1 Introduction

Let E be a real Banach space with norm \(\|\cdot\|\) and let \(E^{*}\) denote the dual space of E. We use ‘→’ and ‘⇀’ (or ‘\(w\mbox{-}\!\lim\)’) to denote strong and weak convergence, respectively. We denote the value of \(f \in E^{*}\) at \(x \in E\) by \(\langle x,f \rangle\).

Define a function \(\rho_{E} : [0, +\infty) \rightarrow[0, +\infty)\) called the modulus of smoothness of E as follows:

$$\rho_{E}(t) = \sup \biggl\{ \frac{\|x+y\|+\|x-y\|}{2}-1: x,y\in E, \|x\| = 1, \| y\| \leq t\biggr\} . $$

A Banach space E is said to be uniformly smooth if \(\frac{\rho _{E}(t)}{t}\rightarrow 0\), as \(t \rightarrow0\).

A Banach space E is said to be strictly convex if and only if \(\|x\|= \|y\|= \|(1-\lambda)x+\lambda y\|\) for \(x, y \in E\) and \(0 < \lambda<1\) implies that \(x = y\). A Banach space E is said to be uniformly convex if for any \(\varepsilon\in(0,2]\) there exists \(\delta>0\) such that

$$\|x\| = \|y\| = 1, \qquad \|x-y\| \geq\varepsilon\quad \Rightarrow\quad \biggl\Vert \frac {x+y}{2}\biggr\Vert \leq 1-\delta. $$

It is well known that a uniformly convex Banach space is reflexive and strictly convex.

An operator \(B: E\rightarrow E^{*}\) is said to be monotone if \(\langle u - v, Bu - Bv\rangle\geq0\), for all \(u,v \in D(B)\). The monotone operator B is said to be maximal monotone if the graph of B, \(G(B)\), is not contained properly in any other monotone subset of \(E \times E^{*}\).

A single-valued map** \(F:D(F) = E \rightarrow E^{*}\) is said to be hemi-continuous [1] if \(w\mbox{-}\!\lim_{t\rightarrow0}F(x+ty) = Fx\), for any \(x,y\in E\). A single-valued map** \(F:D(F) = E \rightarrow E^{*}\) is said to be demi-continuous [1] if \(w\mbox{-}\!\lim_{n\rightarrow\infty}Fx_{n} = Fx\), for any sequence \(\{x_{n}\}\) strongly convergent to x in E.

Following from [1] or [2], the function h is said to be a proper convex function on E if h is defined from E onto \((-\infty, +\infty]\), h is not identically +∞ such that \(h((1-\lambda)x+\lambda y)\leq(1-\lambda)h(x)+\lambda h(y)\), whenever \(x,y \in E\) and \(0 \leq\lambda\leq1\). h is said to be strictly convex if \(h((1-\lambda)x+\lambda y)< (1-\lambda)h(x)+\lambda h(y)\), for all \(0 < \lambda< 1\) and \(x,y \in E\) with \(x \neq y\), \(h(x) <+\infty\) and \(h(y) < +\infty\). The function \(h: E \rightarrow(-\infty, +\infty]\) is said to be lower-semi-continuous on E if \(\liminf_{y \rightarrow x}h(y) \geq h(x)\), for any \(x \in E\).

A continuous strictly increasing function \(\varphi: [0,+\infty) \rightarrow[0,+\infty)\) is called a gauge function [2] if \(\varphi(0) = 0\) and \(\varphi(t) \rightarrow\infty\), as \(t \rightarrow\infty\). The duality map** \(J_{\varphi}: E \rightarrow2^{E^{*}}\) associated with the gauge function φ is defined by [2]

$$J_{\varphi}(x) = \bigl\{ f \in E^{*}: \langle x, f \rangle= \|x\|\varphi\bigl( \Vert x\Vert \bigr), \|f\|= \varphi\bigl(\Vert x\Vert \bigr)\bigr\} ,\quad x \in E. $$

It can be seen from [2] that the duality map** \(J_{\varphi}\) has the following properties:

  1. (i)

    \(J_{\varphi}(-x) = - J_{\varphi}(x)\) and \(J_{\varphi}(kx)= \frac{\varphi(\|kx\|)}{\varphi(\|x\|)} J_{\varphi}(x)\), for \(\forall x \in E\) and \(k >0\);

  2. (ii)

    if \(E^{*}\) is uniformly convex, then \(J_{\varphi}\) is uniformly continuous on each bounded subset in E;

  3. (iii)

    the reflexivity of E and strict convexity of \(E^{*}\) imply that \(J_{\varphi}\) is single-valued, monotone and demi-continuous.

In the case \(\varphi(t)\equiv t\), we call \(J_{\varphi}\) the normalized duality map**, which is usually denoted by J.

For the gauge function φ, the function \(\Phi: [0,+\infty) \rightarrow[0,+\infty)\) defined by

$$ \Phi(t)= \int_{0}^{t} \varphi(s)\, ds $$
(1.1)

is a continuous convex strictly increasing function on \([0,+\infty)\).

Following the result in [3], a Banach space E is said to have a weakly continuous duality map** if there is a gauge φ for which the duality map** \(J_{\varphi}(x)\) is single-valued and weak-to-weak sequentially continuous (i.e., if \(\{ x_{n}\}\) is a sequence in E weakly convergent to a point x, then the sequence \(J_{\varphi}(x_{n})\) converges weakly to \(J_{\varphi}(x)\)). It is well known that \(l^{p}\) has a weakly continuous duality map** with a gauge function \(\varphi(t) = t^{p-1}\) for all \(1 < p < +\infty\).

Let C be a nonempty, closed and convex subset of E and Q be a map** of E onto C. Then Q is said to be sunny [4] if \(Q(Q(x)+t(x-Q(x))) = Q(x)\), for all \(x \in E\) and \(t \geq 0\).

A map** Q of E into E is said to be a retraction [4] if \(Q^{2} = Q\). If a map** Q is a retraction, then \(Q(z) = z\) for every \(z \in R(Q)\), where \(R(Q)\) is the range of Q.

A map** \(f : C \rightarrow C\) is called a contraction with contractive constant \(k \in(0,1)\) if \(\|f(x) - f(y)\| \leq k \|x - y\|\), for \(\forall x,y \in C\).

A map** \(T : C \rightarrow C\) is said to be nonexpansive if \(\|Tx - Ty\| \leq\|x-y\|\), for \(\forall x,y \in C\). We use \(\operatorname{Fix}(T)\) to denote the fixed point set of T. That is, \(\operatorname{Fix}(T) : = \{x\in C: Tx = x\}\). A map** \(T : E \supset D(T) \rightarrow R(T) \subset E\) is said to be demi-closed at p if whenever \(\{x_{n}\}\) is a sequence in \(D(T)\) such that \(x_{n} \rightharpoonup x \in D(T)\) and \(Tx_{n} \rightarrow p\) then \(Tx =p\).

A subset C of E is said to be a sunny nonexpansive retract of E [5, 6] if there exists a sunny nonexpansive retraction of E onto C and it is called a nonexpansive retract of E if there exists a nonexpansive retraction of E onto C.

A map** \(A : D(A) \subset E \rightarrow E\) is said to be accretive if \(\|x_{1}-x_{2}\| \leq\|x_{1}-x_{2}+r(y_{1}-y_{2})\|\), for \(\forall x_{i} \in D(A)\), \(y_{i} \in Ax_{i}\), \(i = 1,2\), and \(r>0\). For the accretive map** A, we use \(N(A)\) to denote the set of zero points of it; that is, \(N(A): = \{x \in D(A) : Ax = 0\}\). If A is accretive, then we can define, for each \(r>0\), a nonexpansive single-valued map** \(J_{r}^{A} : R(I+rA)\rightarrow D(A)\) by \(J_{r}^{A} : = (I+rA)^{-1}\), which is called the resolvent of A [1]. We also know that, for an accretive map** A, \(N(A) = \operatorname{Fix}(J_{r}^{A})\). An accretive map** A is said to be m-accretive if \(R(I+\lambda A) = E\), for \(\forall\lambda > 0\).

It is well known that if A is an accretive map**, then the solutions of the problem \(0 \in Ax\) correspond to the equilibrium points of some evolution equations. Hence, the problem of finding a solution \(x \in E\) with \(0 \in Ax\) has been studied by many researchers (see [715] and the references therein).

One classical method for studying the problem \(0 \in Ax\), where A is an m-accretive map**, is the following so-called proximal method (cf. [7]), presented in a Hilbert space:

$$ x_{0} \in H,\quad x_{n+1} \approx J_{r_{n}}^{A}x_{n}, \quad n \geq0, $$
(1.2)

where \(J_{r_{n}}^{A}:= (I+r_{n} A)^{-1}\). It was shown that the sequence generated by (1.2) converges weakly or strongly to a zero point of A under some conditions.

An explicit iterative process to approximate fixed point of a nonexpansive map** \(T : C \rightarrow C\) was introduced in 1967 by Halpern [16] in the frame of Hilbert spaces:

$$ u\in C, x_{0} \in C, \quad x_{n+1}= \alpha_{n} u +(1-\alpha_{n})Tx_{n}, \quad n \geq 0, $$
(1.3)

where \(\{\alpha_{n}\} \subset[0,1]\).

In 2007, based on (1.2) and (1.3), Qin and Su [9] presented the following iterative algorithm:

$$ \left \{ \textstyle\begin{array}{l} x_{1}\in C\quad \text{chosen arbitrarily}, \\ y_{n} = \beta_{n} x_{n} + (1-\beta_{n})J_{r_{n}}^{A}x_{n}, \\ x_{n+1}= \alpha_{n} u+(1-\alpha_{n})y_{n}. \end{array}\displaystyle \right . $$
(1.4)

They showed that \(\{x_{n}\}\) generated by (1.4) converges strongly to a zero point of an m-accretive map** A.

