Log in

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part I. Composition and structure analysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Material properties are greatly dependent upon the structure of the material. This paper, the first of three parts, discusses how composition influences the crystallographic structure and microstructure of lead lanthanum titanate (PLT) thin films grown by the multi-ion-beam reactive sputtering (MIBERS) technique. A transmission electron microscopy (TEM) study detailing the relationship between crystallographic texturing and microstructure development will be presented in a second paper. The dependence of the ferroelectric properties on observed crystallographic structure and microstructure is presented in the third paper of this series. As-deposited PLT microstructures coincide with the structure zone model (SZM) which has been developed to describe the microstructure of thin films deposited by physical vapor deposition. The as-deposited PLT structures are altered during post-deposition annealing as a result of crystallization and PbO evaporation. Amorphous films with more than 10 mole % excess PbO become polycrystalline with porous microstructures after annealing. When there is less PbO in the as-deposited film, 〈100〉 texture and dense structures are observed. Porosity results from PbO evaporation, and 〈100〉 texture is inhibited by excess PbO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Paz de Araujo and G.W. Taylor, Ferroelectrics 116, 215 (1991).

    Article  Google Scholar 

  2. R. Takayama, Y. Tomita, K. Iijima, and I. Ueda, J. Appl. Phys. 61 (1), 411 (1987).

    Article  CAS  Google Scholar 

  3. H. Adachi, T. Mitsuyu, O. Yamazaki, and K. Wasa, Jpn. J. Appl. Phys., Supplement 24-2 24, 287 (1985).

    CAS  Google Scholar 

  4. C. E. Land, J. Am. Ceram. Soc. 72 (11), 2059 (1989).

    Article  CAS  Google Scholar 

  5. R. Roy, J. Am. Ceram. Soc. 60, 350 (1977).

    Article  CAS  Google Scholar 

  6. R. E. Newnham, Structure-Property Relations (Springer-Verlag, Berlin, Germany, 1975).

  7. V.M. Goldschmidt, Skr. Nor. Vidensk-Akad. Oslo, I 1926 (8), 156 (1927).

    Google Scholar 

  8. L. Pauling, The Nature of the Chemical Bond and Structure of Molecules and Crystals, 3rd ed. (Cornell University Press, Ithaca, NY, 1960), p. 505.

  9. W. D. Kingery, H. K. Bowen, and D. R. Uhlman, Introduction to Ceramics, 2nd ed. (John Wiley and Sons, New York, 1960).

  10. G. H. Haertling, in Ceramic Materials for Electronics, edited by R. C. Buchanan (Marcel Dekker, Inc., New York, 1986), p. 139.

  11. D.A. Northrop, J. Am. Ceram. Soc. 50 (9), 441 (1967).

    Article  CAS  Google Scholar 

  12. R.L. Holman and R.M. Fulrath, J. Appl. Phys. 44 (12), 5227 (1973).

    Article  CAS  Google Scholar 

  13. D. Hennings, Mater. Res. Bull. VI, 329 (1971).

    Article  Google Scholar 

  14. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III: Crystal and Solid State Physics, Ferroelectrics and Related Substances, edited by K. H. Hellwege (Springer-Verlag, New York, 1981), Vol. 16, subvolume a: Oxides.

  15. D. Hennings and K.H. Härdtl, Phys. Status Solidi (a) 3, 465 (1970).

    Article  CAS  Google Scholar 

  16. D. Hennings and G. Rosenstein, Mater. Res. Bull. VII, 1505 (1972).

    Article  Google Scholar 

  17. G. R. Fox, E. Breval, and R. E. Newnham, J. Mater. Sci. 26, 2566 (1991).

    Article  CAS  Google Scholar 

  18. M. Kitabatake, T. Mitsuyu, and K. Wasa, in Ferroelectric Thin Films, edited by E. R. Myers and A. L. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 103.

  19. T. Nakamura, M. Takashige, and T. Mitsui, Ferroelectrics 37, 583 (1981).

    Article  CAS  Google Scholar 

  20. S.R. Gurkovich and J.B. Blum, Ferroelectrics 62, 189 (1985).

    Article  CAS  Google Scholar 

  21. R. W. Vest and J. Xu, IEEE Trans. Ultrasonics Ferroelectrics Freq. Control 35 (6), 711 (1988).

    Article  CAS  Google Scholar 

  22. B. A. Movchan and A. V. Demchishin, Phys. Met. Metallogr. 28 (4), 83 (1969).

    Google Scholar 

  23. J. A. Thornton, J. Vac. Sci. Technol. 11 (4), 666 (1975).

    Article  Google Scholar 

  24. J. A. Thornton, J. Vac. Sci. Technol. 12 (4), 830 (1975).

    Article  CAS  Google Scholar 

  25. J. A. Thornton, Annu. Rev. Mater. Sci. 7, 239 (1977).

    Article  CAS  Google Scholar 

  26. R. Messier, A. P. Giri, and R.A. Roy, J. Vac. Sci. Technol. A 2 (2), 500 (1984).

    Article  CAS  Google Scholar 

  27. R. Messier, J. Vac. Sci. Technol. A 4 (3), 490 (1986).

    Article  CAS  Google Scholar 

  28. 3-cm Ion Source, Commonwealth Scientific Corp., Alexandria, VA.

  29. Lead 99.999% pure, CERAC, Milwaukee, WI.

  30. Lanthanum 99.9% pure, Advent Associates, Ltd., Trafford, PA.

  31. Titanium 99.9% pure, CERAC, Milwaukee, WI.

  32. 80386 PC, Master Computer, State College, PA.

  33. STM-100 Thickness/Rate Monitor, Sycon Instruments, East Syracuse, NY.

  34. G. R. Fox and S. B. Krupanidhi, to be submitted to J. Vac. Sci. Technol.

  35. Ziti Inc., Dallas, TX.

  36. 2-propanol, A.C.S. reagent grade, J. T. Baker, Phillipsburg, NJ.

  37. Spectraspan model IIIb, Spectrometrics Inc., Andover, MA.

  38. Cameca Camebax SX-50, Cameca Instr., Courbeoie, France.

  39. HC1 37% A.C.S. reagent grade, J.T. Baker, Phillipsburg, NJ.

  40. Hydrogen peroxide 30 wt. % solution, Aldrich Chemical Company, Inc., Milwaukee, WI.

  41. J.T. Baker, Phillipsburg, NJ.

  42. PAD V diffractometer, Scintag, Santa Clara, CA.

  43. JFM 890 Field Emission Gun Scanning Electron Microscope, JEOL Ltd., Japan.

  44. K. F. J. Heinrich, Electron Beam X-ray Microanalysis (Van Nos-trand Reinhold Company, New York, 1981).

  45. G. A. Samara, Ferroelectrics 2, 277 (1971).

    Article  CAS  Google Scholar 

  46. R.A. Roy and D. S. Yee, in Handbook of Ion Beam Processing Technology, edited by J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman (Noyes Publications, Park Ridge, NJ, 1989), p. 194.

  47. O. Yamaguchi, A. Narai, and T. Komatsu, J. Am. Ceram. Soc. 69 (10), C-256 (1986).

  48. K. Ishikawa, K. Yoshikawa, and N. Okada, Phys. Rev. B 37 (10), 5852 (1988).

  49. F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press Inc., New York, 1962), p. 241.

  50. G. R. Fox and S. B. Krupanidhi, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, G.R., Krupanidhi, S.B., More, K.L. et al. Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part I. Composition and structure analysis. Journal of Materials Research 7, 3039–3055 (1992). https://doi.org/10.1557/JMR.1992.3039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.3039

Navigation