Log in

Effect of Al2O3 layer thickness on leakage current and dielectric properties of atomic layer deposited Al2O3/TiO2/Al2O3 nano-stack

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to develop an alternate high-k and low-loss dielectric material for high density energy storage and gate oxide applications and to address the leakage current issues in single layer oxide thin films, nano-stacked devices with the active oxide layer sandwiched between higher bandgap barrier layers have recently been extensively explored. Here, we report the fabrication of Al2O3/TiO2 (20 nm)/Al2O3 (ATA) nano-stacks using an optimized atomic layer deposition technique, where the effect of the Al2O3 barrier layer thickness on leakage and dielectric properties was thoroughly explored. The high dielectric loss (> 1) and leakage current values (> 10−4 A/cm2) exhibited by ~ 20 nm TiO2 thin film was reduced significantly by encapsulating with Al2O3 barrier layer. Introducing barrier layer thickness from 1 to 5 nm, the leakage paths are substantially reduced and the charge carriers are effectively trapped at the interfaces, leading to a significant improvement in leakage current density (reduction from ~ 7.47 × 10−7 to 1.21 × 10−9 A/cm2 at 1 V applied bias), breakdown field (increase from 0.8 to 1.75 MV/cm) and dielectric loss (reduction from 0.1 to 0.06). Furthermore, the capacitance density of a particular ATA structure was found to be invariant with applied bias voltage (− 1 V to + 1 V) and frequency (10 kHz to 1 MHz), demonstrating its potential in various high frequency capacitive circuit applications. Notably, the ATA structure having barrier layer thickness of ~ 1 nm, demonstrated a significantly high capacitance density (~ 13.2 fF/µm2), low dielectric loss (~ 0.1) and low leakage current density (~ 7.47 × 10−7 A/cm2 @1 V bias), making this ATA stack a promising material for high-density energy storage and gate dielectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data underlying this article are available in the article. The datasets generated during and/or analysed during the current study can be made available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. J.R. Miller, P. Simon, Science 321, 651–652 (2008)

    Article  CAS  Google Scholar 

  2. B. Kang, G. Ceder, Nature 458, 190–193 (2009)

    Article  CAS  Google Scholar 

  3. B. Zhu, X. Wu, W.-J. Liu, S.-J. Ding, D.W. Zhang, Z. Fan, Nanoscale Res. Lett. 14(1), 1–6 (2019)

    Article  Google Scholar 

  4. C.H. Chen, C.S. Change, C.P. Chao, J.F. Kuan, C.L. Chang, IEEE International Electron Devices Meeting 2003, Washington, DC, pp. 2.5.1–2.5.4 (2003).

  5. The International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, 2022). http://www.itrs2.net/2022-itrs.html for ITRS Roadmap (2022)

  6. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243–5275 (2001)

    Article  CAS  Google Scholar 

  7. J. Robertson, Rep. Prog. Phys. 69, 327–396 (2006)

    Article  CAS  Google Scholar 

  8. W. Li, O. Auciello, R.N. Premnath, B. Kabius, Appl. Phys. Lett. 96, 162907 (2010)

    Article  Google Scholar 

  9. C.H. Cheng, S.H. Lin, K.Y. Jhou, C.P. Chou, F.S. Yeh, J. Hu, M. Hwang, T. Arikado, S.P. McAlister, IEEE Electron Device Lett. 29, 845 (2008)

    Article  CAS  Google Scholar 

  10. M.T. Yu, K.Y. Chen, Y.H. Chen, RSC Adv. 5, 13550–13554 (2015)

    Article  CAS  Google Scholar 

  11. J.H. Choi, Y. Mao, J.P. Chang, Mater. Sci. Eng. R Rep. 72, 97–136 (2011)

    Article  Google Scholar 

  12. H.M. Kwon, I.S. Han, S.U. Park, J.D. Bok, Y.J. Jung, H.S. Shin, C.Y. Kang, B.H. Lee, R. Jammy, G.W. Lee, H.D. Lee, Jpn. J. Appl. Phys. 50, 04DD02 (2011)

    Article  Google Scholar 

  13. T. Bertaud, C. Bermond, S. Blonkowski, C. Vallée, T. Lacrevaz, A. Farcy, M. Gros-Jean, B. Fléchet, IEEE Trans. Compon. Packag. Manuf. Technol. 2(3), 502–509 (2012)

    Article  CAS  Google Scholar 

  14. S. Kumar, H. Kumar, S. Vura, A.S. Pratiyush, V.S. Charan, S.B. Dolmanan, S. Tripathy, R. Muralidharan, D.N. Nath, IEEE Trans. Electron Devices 66(3), 1230–1235 (2019)