Motivated by iterative algorithms (1.2) and (1.3), Zegeye and Shahzad extended their discussion to the case of finite m-accretive map**s \(\{A_{i}\}_{i = 1}^{l}\). They presented in [17] the following iterative algorithm:

$$ x_{0} \in C, \quad x_{n+1}= \alpha_{n} u + (1- \alpha_{n}) S_{r}x_{n},\quad n \geq0, $$
(1.5)

where \(S_{r} = a_{0} I + a_{1}J_{A_{1}}+a_{2}J_{A_{2}}+\cdots+a_{l}J_{A_{l}}\) with \(J_{A_{i}} = (I+A_{i})^{-1}\) and \(\sum_{i = 0}^{l} a_{i} = 1\). If \(\bigcap_{i=1}^{l} N(A_{i}) \neq\emptyset\), they proved that \(\{x_{n}\}\) generated by (1.5) converges strongly to the common zero point of \(A_{i}\) (\(i = 1,2,\ldots,l\)) under some conditions.

The work in [17] was then extended to the following one presented by Hu and Liu in [18]:

$$ x_{0} \in C,\quad x_{n+1}= \alpha_{n} u + \beta_{n} x_{n} + \vartheta_{n} S_{r_{n}}x_{n}, \quad n \geq0, $$
(1.6)

where \(S_{r_{n}} = a_{0} I + a_{1}J_{r_{n}}^{A_{1}}+a_{2}J_{r_{n}}^{A_{2}}+ \cdots+a_{l}J_{r_{n}}^{A_{l}}\) with \(J_{r_{n}}^{A_{i}} = (I+r_{n} A_{i})^{-1}\) and \(\sum_{i = 0}^{l} a_{i} = 1\). \(\{\alpha_{n}\}, \{\beta_{n}\}, \{\vartheta_{n}\} \subset(0,1)\) and \(\alpha_{n} + \beta_{n} + \vartheta_{n} = 1\). If \(\bigcap_{i=1}^{l} N(A_{i}) \neq\emptyset\), they proved that \(\{x_{n}\}\) converges strongly to the common point in \(N(A_{i})\) (\(i = 1,2,\ldots,l\)) under some conditions.

In 2009, Yao et al. presented the following iterative algorithm in the frame of Hilbert space in [19]:

$$ \left \{ \textstyle\begin{array}{l} x_{1}\in C, \\ y_{n} = P_{C}[(1-\alpha_{n})x_{n}], \\ x_{n+1}= (1- \beta_{n})x_{n} + \beta_{n} Ty_{n},\quad n \geq1, \end{array}\displaystyle \right . $$
(1.7)

where \(T : C \rightarrow C\) is nonexpansive with \(\operatorname{Fix}(T)\neq\emptyset\). Suppose \(\{\alpha_{n}\}\) and \(\{\beta_{n}\}\) are two real sequences in \((0,1)\) satisfying

  1. (a)

    \(\sum_{n=1}^{\infty} \alpha_{n} = +\infty\) and \(\lim_{n \rightarrow\infty} \alpha_{n} = 0\);

  2. (b)

    \(0 < \liminf_{n \rightarrow\infty}\beta_{n} \leq \limsup_{n \rightarrow\infty}\beta_{n} < 1\).

Then \(\{x_{n}\}\) constructed by (1.7) converges strongly to a point in \(\operatorname{Fix}(T)\).

Motivated by the work in [17] and [19], Shehu and Ezeora [5] presented the following iterative algorithm and the discussion is undertaken in the frame of a real uniformly smooth and uniformly convex Banach space:

$$ \left \{ \textstyle\begin{array}{l} x_{1}\in C, \\ y_{n} = Q_{C}[(1-\alpha_{n})x_{n}], \\ x_{n+1}= (1- \beta_{n})x_{n} + \beta_{n} S_{N}y_{n},\quad n \geq1. \end{array}\displaystyle \right . $$
(1.8)

Here \(Q_{C}\) is the sunny nonexpansive retraction of E onto C. \(A_{i} : C \rightarrow E\) is m-accretive map** with \(\bigcap_{i=1}^{N} N(A_{i}) \neq\emptyset\). \(S_{N} : = a_{0} I + a_{1}J_{A_{1}}+a_{2}J_{A_{2}}+ \cdots+a_{N}J_{A_{N}}\) with \(J_{A_{i}} = (I+A_{i})^{-1}\), for \(i = 1,2,\ldots, N\). \(0 < a_{k} <1\), for \(k = 0,1,2,\ldots, N\), and \(\sum_{k=0}^{N} a_{k} = 1\). \(\{\alpha_{n}\}, \{\beta_{n}\}\subset(0,1)\). Then \(\{x_{n}\}\) converges strongly to the common zero point of \(A_{i}\), where \(i = 1,2,\ldots,N\).

In 2014, by modifying iterative algorithm (1.8) and employing new techniques, Wei and Tan [20] presented and studied the following three-step iterative algorithm:

$$ \left \{ \textstyle\begin{array}{l} x_{1}\in C, \\ u_{n} = Q_{C}[(1-\alpha_{n})(x_{n}+e_{n})], \\ v_{n}= (1- \beta_{n})x_{n} + \beta_{n} S_{n} u_{n}, \\ x_{n+1}=\gamma_{n} x_{n}+(1-\gamma_{n})S_{n}v_{n}, \quad n \geq1, \end{array}\displaystyle \right . $$
(1.9)

where \(Q_{C}\) is the sunny nonexpansive retraction of E onto C, \(\{e_{n}\} \subset E \) is the error sequence and \(\{A_{i}\}_{i = 1}^{N}\) is a finite family of m-accretive map**s. \(S_{n} : = a_{0}I + a_{1} J_{r_{n,1}}^{A_{1}}+a_{2} J_{r_{n,2}}^{A_{2}}+\cdots+a_{N} J_{r_{n,N}}^{A_{N}}\), \(J_{r_{n,i}}^{A_{i}} = (I + r_{n,i} A_{i} )^{-1}\), for \(i = 1,2,\ldots,N\), \(\sum_{k = 0}^{N}a_{k} = 1\), \(0 < a_{k} < 1\), for \(k = 0 , 1, 2, \ldots, N\). And, some strong convergence theorems to approximate common zero point of \(A_{i}\) (\(i = 1,2, \ldots, N \)) are obtained.

In 2015, Wang and Zhang [21] extended the discussion of the finite family of m-accretive map**s \(\{A_{i}\}_{i = 1}^{N}\) to that of infinite family of m-accretive map**s \(\{A_{i}\}_{i = 1}^{\infty}\). They presented the following two-step iterative algorithms with errors \(\{e_{n}\} \subset E\):

$$ \left\{ \textstyle\begin{array}{l} x_{1} \in\bigcap_{i = 1}^{\infty} \overline{D(A_{i})}\quad \mbox{chosen arbitrarily}, \\ y_{n} = \alpha_{n}'x_{n}+ \beta_{n}'\sum_{i = 1}^{\infty} \delta _{n,i}J_{r_{i}}x_{n} + \gamma'_{n} e_{n}, \\ x_{n+1} = \alpha_{n}f(x_{n})+\beta_{n} x_{n} + \gamma_{n} y_{n},\quad n \geq1, \end{array}\displaystyle \right. $$
(1.10)

where f is a contraction on \(\bigcap_{i = 1}^{\infty}\overline{D(A_{i})}\). For \(i = 1,2,\ldots\) , \(J_{r_{i}} = (I + r_{i} A_{i} )^{-1}\). \(\{\alpha_{n}\}\), \(\{\beta_{n}\}\), \(\{\gamma_{n}\}\), \(\{\alpha_{n}'\}\), \(\{\beta_{n}'\}\), and \(\{\gamma_{n}'\}\) are real number sequences in \((0,1)\). Some strong convergence theorems to approximate common zero point of \(A_{i}\) (\(i = 1,2, \ldots\)) are obtained under some conditions.

Inspired by the work in [5, 9, 1721], we shall design a four-step iterative algorithm with errors in a Banach space in Section 3. Some weak and strong convergence theorems for approximating common zero point of an infinite family of m-accretive map**s are obtained. Some new proof techniques can be found. In Section 4, we shall present an example of infinite p-Laplacian-like differential systems, to highlight the significance of the studies on iterative construction for zero points of accretive map**s in applied mathematics and engineering. We demonstrate the applications of the main results in Section 3.

Our main contributions are:

  1. (i)

    a new four-step iterative algorithm is designed by combining the ideas of famous iterative algorithms such as proximal methods, Halpern methods, convex combination methods, and viscosity methods;

  2. (ii)

    three sequences constructed in the new iterative algorithm are proved to be weakly or strongly to the common zero point of an infinite family of m-accretive map**s;

  3. (iii)

    the characteristic of the weakly convergent point of the new iterative algorithm is pointed out;

  4. (iv)

    under the new assumptions, a path convergence theorem for nonexpansive map**s is proved;

  5. (v)

    some new techniques are employed, for example, the tool \(\|\cdot\|^{2}\) for estimating the convergence of the iterative sequence \(\{x_{n}\}\) in most of the existing related work is partly replaced by function Φ defined by (1.1);

  6. (vi)

    the discussion is undertaken in the frame of a Banach space, which is more general than that in Hilbert space; the assumption that ‘the normalized duality map** J is weakly sequentially continuous’ in most of the existing related work is weakened to ‘\(J_{\varphi}\) is weakly sequentially continuous for a given gauge function φ’;

  7. (vii)

    compared to (1.10), \(J_{r_{i}}\) is replaced by \(J_{r_{n,i}}\); compared to (1.9), a contraction f is considered; compared to the work in [5, 9, 1720], an infinite family of m-accretive map**s is discussed;

  8. (viii)

    in Section 4, the applications of the main results in Section 3 on approximating the equilibrium solution of the nonlinear p-Laplacian-like differential systems are demonstrated.

