Log in

Oxide Reduction in Advanced Metal Stacks for Microelectronic Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Aluminum and copper are widely used for microelectronic interconnect applications. Interfacial oxides can cause device performance degradation and failure by significantly increasing electrical resistance. Interfacial oxide layers found in Al/Ta and Ta/Cu metal stacks were studied using Transmission Electron Microscopy (TEM) combined with Energy Dispersive Spectroscopy (EDS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The analysis indicates that the observed interfacial oxide layers, Al2O3 and mainly Ta2O5, result from spontaneous reductions of Ta oxide and Cu oxide, respectively. Thermodynamics enables interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. M. Grovenor, Microelectronic Materials (IOP Publishing, Philadelphia, PA, 1989) p. 239.

  2. S. P. Murarka, M. C. Peckerar, Electronic Materials: Science and Technology (Academic Press, San Diego, CA, 1989) p. 284.

  3. L. M. Koschier, S. R. Wenham, in Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000 (IEEE - Piscataway, NJ, USA, 2000), p. 407.

  4. M. A. Taubenblatt and C.R. Helms, J. Appl. Phys. 53(9) 6308(1982).

  5. M. Liehr, F. K. LeGoues, G. W. Rubloff, P. S. Ho, J. Vac. Sci. Technol. A 3 (3) 983 (1985).

  6. T. Ohwaki, K. Aoki, T. Yoshida, S. Hashimoto, Y. Mitsushima, Y. Taha, Surface Science, 496, 433 (1999).

    Google Scholar 

  7. Ch. Laurent, Ch. Blaszczyk, M. Brieu, A. Rousset, Nanostructured Materials 6 317(1995).

  8. Yu. V. Naidich, Prog. Surf. Membrane Sci., 14, 353 (1981).

    Article  CAS  Google Scholar 

  9. D. M. Lipkin, J. N. Israelachvili, and D. R. Clarke, Philosophical Magazine A, 76, 715 (1997).

    Article  CAS  Google Scholar 

  10. U. Diebold, J-M Pan, and T. E. Madey, Surf. Sci., 333, 845 (1995).

    Article  Google Scholar 

  11. A. A. Volinsky, “A Comparison Study of Ti/GaAs Ti/Si Fracture, Mechanics of Thin Films and Other Small Structures Symposium”, presented at the 14th U.S. National Congress of Theoretical and Applied Mechanics, Blacksburg, Virginia, (2002) (unplublished).

  12. G. Cliff, and G. Lorimore, Journal of Microscopy, 103 203 (1975).

    Article  Google Scholar 

  13. D. Joy in Principles of Analytical Electron Microscopy, edited by D. Joy, A. Romig, Jr., and J. Goldstein (Plenum Press, New York and London, 1986), p. 155.

  14. B. Vincent Crist in Monochromatic XPS Spectra: The Elements and Native Oxides, (Wiley, Chichester, England, 2000) p. 478.

  15. Himpsel, et al., Phys. Rev. B, 30 (12), 7236 (1984).

  16. N. N. Greenwood & A. Earnshaw in Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997), p. 981.

  17. L. F. Epstein in Ceramic Age, (April 1954) 37.

  18. R. Egerton in Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York and London, 1996), p. 280.

  19. C. Ahn and O. Krinavek, in EELS Atlas (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, W., Volinsky, A.A., Werho, D. et al. Oxide Reduction in Advanced Metal Stacks for Microelectronic Applications. MRS Online Proceedings Library 786, 633 (2003). https://doi.org/10.1557/PROC-786-E6.33

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-786-E6.33

Navigation