    Article  CAS  Google Scholar 

  15. P.S. Padhi, S.K. Rai, H. Srivastava, R.S. Ajimsha, A.K. Srivastava, P. Misra, A.C.S. Appl, Mater. Interfaces 14(10), 12873–12882 (2022)

    Article  CAS  Google Scholar 

  16. B. Hudec, K. Husekova, E. Dobrocka, J. Aarik, R. Rammula, A. Kasikov, A. Tarre, A. Vincze, K. Fröhlich, J. Vac. Sci. Technol. B 29(1), 01AC09 (2011)

    Article  Google Scholar 

  17. W. Weinreich, A. Shariq, K. Seidel, J. Sundqvist, A. Paskaleva, M. Lemberger, A.J. Bauer, J. Vac. Sci. Technol. B 31, 01A109 (2013)

    Article  Google Scholar 

  18. S. Kim, S.H. Lee, I.H. Jo, J. Seo, Y.E. Yoo, J.H. Kim, Sci. Rep. 12, 5124 (2022)

    Article  CAS  Google Scholar 

  19. X. Wang, H. Liu, L. Zhao, Y. Wang, S. Wang, J. Mater. Sci. Mater. Electron. 30, 12577–12583 (2019)

    Article  CAS  Google Scholar 

  20. P.S. Padhi, R.S. Ajimsha, S.K. Chetia, A.K. Das, V.K. Sahu, P. Misra, AIP Conf. Proc. 2265(1), 030190 (2020)

    Article  CAS  Google Scholar 

  21. D. Cao, F. Liu, X. Shi, H. Shi, L. Zheng, L. Shen, X. Cheng, Y. Yu, X. Li, W. Shi, J. Mater. Sci. Mater. Electron. 29, 7644–7650 (2018)

    Article  CAS  Google Scholar 

  22. J.C. Woo, Y.S. Chun, Y.H. Joo, C.I. Kim, Appl. Phys. Lett. 100, 081101 (2012)

    Article  Google Scholar 

  23. P.S. Padhi, R. S. Ajimsha, S. K. Rai, S. Bhartiya, A. Bose, B. Das, M. K. Tiwari, P. Misra, Precursor purge time dependent interface quality and interfacial polarization in Al2O3/TiO2 nanolaminates grown by atomic layer deposition. Physica E Low-Dimens. Syst. Nanostruct. (under review)

  24. P.S. Padhi, R.S. Ajimsha, S.K. Rai, U.K. Goutam, A. Bose, S. Bhartiya, P. Misra, Process temperature dependent interface quality and Maxwell–Wagner interfacial polarization in atomic layer deposited Al2O3/TiO2 nanolaminates for energy storage application. Nanoscale Advance Article (2023).

  25. O.M.E. Ylivaara, L. Kilpi, X. Liu, S. Sintonen, S. Ali, M. Laitinen, J. Julin, E. Haimi, T. Sajavaara, H. Lipsanen, S.P. Hannula, H. Ronkainen, R.L. Puurunen, J. Vac. Sci. Technol. A 35, 1105 (2017)

    Article  Google Scholar 

  26. A.A. Chaaya, R. Viter, I. Baleviciute, M. Bechelany, A. Ramanavicius, Z. Gertnere, P. Miele, J. Phys. Chem. C 118(7), 3811–3819 (2014)

    Article  CAS  Google Scholar 

  27. I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga, V. Smyntyna, Vacuum 113, 52–58 (2015)

    Article  CAS  Google Scholar 

  28. L. Yang, L. Jiang, W. Fu, A.W. Weimer, X. Hu, Y. Zhou, Appl. Phys. A 123, 1–6 (2017)

    Article  Google Scholar 

  29. M. **e, X. Sun, C. Zhou, A.S. Cavanagh, H. Sun, T. Hu, S.M. George, J. Electrochem. Soc. 162(6), A974–A998 (2015)

    Article  CAS  Google Scholar 

  30. A.H. Alshehri, K. Mistry, V.H. Nguyen, K.H. Ibrahim, D. Muñoz-Rojas, M. Yavuz, K.P. Musselman, Adv. Funct. Mater. 29, 1805533 (2018)

    Article  Google Scholar 

  31. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Sci. Rep. 6(1), 32355 (2016)

    Article  CAS  Google Scholar 

  32. T.J. Seok, Y. Liu, J.H. Choi, H.J. Kim, D.H. Kim, S.M. Kim, J.H. Jang, D.Y. Cho, S.W. Lee, T.J. Park, Chem. Mater. 32, 7662–7669 (2020)