2 Preliminaries

Now, we list some results we need in the sequel.

Lemma 2.1

(see [22])

Let E be a real strictly convex Banach space and let C be a nonempty closed and convex subset of E. Let \(T_{m}: C \rightarrow C\) be a nonexpansive map** for each \(m \geq1\). Let \(\{a_{m}\}\) be a real number sequence in \((0,1)\) such that \(\sum_{m = 1}^{\infty}a_{m} = 1\). Suppose that \(\bigcap_{m=1}^{\infty}\operatorname{Fix}(T_{m}) \neq\emptyset\). Then the map** \(\sum_{m = 1}^{\infty}a_{m} T_{m}\) is nonexpansive with \(\operatorname{Fix}(\sum_{m = 1}^{\infty}a_{m}T_{m}) = \bigcap_{m = 1}^{\infty}\operatorname{Fix}(T_{m})\).

Lemma 2.2

(see [23])

Assume that a real Banach space E has a weakly continuous duality map** \(J_{\varphi}\) with a gauge φ. Then Φ defined by (1.1) has the following properties.

  1. (i)

    \(\Phi(\|x+y\|) \leq\Phi(\|x\|) + \langle y, J_{\varphi}(x+y) \rangle\), \(\forall x,y \in E\).

  2. (ii)

    Assume that a sequence \(\{x_{n}\}\) in E converges weakly to a point \(x \in E\). Then

    $$\limsup_{n \rightarrow\infty} \Phi\bigl(\Vert x_{n} - y\Vert \bigr) = \limsup_{n \rightarrow \infty} \Phi\bigl(\Vert x_{n} - x \Vert \bigr)+\Phi\bigl(\Vert y-x\Vert \bigr), \quad \forall y \in E. $$

Lemma 2.3

(see [24])

Let \(\{a_{n}\}\) and \(\{c_{n}\}\) be two sequences of nonnegative real numbers satisfying

$$a_{n+1}\leq(1-t_{n})a_{n} + b_{n}+c_{n}, \quad \forall n \geq1, $$

where \(\{t_{n}\}\subset(0,1)\) and \(\{b_{n}\}\) is a number sequence. Assume that (i) \(\sum_{n=1}^{\infty}t_{n} = +\infty\), (ii) either \(\limsup_{n \rightarrow\infty} \frac{b_{n}}{t_{n}} \leq0\) and \(\sum_{n=1}^{\infty}c_{n} < +\infty\). Then \(\lim_{n \rightarrow\infty }a_{n} = 0\).

Lemma 2.4

(see [20])

Let \(\{x_{n}\}\) and \(\{y_{n}\}\) be two bounded sequences in a Banach space E such that \(x_{n+1}= \beta_{n}x_{n} + (1-\beta_{n})y_{n}\), for \(n \geq1\). Suppose \(\{\beta_{n}\}\subset(0,1)\) satisfying \(0 < \liminf_{n\rightarrow +\infty}\beta_{n} \leq \limsup_{n\rightarrow+\infty}\beta_{n} < 1\). If \(\limsup_{n\rightarrow+\infty}(\|y_{n+1}-y_{n}\|-\|x_{n+1}-x_{n}\|) \leq0\), then \(\lim_{n\rightarrow+\infty}\|y_{n}-x_{n}\| = 0\).

Lemma 2.5

(see [25])

Let E be a real uniformly convex Banach space and let C be a nonempty, closed, and convex subset of E. Let \(T: C \rightarrow C\) be a nonexpansive map** such that \(\operatorname{Fix}(T) \neq\emptyset\), then \(I-T\) is demi-closed at zero.

Lemma 2.6

(see [1])

Let E be a Banach space and let A be an m-accretive map**. For \(\lambda>0\), \(\mu>0\), and \(x \in E\), we have

$$J_{\lambda}x = J_{\mu}\biggl(\frac{\mu}{\lambda}x+\biggl(1- \frac{\mu}{\lambda}\biggr)J_{\lambda}x\biggr), $$

where \(J_{\lambda}= (I+\lambda A)^{-1}\) and \(J_{\mu}= (I+\mu A)^{-1}\).

Lemma 2.7

(see [20])

Let E be a real uniformly smooth and uniformly convex Banach space. Let C be a nonempty, closed, and convex sunny nonexpansive retract of E, and let \(Q_{C}\) be the sunny nonexpansive retraction of E onto C. Let \(T : C \rightarrow C\) be a nonexpansive map** with \(\operatorname{Fix}(T) \neq \emptyset\). If for each \(t \in(0,1)\), define \(T_{t} : C \rightarrow C\) by

$$T_{t} x : = TQ_{C}\bigl[(1-t)x\bigr]. $$

Then \(T_{t}\) is a contraction and has a fixed point \(z_{t}\), which satisfies \(\|z_{t} - Tz_{t}\|\rightarrow0\), as \(t \rightarrow 0\).

3 Weak and strong convergence theorems

Lemma 3.1

Let E be a real strictly convex Banach space and C be a nonempty, closed, and convex subset of E. Let \(A_{i}: C \rightarrow E\) be m-accretive map**s, where \(i = 1,2,\ldots \) . Suppose \(D: = \bigcap_{i = 1}^{\infty} N(A_{i}) \neq\emptyset\) and \(\{r_{n,i}\}\subset(0,+\infty)\) for \(i = 1,2, \ldots\) . If \(\{a_{i}\}_{i = 0}^{\infty}\subset(0,1)\) satisfies \(\sum_{i = 0}^{\infty}a_{i} = 1\). Then \((a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}) : E \rightarrow E\) is nonexpansive and

$$\operatorname{Fix}\Biggl(a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr) = D, $$

where \(J_{r_{n,i}}^{A_{i}} = (I+r_{n,i}A_{i})^{-1}\) for \(n \geq1 \) and \(i = 1,2,\ldots\) .

Proof

If we set \(T_{1} = I\) and \(T_{i+1} = J_{r_{n,i}}^{A_{i}}\), then \((a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}) = \sum_{i = 0 }^{\infty}a_{i}T_{i+1}\). Since both I and \(J_{r_{n,i}}^{A_{i}}\) are nonexpansive, Lemma 2.1 implies that \((a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}})\) is nonexpansive and

$$\operatorname{Fix}\Biggl(a_{0} I + \sum_{i =1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr) = \bigcap_{i =1}^{\infty} \operatorname{Fix}\bigl(J_{r_{n,i}}^{A_{i}}\bigr) = \bigcap _{i =1}^{\infty} N(A_{i}) = D. $$

This completes the proof. □

Theorem 3.1

Let E be a real strictly convex Banach space which has a weakly continuous duality map** \(J_{\varphi}\). Let C be a nonempty, closed, and convex sunny nonexpansive retract of E, and \(Q_{C}\) be the sunny nonexpansive retraction of E onto C. Let \(f : C \rightarrow C \) be a contraction with contractive constant \(k \in (0,1)\). Let \(A_{i}: C \rightarrow E\) be m-accretive map**s, for \(i = 1,2,\ldots \) . Let \(D : = \bigcap_{i = 1}^{\infty}N(A_{i})\neq \emptyset\). Suppose \(\{\alpha_{n}\}, \{\beta_{n}\}, \{\mu_{n}\}, \{\gamma_{n}\}, \{\delta_{n}\}, \{\zeta_{n}\} \subset(0,1)\), and \(\{r_{n,i}\}\subset(0,+\infty)\) for \(i = 1,2, \ldots\) . Suppose \(\{a_{i}\}_{i = 0}^{\infty}\subset(0,1)\) with \(\sum_{i = 0}^{\infty}a_{i} = 1\) and \(\{e_{n}\} \subset E\) is the error sequence. Let \(\{x_{n}\}\) be generated by the following iterative algorithm:

$$ \left \{ \textstyle\begin{array}{l} x_{1}\in C, \\ u_{n} = Q_{C}[(1-\alpha_{n})(x_{n}+e_{n})], \\ v_{n}= (1- \beta_{n})x_{n} + \beta_{n} (a_{0}I+\sum_{i = 1}^{\infty }a_{i}J_{r_{n,i}}^{A_{i}})u_{n}, \\ w_{n} = \mu_{n} f(x_{n}) + \gamma_{n} x_{n} + \delta_{n} v_{n}, \\ x_{n+1}= (1-\zeta_{n}) w_{n} + \zeta_{n} x_{n}, \quad n \geq 1. \end{array}\displaystyle \right . $$
(3.1)

Further suppose that the following conditions are satisfied:

  1. (i)

    \(\alpha_{n} \rightarrow0\), \(\delta_{n} \rightarrow0\), \(\mu_{n} \rightarrow0\), as \(n \rightarrow\infty\);

  2. (ii)

    \(\mu_{n} + \gamma_{n}+\delta_{n} \equiv1\), \(n \geq1\);

  3. (iii)

    \(0 < \liminf_{n \rightarrow+\infty}\beta_{n}\leq \limsup_{n \rightarrow+\infty} \beta_{n} < 1\) and \(0 < \liminf_{n \rightarrow+\infty}\zeta_{n}\leq \limsup_{n \rightarrow+\infty} \zeta_{n} < 1\);

  4. (iv)

    \(\sum_{n=1}^{\infty}|r_{n+1,i} - r_{n,i}| < +\infty\) and \(r_{n,i}\geq\varepsilon> 0\), for \(n \geq1\) and \(i = 1,2,\ldots\) ;

  5. (v)

    \(\gamma_{n+1}-\gamma_{n} \rightarrow0\), \(\beta_{n+1}-\beta_{n} \rightarrow0\), as \(n \rightarrow\infty\);

  6. (vi)

    \(\sum_{n=1}^{\infty}\|e_{n}\| < +\infty\).

