Semiconductors. http://www.itrs.net

  155. Thewalt, M.L.W.: Spectroscopy of excitons and shallow impurities in isotopically enriched silicon-electronic properties beyond the virtual crystal approximation. Solid State Commun. 133, 715 (2005). doi:10.1016/j.ssc.2004.12.023

    Article  ADS  Google Scholar 

  156. Steger, M., Yang, A., Sekiguchi, T., Saeedi, K., Thewalt, M.L.W., Henry, M.O., Johnston, K., Riemann, H., Abrosimov, N.V., Churbanov, M.F., Gusev, A.V., Kaliteevskii, A.K., Godisov, O.N., Becker, P., Pohl, H.-J.: Photoluminescence of deep defects involving transition metals in Si: new insights from highly enriched 28Si. J. Appl. Phys. 110, 081301 (2011). doi:10.1063/1.3651774

    Article  ADS  Google Scholar 

  157. Gleiter, H.: Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1 (2000). doi:10.1016/S1359-6454(99)00285-2

    Article  ADS  Google Scholar 

  158. Gleiter, H., Weissmüller, J., Wollersheim, O., Würschum, R.: Nanocrystalline materials: a way to solids with tunable electronic structures and properties. Acta mater. 49, 737 (2001). doi:10.1016/S1359-6454(00)00221-4

    Article  ADS  Google Scholar 

  159. Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.-M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225 (2010). doi:10.1038/nnano.2010.15

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Bracht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Bracht, H. (2015). Diffusion and Point Defects in Silicon Materials. In: Yoshida, Y., Langouche, G. (eds) Defects and Impurities in Silicon Materials. Lecture Notes in Physics, vol 916. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55800-2_1

Download citation

Publish with us

Policies and ethics

Navigation