    Article  CAS  Google Scholar 

  33. C. Giovinazzo, C. Ricciardi, C.F. Pirri, A. Chiolerio, S. Porro, Appl. Phys. A 124(10), 1–8 (2018)

    Article  CAS  Google Scholar 

  34. C.W. Wiegand, R. Faust, A. Meinhardt, R.H. Blick, R. Zierold, K. Nielsch, Chem. Mater. 30(6), 1971–1979 (2018)

    Article  CAS  Google Scholar 

  35. X. Chen, J. Wan, L. Ji, J. Gao, H. Wu, C. Liu, Vacuum 200, 111022 (2022)

    Article  CAS  Google Scholar 

  36. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981)

    Article  CAS  Google Scholar 

  37. S.S. Batool, Z. Imran, K. Rasool, J. Ambreen, S. Hassan, S. Arif, M. Ahmad, M.A. Rafiq, Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  38. M.A. Fusco, C.J. Oldham, G.N. Parsons, Materials 12(4), 672 (2019)

    Article  CAS  Google Scholar 

  39. M. Liu, Z. Wang, J. Wu, Q. Li, J. Alloys Compd. 652, 260–265 (2015)

    Article  CAS  Google Scholar 

  40. W. Tang, J. Xuan, H. Wang, S. Zhao, H. Liu, J. Power Sources 384, 249–255 (2018)

    Article  CAS  Google Scholar 

  41. N.D.M. Said, M.Z. Sahdan, A. Ahmad, I. Senain, A.S. Bakri, S.A. Abdullah, M.S. Rahim, AIP Conf. Proc. 1788, 030130 (2017)

    Article  Google Scholar 

  42. F. Huang, Y.-B. Cheng, R.A. Caruso, Aust. J. Chem. 64, 1–4 (2011)

    Article  Google Scholar 

  43. V. Mikhelashvili, G. Eisenstein, A. Lahav, Appl. Phys. Lett. 90, 013506 (2007)

    Article  Google Scholar 

  44. I.S. Park, K.-M. Ryu, J. Jeong, J. Ahn, IEEE Electron. Device Lett. 34(1), 120–122 (2013)

    Article  CAS  Google Scholar 

  45. B. Zhu, W. Liu, L. Wei, D.W. Zhang, A. Jiang, S.J. Ding, J. Appl. Phys. 118, 014501 (2015)

    Article  Google Scholar 

  46. Y.H. Wu, C.K. Kao, B.Y. Chen, Y.S. Lin, M.Y. Li, H.C. Wu, Appl. Phys. Lett. 93, 033511 (2008)

    Article  Google Scholar 

  47. S.R. Patil, V.N. Barhate, V.S. Patil, K.S. Agrawal, A.M. Mahajan, J. Mater. Sci. Mater. Electron. 33, 11227–11235 (2022)

    Article  CAS  Google Scholar 

  48. Q.X. Zhang, B. Zhu, L.F. Zhang, S.J. Ding, Micro electron. Eng. 122, 1 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (PSP) acknowledges HBNI, Mumbai, India, for financial support and is thankful to Amit Das, Vikas Sahu, and S. K. Chetia of ONEL lab, RRCAT for fruitful discussions. Authors are thankful to K. Rajiv from the Mechanical and Optical Support Section, RRCAT, Indore for help in Au thin film coating on silicon substrates, Sushmita Bhartiya from Laser Functional Materials Division, RRCAT, Indore for help in AFM measurements and U.K. Goutam from technical Physics Division, BARC, Mumbai for XPS measurements. Authors are also thankful to Mr. Rakesh Kaul, Head, Laser Materials Processing Division and Associate Director, Materials Science and Advanced Technology Group, RRCAT, Indore for his constant support and encouragement during this Work.

Funding

Information given in the Acknowledgments section.

Author information

Authors and Affiliations

Authors

Contributions

PSP: conceptualization, visualization, methodology, formal analysis, investigation, data curation, writing—original draft. RSA: methodology, writing—review and editing. SKR: conceptualization, methodology, formal analysis, writing—review and editing. AB: methodology, formal analysis, writing—review and editing. PM: supervision, project administration. Resources, writing—review and editing.

Corresponding authors

Correspondence to Partha Sarathi Padhi or Pankaj Misra.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.I. : Selected Papers from ISSMD 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhi, P.S., Ajimsha, R.S., Rai, S.K. et al. Effect of Al2O3 layer thickness on leakage current and dielectric properties of atomic layer deposited Al2O3/TiO2/Al2O3 nano-stack. J Mater Sci: Mater Electron 34, 1160 (2023). https://doi.org/10.1007/s10854-023-10615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10615-3

Navigation