Then the three sequences \(\{x_{n}\}\), \(\{u_{n}\}\), and \(\{w_{n}\}\) converge weakly to the unique element \(q_{0} \in D\), which satisfies, for \(\forall y \in D\),

$$ \limsup_{n \rightarrow\infty}\Phi\bigl(\Vert x_{n} - q_{0}\Vert \bigr)= \min_{y \in D}\limsup _{n \rightarrow\infty}\Phi\bigl(\Vert x_{n} - y\Vert \bigr). $$
(3.2)

Proof

We shall split the proof into five steps.

Step 1. \(\{x_{n}\}\), \(\{u_{n}\}\), \(\{\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\}\), \(\{v_{n}\}\), and \(\{f(x_{n})\}\) are all bounded.

We shall first show that \(\forall p \in D\),

$$ \|x_{n+1}-p\| \leq M_{1} + \sum_{i = 1}^{n} \|e_{i}\|, $$
(3.3)

where \(M_{1} = \max \{\|x_{1} -p\|, \frac{\|f(p)-p\|}{1-k}, \|p\|\}\).

By using Lemma 3.1 and the induction method, we see that, for \(n=1\), \(\forall p \in D\),

$$\begin{aligned} \Vert x_{2} - p\Vert \leq&(1-\zeta_{1})\Vert w_{1}-p\Vert +\zeta_{1}\Vert x_{1}-p\Vert \\ \leq&(1-\zeta_{1})\bigl[\mu_{1} \bigl\Vert f(x_{1}) - p\bigr\Vert + \gamma_{1} \Vert x_{1} - p\Vert +\delta_{1} \Vert v_{1}-p\Vert \bigr]+ \zeta_{1}\Vert x_{1}-p\Vert \\ \leq&(1-\zeta_{1})\Biggl[k \mu_{1} \Vert x_{1} - p\Vert + \mu_{1} \bigl\Vert f(p)-p\bigr\Vert + \gamma_{1}\Vert x_{1}-p\Vert \\ &{}+\delta_{1}(1-\beta_{1})\Vert x_{1}-p\Vert +\delta_{1}\beta_{1} \Biggl\Vert \Biggl(a_{0}I+ \sum_{i = 1}^{\infty}a_{i}J_{r_{1,i}}^{A_{i}} \Biggr)u_{1} - p\Biggr\Vert \Biggr]+\zeta_{1}\Vert x_{1}-p\Vert \\ \leq&(1-\zeta_{1})\bigl[k\mu_{1}+\gamma_{1}+ \delta_{1}(1-\beta_{1})\bigr]\Vert x_{1}-p\Vert + (1-\zeta_{1})\mu_{1}\bigl\Vert f(p)-p\bigr\Vert + \zeta_{1}\Vert x_{1}-p\Vert \\ &{}+ (1-\zeta_{1})\delta_{1}\beta_{1}\Vert u_{1}-p\Vert \\ \leq& (1-\zeta_{1})\bigl[k\mu_{1}+\gamma_{1}+ \delta_{1}(1-\beta_{1})\bigr]\Vert x_{1}-p\Vert + (1-\zeta_{1})\mu_{1}\bigl\Vert f(p)-p\bigr\Vert + \zeta_{1}\Vert x_{1}-p\Vert \\ &{}+ (1-\zeta_{1})\delta _{1}\beta_{1}\bigl\Vert (1-\alpha_{1}) (x_{1}+e_{1})-p\bigr\Vert \\ \leq& \bigl[1-(1-k)\mu_{1}(1-\zeta_{1})- \alpha_{1}\beta_{1}\delta_{1}(1-\zeta_{1}) \bigr] \Vert x_{1} - p\Vert + (1-\zeta_{1}) (1- \alpha_{1})\beta_{1}\delta_{1}\Vert e_{1}\Vert \\ &{}+(1-\zeta_{1})\alpha_{1}\beta_{1} \delta_{1}\Vert p\Vert +(1-\zeta_{1})\mu_{1}(1-k) \frac{\Vert f(p)-p\Vert }{1-k} \\ \leq& M_{1} + \Vert e_{1}\Vert . \end{aligned}$$

Suppose that (3.3) is true for \(n = k\). Then, for \(n = k+1\),

$$\begin{aligned} \Vert x_{k+2} - p\Vert \leq&(1-\zeta_{k+1})\Vert w_{k+1}-p\Vert +\zeta _{k+1}\Vert x_{k+1}-p\Vert \\ \leq&(1-\zeta_{k+1})\bigl[\mu_{k+1} \bigl\Vert f(x_{k+1}) - p\bigr\Vert + \gamma_{k+1} \Vert x_{k+1} - p\Vert +\delta_{k+1} \Vert v_{k+1}-p \Vert \bigr] \\ &{}+\zeta_{k+1}\Vert x_{k+1}-p\Vert \\ \leq&(1-\zeta_{k+1})\Biggl[k \mu_{k+1} \Vert x_{k+1} - p\Vert + \mu_{k+1} \bigl\Vert f(p)-p\bigr\Vert +\gamma_{k+1}\Vert x_{k+1}-p\Vert \\ &{}+\delta_{k+1}(1-\beta_{k+1})\Vert x_{k+1}-p \Vert +\delta_{k+1}\beta_{k+1} \Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{{k+1},i}}^{A_{i}} \Biggr)u_{k+1} - p\Biggr\Vert \Biggr] \\ &{}+\zeta_{k+1}\Vert x_{k+1}-p\Vert \\ \leq& (1-\zeta_{k+1})\bigl[k\mu_{k+1}+\gamma_{k+1}+ \delta_{k+1}(1-\beta_{k+1})\bigr]\Vert x_{k+1}-p \Vert \\ &{}+ (1-\zeta_{k+1})\mu_{k+1}\bigl\Vert f(p)-p\bigr\Vert + \zeta_{k+1}\Vert x_{k+1}-p\Vert + (1- \zeta_{k+1})\delta_{k+1}\beta_{k+1}\Vert u_{k+1}-p\Vert \\ \leq& \bigl\{ (1-\zeta_{k+1})\bigl[k\mu_{k+1}+ \gamma_{k+1}+\delta_{k+1}(1-\beta_{k+1})\bigr]+ \zeta_{k+1}\bigr\} \Vert x_{k+1}-p\Vert \\ &{}+ (1- \zeta_{k+1})\mu_{k+1}\bigl\Vert f(p)-p\bigr\Vert \\ &{}+ (1-\zeta_{k+1})\delta_{k+1}\beta_{k+1}\bigl\Vert (1-\alpha _{k+1}) (x_{k+1}+e_{k+1})-p\bigr\Vert \\ \leq& \bigl[1-(1-k)\mu_{k+1}(1-\zeta_{k+1})- \alpha_{k+1}\beta_{k+1}\delta _{k+1}(1- \zeta_{k+1})\bigr] \Vert x_{k+1} - p\Vert + \Vert e_{k+1}\Vert \\ &{}+(1-\zeta_{k+1})\alpha_{k+1}\beta_{k+1} \delta_{k+1}\Vert p\Vert +(1-\zeta_{k+1}) \mu_{k+1}(1-k)\frac{\Vert f(p)-p\Vert }{1-k} \\ \leq& M_{1} + \sum_{i = 1}^{k+1} \Vert e_{i}\Vert . \end{aligned}$$

Thus (3.3) is true for all \(n \in N^{+}\). Since \(\sum_{n=1}^{\infty}\|e_{n}\| < +\infty\), (3.3) ensures that \(\{x_{n}\}\) is bounded.

For \(\forall p \in D\), from \(\|u_{n} - p\| \leq \|(1-\alpha_{n})(x_{n}+e_{n})-p\|\leq\|x_{n}\|+\|e_{n}\|+\|p\|\), we see that \(\{u_{n}\}\) is bounded.

Since \(\|\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\|\leq \|\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} - \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}p\|+(1-a_{0})\|p\|\leq\|u_{n} -p\|+\|p\|\), \(\{\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\}\) is bounded. Since both \(\{\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\}\) and \(\{x_{n}\}\) are bounded, \(\{v_{n}\}\) is bounded. From the definition of a contraction, we can easily see that \(\{f(x_{n})\}\) is bounded.

Set \(M_{2} = \sup\{ \|u_{n}\|, \|J_{r_{n,i}}^{A_{i}}u_{n}\|, \|\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n}\|, \|f(x_{n})\|, \|v_{n}\|, \|x_{n}\|, : n \geq1, i\geq1\}\).

Step 2. \(\lim_{n \rightarrow\infty} \|x_{n} -w_{n}\| = 0\) and \(\lim_{n \rightarrow\infty} \|x_{n+1} - x_{n} \| = 0\).

In fact, if \(r_{n,i}\leq r_{n+1,i}\), then, using Lemma 2.6,

$$\begin{aligned}& \Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\& \quad \leq\sum_{i = 1}^{\infty}a_{i} \bigl\Vert J_{r_{n+1,i}}^{A_{i}}u_{n+1}-J_{r_{n,i}}^{A_{i}}u_{n} \bigr\Vert \\& \quad = \sum_{i = 1}^{\infty}a_{i} \biggl\Vert J_{r_{n,i}}^{A_{i}}\biggl(\frac{r_{n,i}}{r_{n+1,i}}u_{n+1}+ \biggl(1-\frac {r_{n,i}}{r_{n+1,i}}\biggr)J_{r_{n+1,i}}^{A_{i}}u_{n+1} \biggr) - J_{r_{n,i}}^{A_{i}}u_{n}\biggr\Vert \\& \quad \leq\sum_{i = 1}^{\infty}a_{i} \biggl\Vert \frac{r_{n,i}}{r_{n+1,i}}u_{n+1}+\biggl(1-\frac {r_{n,i}}{r_{n+1,i}} \biggr)J_{r_{n+1,i}}^{A_{i}}u_{n+1}-u_{n}\biggr\Vert \\& \quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \sum_{i = 1}^{\infty}a_{i}\biggl(1- \frac{r_{n,i}}{r_{n+1,i}}\biggr)\bigl\Vert J_{r_{n+1,i}} ^{A_{i}}u_{n+1}-u_{n} \bigr\Vert \\& \quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \frac{2M_{2}}{\varepsilon}\sum_{i = 1}^{\infty}(r_{n+1,i}-r_{n,i}). \end{aligned}$$
(3.4)

If \(r_{n+1,i}\leq r_{n,i}\), then imitating the proof of (3.4), we have

$$\begin{aligned}& \Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\& \quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \frac{2M_{2}}{\varepsilon}\sum_{i = 1}^{\infty}(r_{n,i}-r_{n+1,i}). \end{aligned}$$
(3.5)

Combining (3.4) and (3.5), we have

$$\begin{aligned} \begin{aligned}[b] &\Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ &\quad \leq(1-a_{0})\Vert u_{n+1}-u_{n}\Vert + \frac{2M_{2}}{\varepsilon}\sum_{i = 1}^{\infty}|r_{n,i}-r_{n+1,i}|. \end{aligned} \end{aligned}$$
(3.6)

On the other hand,

$$\begin{aligned} \|u_{n+1}-u_{n}\| \leq& \|x_{n+1}-x_{n} \|+\alpha_{n+1}\|x_{n+1}\|+\alpha_{n} \|x_{n}\| \\ &{}+\|\alpha _{n+1}e_{n+1}-\alpha_{n}e_{n} \|+\|e_{n+1}-e_{n}\|. \end{aligned}$$
(3.7)

In view of (3.6) and (3.7), we have

$$\begin{aligned} \Vert v_{n+1}-v_{n}\Vert \leq& (1-\beta_{n+1}) \Vert x_{n+1}-x_{n}\Vert +a_{0} \beta_{n+1}\Vert u_{n+1}-u_{n}\Vert \\ &{}+\beta_{n+1} \Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}}u_{n+1} - \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ &{} +|\beta_{n+1}-\beta_{n}|\Vert x_{n}\Vert + a_{0}|\beta_{n+1}-\beta_{n}|\Vert u_{n} \Vert +|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ \leq& (1-\beta_{n+1})\Vert x_{n+1}-x_{n}\Vert +a_{0}\beta_{n+1}\bigl[\Vert x_{n+1}-x_{n} \Vert +\alpha _{n+1}\Vert x_{n+1}\Vert \\ &{}+\alpha_{n}\Vert x_{n}\Vert + \Vert e_{n+1}-e_{n}\Vert +\Vert \alpha_{n+1}e_{n+1}- \alpha_{n}e_{n}\Vert \bigr] \\ &{} + \beta_{n+1}\Biggl[ (1-a_{0})\Vert u_{n+1}-u_{n}\Vert +\frac{2M_{2}}{\varepsilon}\sum _{i = 1}^{\infty} |r_{n,i}-r_{n+1,i}|\Biggr] \\ &{} + |\beta_{n+1}-\beta_{n}|\Vert x_{n}\Vert + a_{0}|\beta_{n+1}-\beta_{n}|\Vert u_{n}\Vert +|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert \\ \leq&\Vert x_{n+1}-x_{n}\Vert + \Vert x_{n} \Vert +\Vert x_{n+1}\Vert +\Vert \alpha_{n+1}e_{n+1}- \alpha_{n}e_{n}\Vert +\Vert e_{n+1}-e_{n} \Vert \\ &{}+|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert +|\beta_{n+1}-\beta_{n}|\Vert x_{n} \Vert +a_{0}|\beta_{n+1}-\beta_{n}|\Vert u_{n}\Vert \\ &{} +\frac{2M_{2}}{\varepsilon}\beta_{n+1}\sum_{i = 1}^{\infty} |r_{n,i}-r_{n+1,i}|. \end{aligned}$$
(3.8)

Thus in view of (3.8), we have

$$\begin{aligned} \Vert w_{n+1}-w_{n}\Vert \leq& (k\mu_{n+1}+ \gamma_{n+1}+\delta_{n+1})\Vert x_{n+1}-x_{n} \Vert +|\mu_{n+1}-\mu _{n}|\bigl\Vert f(x_{n}) \bigr\Vert \\ &{}+|\gamma_{n+1}-\gamma_{n}|\Vert x_{n}\Vert +\delta_{n+1}\Vert x_{n}\Vert +\delta_{n+1} \Vert x_{n+1}\Vert +|\delta_{n+1}-\delta_{n}| \Vert v_{n}\Vert \\ &{} + \delta_{n+1}\Vert e_{n+1}-e_{n}\Vert + \delta_{n+1}\Vert \alpha_{n+1}e_{n+1}-\alpha _{n}e_{n}\Vert +\delta_{n+1}|\beta_{n+1}- \beta_{n}|\Vert x_{n}\Vert \\ &{}+\delta_{n+1}|\beta_{n+1}-\beta_{n}|\Biggl\Vert \sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}u_{n} \Biggr\Vert +\delta_{n+1}a_{0}|\beta_{n+1}-\beta _{n}|\Vert u_{n}\Vert \\ &{}+\delta_{n+1}\beta_{n+1}\frac{2M_{2}}{\varepsilon}\sum _{i = 1}^{\infty }|r_{n,i}-r_{n+1,i}| \\ \leq&\bigl(1-(1-k)\mu_{n+1}\bigr)\Vert x_{n+1}-x_{n} \Vert \\ &{}+2M_{2}\delta_{n+1} + M_{2}\bigl(| \mu_{n+1}-\mu_{n}|+|\gamma_{n+1}-\gamma_{n}|+| \delta_{n+1}-\delta _{n}|+3|\beta_{n+1}- \beta_{n}|\bigr) \\ &{}+\Vert e_{n+1}-e_{n}\Vert + \Vert \alpha_{n+1}e_{n+1}-\alpha_{n}e_{n}\Vert \\ &{}+ \delta_{n+1}\beta_{n+1}\frac {2M_{2}}{\varepsilon}\sum _{i = 1}^{\infty}|r_{n,i}-r_{n+1,i}|. \end{aligned}$$
(3.9)

Using Lemma 2.4, we have from (3.9) \(\lim_{n \rightarrow \infty} \|x_{n} - w_{n}\| = 0\) and then \(\lim_{n \rightarrow\infty} \|x_{n+1} - x_{n} \| = 0\).

Step 3. \(\lim_{n \rightarrow\infty} \|x_{n} - u_{n}\| = 0\) and \(\lim_{n \rightarrow\infty} \|u_{n} - (a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}})u_{n}\| = 0\).

We compute the following:

$$\begin{aligned} \Vert v_{n+1}-v_{n}\Vert \leq&(1-\beta_{n+1}) \Vert x_{n+1}-x_{n}\Vert + |\beta_{n+1}- \beta_{n}|\Vert x_{n}\Vert \\ &{} +\beta_{n+1}\Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}} \Biggr)u_{n+1} - \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert \\ &{}+ |\beta_{n+1}-\beta_{n}| \Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert \\ \leq&(1-\beta_{n+1})\Vert x_{n+1}-x_{n}\Vert + 2|\beta_{n+1}-\beta_{n}|M_{2} \\ &{}+\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n+1,i}}^{A_{i}} \Biggr)u_{n+1} - \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert . \end{aligned}$$

Using the result of Step 2 and Lemma 2.4, we have

$$ \lim_{n \rightarrow\infty} \Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-v_{n}\Biggr\Vert = 0. $$
(3.10)

Since

$$\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-v_{n}\Biggr\Vert = (1-\beta_{n}) \Biggl\Vert x_{n} - \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert $$

and \(0 < \liminf_{n \rightarrow\infty}\beta_{n} \leq \limsup_{n \rightarrow\infty}\beta_{n} <1\), (3.10) implies that

$$ \lim_{n \rightarrow\infty}\Biggl\Vert x_{n} - \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert = 0. $$
(3.11)

Moreover,

$$\|u_{n} - x_{n}\| = \bigl\Vert Q_{C}\bigl[(1- \alpha_{n}) (x_{n}+e_{n})\bigr]-Q_{C}x_{n} \bigr\Vert \leq \alpha_{n}\|x_{n}\|+ (1- \alpha_{n})\|e_{n}\|, $$

then

$$ \lim_{n\rightarrow\infty}\|x_{n} - u_{n}\| = 0. $$
(3.12)

Noticing (3.11) and (3.12), we have

$$ \lim_{n \rightarrow \infty}\Biggl\Vert u_{n} - \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n} \Biggr\Vert = 0. $$
(3.13)

Step 4. \(\omega(x_{n})\subset D\), where \(\omega(x_{n})\) is the set of all of the weak limit points of \(\{x_{n}\}\).

Since \(\{x_{n}\}\) is bounded, there exists a subsequence of \(\{x_{n}\}\), which is denoted by \(\{x_{n_{k}}\}\), such that \(x_{n_{k}} \rightharpoonup q_{0}\), as \(k \rightarrow\infty\). From (3.12), we have \(u_{n_{k}} \rightharpoonup q_{0}\), as \(k \rightarrow\infty\). Then Lemma 2.2(ii) implies that

$$ \limsup_{k \rightarrow\infty} \Phi\bigl(\Vert u_{n_{k}}-x\Vert \bigr) = \limsup_{k \rightarrow\infty} \Phi\bigl(\Vert u_{n_{k}}- q_{0}\Vert \bigr)+ \Phi\bigl(\Vert q_{0}-x\Vert \bigr),\quad \forall x \in E. $$
(3.14)

Lemma 3.1, Lemma 2.2(i), and (3.13) imply that

$$\begin{aligned}& \limsup_{k \rightarrow\infty} \Phi\Biggl(\Biggl\Vert u_{n_{k}}- \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}} \Biggr)q_{0}\Biggr\Vert \Biggr) \\& \quad \leq \limsup_{k \rightarrow\infty} \Phi\Biggl(\Biggl\Vert \sum _{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}}u_{n_{k}}- \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}} \Biggr)q_{0}+a_{0}u_{n_{k}}\Biggr\Vert \Biggr) \\& \qquad {}+ \limsup_{k \rightarrow\infty} \Biggl\langle (1-a_{0})u_{n_{k}}- \sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}}u_{n_{k}}, J_{\varphi}\Biggl(u_{n_{k}}-\Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}} \Biggr)q_{0}\Biggr)\Biggr\rangle \\& \quad \leq \limsup_{k \rightarrow\infty} \Phi\bigl(\Vert u_{n_{k}}-q_{0}\Vert \bigr). \end{aligned}$$
(3.15)

From (3.14) and (3.15), we know that \(\Phi(\|(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}})q_{0}-q_{0}\|)\leq0\), which implies that

$$a_{0}q_{0}+\sum_{i = 1}^{\infty}a_{i}J_{r_{n_{k},i}}^{A_{i}}q_{0} = q_{0}. $$

Then Lemma 3.1 ensures that \(q_{0} \in D\).

Step 5. \(x_{n} \rightharpoonup q_{0}\), as \(n \rightarrow\infty\), where \(q_{0}\in D\) is the unique element which satisfies (3.2).

Now, we define \(h(y) = \limsup_{n \rightarrow\infty}\Phi(\|x_{n} - y\|)\), for \(y \in D\). Then \(h(y) : D \rightarrow R^{+}\) is proper, strictly convex, lower-semi-continuous, and \(h(y) \rightarrow +\infty\), as \(\|y\| \rightarrow+\infty\). Therefore, there exists a unique element \(q_{0} \in D\) such that \(h(q_{0}) = \min_{y \in D}h(y)\). That is, \(q_{0}\) satisfies (3.2).

Next, we shall show that \(x_{n} \rightharpoonup q_{0}\), as \(n \rightarrow\infty\).

In fact, suppose there exists a subsequence \(\{x_{n_{m}}\}\) of \(\{x_{n}\}\) (for simplicity, we still denote it by \(\{x_{n}\}\)) such that \(x_{n} \rightharpoonup v_{0}\), as \(n \rightarrow\infty\), then \(v_{0} \in D\) in view of Step 4. Using Lemma 2.2(ii), \(h(q_{0}) = h(v_{0}) + \Phi(\|v_{0} - q_{0}\|)\), which implies that \(\Phi(\|v_{0} - q_{0}\|)= 0\), and then \(v_{0} = q_{0}\).

If there exists another subsequence \(\{x_{n_{k}}\}\) of \(\{x_{n}\}\) such that \(x_{n_{k}} \rightharpoonup p_{0}\), as \(k \rightarrow \infty\). Then repeating the above process, we have \(p_{0} = q_{0}\).

Since all of the weakly convergent subsequences of \(\{x_{n}\}\) converge to the same element \(q_{0}\), the whole sequence \(\{x_{n}\}\) converges weakly to \(q_{0}\). Combining the results of Steps 2 and 3, \(u_{n} \rightharpoonup q_{0}\), \(w_{n} \rightharpoonup q_{0}\), as \(n \rightarrow\infty\).

This completes the proof. □

Remark 3.1

Compared to the work in [20], the smoothness of E is not needed. The iterative algorithm (3.1) is more general than those discussed in [5, 9, 1721].

Remark 3.2

The properties of the function Φ defined by (1.1) are widely used in the proof of Steps 4 and 5, which can be regarded as a new proof technique compared to the existing work.

Remark 3.3

Three sequences are proved to be weakly convergent to the common zero point of an infinite family of m-accretive map**s. The characteristic of the weakly convergent point \(q_{0}\) of \(\{x_{n}\}\) is presented in Theorem 3.1.

Remark 3.4

The assumptions imposed on the real number sequences in Theorem 3.1 are reasonable if we take \(\alpha_{n} = \frac{1}{n}\), \(\mu_{n} = \frac{n}{n^{2}}\), \(\gamma_{n} = \frac{n^{2} - n -1}{n^{2}}\), \(\delta_{n} = \frac{1}{n^{2}}\), and \(\beta_{n} = \zeta_{n} = \frac{n+1}{2n}\), for \(n \geq1\).

Lemma 3.2

Let E be a real uniformly smooth and uniformly convex Banach space. Let C be a nonempty, closed, and convex sunny nonexpansive retract of E, and \(Q_{C}\) be the sunny nonexpansive retraction of E onto C. Let \(T : C \rightarrow C\) be a nonexpansive map** with \(\operatorname{Fix}(T) \neq\emptyset\). Let \(T_{t} : C \rightarrow C\) be defined by \(T_{t} x:= TQ_{C}[(1-t)x]\), \(x \in C\). Then:

  1. (i)

    \(T_{t}\) is a contraction and has a fixed point \(z_{t}\), which satisfies \(\|z_{t} - Tz_{t}\| \rightarrow0\), as \(t\rightarrow0\);

  2. (ii)

    further suppose that E has a weakly continuous duality map** \(J_{\varphi}\), then \(\lim_{t\rightarrow0}z_{t} = z_{0} \in \operatorname{Fix}(T)\).

Proof

Lemma 2.7 ensures the result of (i).

To show that (ii) holds, it suffices to show that, for any sequence \(\{t_{n}\}\) such that \(t_{n} \rightarrow0\), we have \(\lim_{n\rightarrow\infty}z_{t_{n}} = z_{0} \in \operatorname{Fix}(T)\).

In fact, the result of (i) implies that there exists \(z_{t} \in \operatorname{Fix}(T)\) such that \(z_{t} = TQ_{C}[(1-t)z_{t}]\), \(t \in(0,1)\). For \(\forall p \in \operatorname{Fix}(T)\), since

$$\|z_{t} -p\| = \bigl\Vert TQ_{C}\bigl[(1-t)z_{t} \bigr] - TQ_{C} p\bigr\Vert \leq\|z_{t} - p -tz_{t}\| \leq(1-t)\|z_{t}-p\|+t\|p\|, $$

\(\{z_{t}\}\) is bounded. Without loss of generality, we may assume that \(z_{t_{n}}\rightharpoonup z_{0}\). Using (i) and Lemma 2.5, we have \(z_{0} \in \operatorname{Fix}(T)\).

Using Lemma 2.2, we have, for \(\forall p \in \operatorname{Fix}(T)\),

$$\begin{aligned} \Phi\bigl(\Vert z_{t} -p\Vert \bigr) =& \Phi\bigl(\bigl\Vert TQ_{C}\bigl[(1-t)z_{t}\bigr] - TQ_{C} p\bigr\Vert \bigr) \\ \leq&\Phi\bigl(\bigl\Vert (1-t)z_{t}-p\bigr\Vert \bigr) \\ \leq&\Phi\bigl(\Vert z_{t} -p\Vert \bigr)-t\bigl\langle z_{t}, J_{\varphi}(z_{t}-p-tz_{t})\bigr\rangle \\ = &\Phi\bigl(\Vert z_{t} -p\Vert \bigr)-t \bigl\langle z_{t}-p-tz_{t}, J_{\varphi}(z_{t}-p-tz_{t}) \bigr\rangle - t\bigl\langle p+tz_{t}, J_{\varphi}(z_{t}-p-tz_{t}) \bigr\rangle , \end{aligned}$$

which implies that

$$\|z_{t} -p -tz_{t}\| \varphi\bigl(\Vert z_{t} -p -tz_{t}\Vert \bigr) \leq\bigl\langle p,J_{\varphi} (p+tz_{t}-z_{t})\bigr\rangle +t \bigl\langle z_{t}, J_{\varphi}(p+tz_{t}-z_{t})\bigr\rangle . $$

In particular,

$$\begin{aligned}& \|z_{t_{n}} -p -{t_{n}}z_{t_{n}}\|\varphi\bigl(\Vert z_{t_{n}} -p -{t_{n}}z_{t_{n}}\Vert \bigr) \\& \quad \leq\bigl\langle p,J_{\varphi }(p+{t_{n}}z_{t_{n}}-z_{t_{n}}) \bigr\rangle + {t_{n}} \bigl\langle z_{t_{n}}, J_{\varphi}(p+{t_{n}}z_{t_{n}}-z_{t_{n}})\bigr\rangle . \end{aligned}$$

Thus

$$\begin{aligned}& \|z_{t_{n}} -z_{0} -{t_{n}}z_{t_{n}}\| \varphi\bigl(\Vert z_{t_{n}} -z_{0} -{t_{n}}z_{t_{n}} \Vert \bigr) \\& \quad \leq\bigl\langle z_{0},J_{\varphi}(z_{0}+{t_{n}}z_{t_{n}}-z_{t_{n}}) \bigr\rangle + {t_{n}} \bigl\langle z_{t_{n}}, J_{\varphi}(z_{0}+{t_{n}}z_{t_{n}}-z_{t_{n}}) \bigr\rangle . \end{aligned}$$
(3.16)

Since E has a weakly continuous duality map** \(J_{\varphi}\), (3.16) implies that \(z_{t_{n}} -z_{0} -{t_{n}}z_{t_{n}}\rightarrow 0\), as \(n \rightarrow\infty\).

From \(\|z_{t_{n}}-z_{0}\|\leq \|z_{t_{n}}-z_{0}-t_{n}z_{t_{n}}\|+t_{n}\|z_{t_{n}}\|\), we see that \(z_{t_{n}}\rightarrow z_{0}\), as \(n \rightarrow\infty\).

Suppose there exists another sequence \(z_{t_{m}} \rightharpoonup x_{0}\), as \(t_{m} \rightarrow0\) and \(m \rightarrow\infty\). Then from (i) \(\|z_{t_{m}}-Tz_{t_{m}}\| \rightarrow0\) and \(I-T\) being demi-closed at zero, we have \(x_{0} \in \operatorname{Fix}(T)\). Moreover, repeating the above proof, we have \(z_{t_{m}}\rightarrow x_{0}\), as \(m \rightarrow\infty\). Next, we want to show that \(z_{0} = x_{0}\).

Similar to (3.16), we have

$$\begin{aligned}& \|z_{t_{m}} - z_{0} -{t_{m}}z_{t_{m}}\| \varphi\bigl(\Vert z_{t_{m}} - z_{0} -{t_{m}}z_{t_{m}} \Vert \bigr) \\& \quad \leq\bigl\langle z_{0},J_{\varphi}(z_{0}+{t_{m}}z_{t_{m}}-z_{t_{m}}) \bigr\rangle + {t_{m}}\bigl\langle z_{t_{m}}, J_{\varphi}(z_{0}+{t_{m}}z_{t_{m}}-z_{t_{m}}) \bigr\rangle . \end{aligned}$$

Letting \(m \rightarrow\infty\),

$$ \|x_{0}-z_{0}\|\varphi\bigl(\Vert x_{0}-z_{0} \Vert \bigr) \leq\bigl\langle z_{0}, J_{\varphi}(z_{0} -x_{0})\bigr\rangle . $$
(3.17)

Interchanging \(x_{0}\) and \(z_{0}\) in (3.17), we obtain

$$ \|z_{0}-x_{0}\|\varphi\bigl(\Vert z_{0}-x_{0} \Vert \bigr) \leq\bigl\langle x_{0}, J_{\varphi}(x_{0} -z_{0})\bigr\rangle . $$
(3.18)

Then (3.17) and (3.18) ensure

$$2\|x_{0}-z_{0}\|\varphi\bigl(\Vert x_{0}-z_{0} \Vert \bigr) \leq\bigl\langle x_{0} - z_{0}, J_{\varphi}(x_{0}-z_{0})\bigr\rangle = \|x_{0} - z_{0} \|\varphi\bigl(\Vert x_{0}-z_{0} \Vert \bigr), $$

which implies that \(x_{0} = z_{0}\).

Therefore, \(\lim_{t\rightarrow0}z_{t} = z_{0} \in \operatorname{Fix}(T)\).

This completes the proof. □

Remark 3.5

Compared to the proof of Lemma 2.7 in [20], a different method is used in the proof of the result (ii) in Lemma 3.2.

Theorem 3.2

Further suppose that E is real uniformly convex and uniformly smooth and (vii) \(\sum_{n=1}^{\infty}(1-\zeta_{n})\alpha_{n}\beta_{n}\delta_{n} = +\infty\); (viii) \(\mu_{n} = o(\alpha_{n}\beta_{n}\delta_{n})\). The other restrictions are the same as those in Theorem  3.1, then the iterative sequence \(\{x_{n}\}\) generated by (3.1) converges strongly to \(p_{0} \in D\).

Proof

We shall split the proof into six steps. The proofs of Steps 1, 2, and 3 are the same as those in Theorem 3.1.

Step 4. \(\limsup_{n\rightarrow+\infty}\langle p_{0}, J_{\varphi}(p_{0}-x_{n})\rangle\leq0\), where \(p_{0}\) is an element in D.

From Lemma 3.2, we know that there exists \(y_{t} \in C\) such that

$$y_{t} = a_{0}Q_{C}\bigl[(1-t)y_{t} \bigr]+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}}Q_{C} \bigl[(1-t)y_{t}\bigr] $$

for \(t \in (0,1)\). Moreover, \(y_{t} \rightarrow p_{0} \in D\), as \(t \rightarrow 0\).

Since \(\|y_{t}\|\leq\|y_{t} - p_{0} \|+\|p_{0}\|\), \(\{y_{t}\}\) is bounded. Using Lemma 2.2, we have

$$\begin{aligned} \Phi\bigl(\Vert y_{t} - x_{n}\Vert \bigr) \leq&\Phi \bigl(\bigl\Vert (1-t)y_{t}-x_{n}\bigr\Vert \bigr) \\ &{}+ \Biggl\langle \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-x_{n}, J_{\varphi}(y_{t}-x_{n}) \Biggr\rangle \\ \leq&\Phi\bigl(\Vert y_{t}-x_{n}\Vert \bigr) - t \bigl\langle y_{t}, J_{\varphi}\bigl[(1-t)y_{t} -x_{n}\bigr]\bigr\rangle \\ &{}+ K_{1}\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-x_{n}\Biggr\Vert , \end{aligned}$$

where \(K_{1} = \sup \{\varphi(\|y_{t} - x_{n}\|): n \geq1, t > 0\}\) and from the result of Step 1 we know that \(K_{1}\) is a positive constant.

Thus \(\langle y_{t}, J_{\varphi}[(1-t)y_{t} -x_{n}]\rangle\leq \frac{K_{1}}{t}\|(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}})x_{n}-x_{n}\|\). Noticing (3.12) and (3.13), we have

$$\begin{aligned}& \Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-x_{n}\Biggr\Vert \\& \quad \leq\Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)x_{n}-\Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}\Biggr\Vert \\& \qquad {}+\Biggl\Vert \Biggl(a_{0}I+\sum _{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-u_{n}\Biggr\Vert +\Vert u_{n}-x_{n} \Vert \\& \quad \leq2\Vert x_{n} - u_{n}\Vert +\Biggl\Vert \Biggl(a_{0}I+\sum_{i = 1}^{\infty}a_{i}J_{r_{n,i}}^{A_{i}} \Biggr)u_{n}-u_{n}\Biggr\Vert \rightarrow0, \end{aligned}$$

as \(n \rightarrow\infty\). Therefore,

$$\lim_{t \rightarrow0}\limsup_{n\rightarrow+\infty}\bigl\langle y_{t}, J_{\varphi}\bigl[(1-t)y_{t} -x_{n} \bigr]\bigr\rangle \leq0. $$

From the assumption on \(J_{\varphi}\) and the following fact:

$$\begin{aligned} \bigl\langle p_{0}, J_{\varphi}(p_{0} - x_{n})\bigr\rangle =& \bigl\langle p_{0}, J_{\varphi}(p_{0} - x_{n}) - J_{\varphi} \bigl[(1-t)y_{t} -x_{n}\bigr]\bigr\rangle \\ &{} + \bigl\langle p_{0} - y_{t}, J_{\varphi} \bigl[(1-t)y_{t} -x_{n}\bigr]\bigr\rangle + \bigl\langle y_{t}, J_{\varphi}\bigl[(1-t)y_{t} -x_{n} \bigr]\bigr\rangle , \end{aligned}$$

we have \(\limsup_{n\rightarrow+\infty}\langle p_{0}, J_{\varphi}(p_{0} - x_{n})\rangle\leq0\).

Then

$$\begin{aligned}& \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi } \bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]\bigr\rangle \\& \quad \leq \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi}\bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]-J_{\varphi}(p_{0}-x_{n}) \bigr\rangle + \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi}(p_{0}-x_{n})\bigr\rangle \\& \quad = \limsup_{n \rightarrow\infty}\bigl\langle p_{0}, J_{\varphi}(p_{0}-x_{n})\bigr\rangle \leq0. \end{aligned}$$
(3.19)

Step 5. Φ defined by (1.1) satisfies \(\Phi(kt) \leq k \Phi(t)\), for \(t \in[0, +\infty)\), where \(k \in[0,1]\).

In fact, let \(F(t) = \int_{0}^{kt} \varphi(s) \,ds - k \int_{0}^{t}\varphi(s)\,ds\), for \(t \in[0,+\infty)\). Then \(F'(t) = k \varphi(kt) - k\varphi(t) \leq0\), since \(k \in(0,1)\) and the gauge function φ is increasing. Thus F is decreasing on \([0,+\infty)\). That is, \(F(t) \leq F(0)\), for \(t \in[0,+\infty)\). Then \(\int_{0}^{kt}\varphi(s) \,ds \leq k \int_{0}^{t} \varphi(s) \,ds\), for \(t \in[0,+\infty)\), which implies that \(\Phi(kt) \leq k\Phi(t)\), for \(t \in[0,+\infty)\).

Step 6. \(x_{n} \rightarrow p_{0}\), as \(n \rightarrow+\infty\), where \(p_{0} \in D\) is the same as that in Step 4.

Since Φ is convex, we have

$$ \Phi\bigl(\Vert x_{n+1} - p_{0}\Vert \bigr)\leq(1- \zeta_{n}) \Phi\bigl(\Vert w_{n}-p_{0}\Vert \bigr)+\zeta_{n} \Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr). $$
(3.20)

Using Lemma 2.2 and the result of Step 5, we have

$$\begin{aligned} \Phi\bigl(\Vert w_{n} - p_{0}\Vert \bigr) \leq& \mu_{n} \Phi\bigl(\bigl\Vert f(x_{n})-p_{0}\bigr\Vert \bigr)+\gamma_{n} \Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr)+\delta_{n} \Phi\bigl(\Vert v_{n} - p_{0}\Vert \bigr) \\ \leq&(\mu_{n} k +\gamma_{n})\Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr)+ \mu_{n} \bigl\langle f(p_{0}) - p_{0}, J_{\varphi} \bigl(f(x_{n}) - p_{0}\bigr) \bigr\rangle \\ &{}+\delta_{n} \Phi\bigl(\Vert v_{n} - p_{0} \Vert \bigr). \end{aligned}$$
(3.21)

Similarly, we have

$$\begin{aligned} \Phi\bigl(\Vert v_{n} - p_{0}\Vert \bigr) \leq&(1- \beta_{n}) \Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr)+\beta_{n} \Phi\bigl(\Vert u_{n} - p_{0} \Vert \bigr) \\ \leq&(1-\beta_{n}) \Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr)+\beta_{n} (1-\alpha_{n})\Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr) \\ &{}+ \beta_{n} \bigl\langle (1-\alpha_{n})e_{n} - \alpha_{n} p_{0}, J_{\varphi} \bigl((1- \alpha_{n}) (x_{n}+e_{n})-p_{0}\bigr) \bigr\rangle \\ =&(1-\beta_{n} \alpha_{n})\Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr) \\ &{}+ \beta_{n} (1-\alpha_{n})\bigl\langle e_{n}, J_{\varphi} \bigl((1-\alpha_{n}) (x_{n}+e_{n})-p_{0} \bigr)\bigr\rangle \\ &{}+\beta_{n} \alpha_{n} \bigl\langle p_{0}, J_{\varphi} \bigl(p_{0}-x_{n}-(1-\alpha_{n})e_{n}+ \alpha_{n}x_{n}\bigr)\bigr\rangle . \end{aligned}$$
(3.22)

Let \(K_{2} = \sup \{\varphi(\|(1-\alpha_{n})(x_{n}+e_{n})-p_{0}\|), \varphi(\|f(x_{n})-p_{0}\|): n \geq1\}\). Then \(K_{2}\) is a positive constant. Using (3.20)-(3.22), we have

$$\begin{aligned} \Phi\bigl(\Vert x_{n+1}-p_{0}\Vert \bigr) \leq&\bigl\{ 1-(1-\zeta_{n})\bigl[\mu_{n}(1-k)+\alpha_{n} \beta_{n} \delta_{n}\bigr]\bigr\} \Phi\bigl(\Vert x_{n}-p_{0}\Vert \bigr) \\ &{} +(1-\zeta_{n})\beta_{n}(1-\alpha_{n}) \delta_{n}\bigl\langle e_{n}, J_{\varphi}\bigl[(1- \alpha_{n}) (x_{n}+e_{n})-p_{0}\bigr] \bigr\rangle \\ &{}+\alpha_{n}\beta_{n}\delta_{n}(1- \zeta_{n})\bigl\langle p_{0},J_{\varphi } \bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]\bigr\rangle \\ &{} + (1-\zeta_{n})\mu_{n} \bigl\langle f(p_{0})-p_{0}, J_{\varphi}\bigl(f(x_{n}) - p_{0} \bigr)\bigr\rangle \\ \leq& \bigl[1-\alpha_{n}\beta_{n}\delta_{n}(1- \zeta_{n})\bigr]\Phi\bigl(\Vert x_{n}-p_{0} \Vert \bigr) \\ &{}+(1-\zeta_{n}) (1-\alpha_{n}) \beta_{n} \delta_{n}K_{2} \Vert e_{n} \Vert \\ &{}+\alpha_{n}\beta_{n}\delta_{n}(1- \zeta_{n})\bigl\langle p_{0},J_{\varphi} \bigl[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}\bigr]\bigr\rangle \\ &{} +(1-\zeta_{n})\mu_{n} \bigl\langle f(p_{0})-p_{0},J_{\varphi} \bigl(f(x_{n})-p_{0}\bigr) \bigr\rangle . \end{aligned}$$
(3.23)

Let \(c_{n} = \alpha_{n}\beta_{n}\delta_{n}(1-\zeta_{n})\), then (3.23) reduces to \(\Phi(\|x_{n+1}-p_{0}\|) \leq(1-c_{n})\Phi(\|x_{n}-p_{0}\|) + c_{n} \{\langle p_{0}, J_{\varphi}[p_{0}-x_{n}-(1-\alpha_{n})e_{n} + \alpha_{n} x_{n}]\rangle+\frac{\mu_{n}}{\alpha_{n}\beta_{n}\delta_{n}}K_{2}\| f(p_{0})-p_{0}\|\} + K_{2}\|e_{n}\|\).

From Lemma 2.3, the assumptions (vii) and (viii), (3.19), and (3.23), we know that \(\Phi(\|x_{n}-p_{0}\|) \rightarrow0\), which implies that \(x_{n} \rightarrow p_{0}\), as \(n \rightarrow+\infty\). Combining the results in Steps 2 and 3, we can also know that \(w_{n} \rightarrow p_{0}\), \(u_{n} \rightarrow p_{0}\), as \(n \rightarrow +\infty\).

This completes the proof. □

Remark 3.6

Actually, the three sequences \(\{x_{n}\}\), \(\{w_{n}\} \), and \(\{u_{n}\}\) are proved to be strongly convergent to the common zero point \(p_{0}\) of an infinite family of m-accretive map**s. The \(p_{0}\) in Theorem 3.2 also satisfies (3.2).

Remark 3.7

The assumptions imposed on the real sequences in Theorem 3.2 are reasonable if we take \(\alpha_{n} = \delta_{n} = \frac{1}{n^{\frac{1}{3}}}\), \(\mu_{n} = \frac{1}{n^{2}}\), \(\gamma_{n} = 1-\frac{1}{n^{2}}-\frac{1}{n^{\frac{1}{3}}}\), \(\zeta_{n} = \frac{n+1}{2n}\), and \(\beta_{n} = \frac{1+n^{\frac{1}{3}}}{2n^{\frac{1}{3}}}\), for \(n \geq1\).

4 Example: infinite p-Laplacian-like differential systems

Remark 4.1

In the next of this paper, we shall present an example of infinite p-Laplacian-like differential systems. Based on the example, we shall construct an infinite family of m-accretive map**s, present characteristic of the common zero point of theirs, and demonstrate the applications of Theorems 3.1 and 3.2.

Now, we investigate the following p-Laplacian-like differential systems:

$$ \left \{ \textstyle\begin{array}{l} -\operatorname{div}[(C(x)+|\nabla u|^{2})^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u] = f(x),\quad \text{a.e. in } \Omega, \\ -\langle\vartheta,(C(x)+|\nabla u|^{2})^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u\rangle = 0,\quad \text{a.e. on } \Gamma, \\ \quad i = 1,2,\ldots, \end{array}\displaystyle \right . $$
(4.1)

where Ω is a bounded conical domain of the Euclidean space \(R^{N}\) (\(N \geq1\)) with its boundary \(\Gamma\in C^{1}\) [26].

\(m_{i} + s_{i} + 1 = p_{i}\), \(m_{i} \geq0\) and \(\frac{2N}{N+1} < p_{i} < +\infty\), for \(i = 1,2,\ldots\) . \(|\cdot|\) is the Euclidean norm in \(R^{N}\) and \(\langle \cdot,\cdot \rangle\) is the Euclidean inner-product. ϑ is the exterior normal derivative of Γ. \(C(x)\geq0\) and \(C(x)\in L^{p_{i}}(\Omega)\), \(i \in N^{+}\).

We use \(\|\cdot\|_{p_{i}}\) and \(\|\cdot\|_{1,p_{i},\Omega}\) to denote the norms in \(L^{p_{i}}(\Omega)\) and \(W^{1,p_{i}}(\Omega)\), respectively. Let \(\frac{1}{p_{i}} + \frac{1}{p'_{i}} = 1\).

Remark 4.2

If \(s_{i} = 0\) and \(m_{i} = p_{i} - 1\), \(i \in N^{+}\), then (4.1) is reduced to the case of infinite p-Laplacian differential systems.

Remark 4.3

([27])

The map** \(J_{p_{i}}:L^{p_{i}}(\Omega)\rightarrow L^{p'_{i}}(\Omega)\) defined by \(J_{p_{i}}u = |u|^{p_{i}-1}\operatorname{sgn} u\), for \(u\in L^{p_{i}}(\Omega)\), is the duality map** with the gauge function \(\varphi(r) = r^{p_{i}-1}\) for \(i\in N^{+}\). This presents a vivid example of a duality map** in \(L^{p_{i}}(\Omega)\).

Lemma 4.1

([28])

Let E be a real Banach space and \(E^{*}\) be its duality space. If \(B: E \rightarrow E^{*}\) is maximal monotone and coercive, then B is a surjection.

Lemma 4.2

([29])

For each \(i\in N^{+}\), define the map** \(B_{i}:W^{1,p_{i}}(\Omega)\rightarrow(W^{1,p_{i}}(\Omega))^{*} \) by

$$\langle v,B_{i}u\rangle= \int_{\Omega}\bigl\langle \bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u |^{m_{i}-1}\nabla u , \nabla v \bigr\rangle \, dx $$

for any \(u,v \in W^{1,p_{i}}(\Omega)\). Then \(B_{i}\) is everywhere defined, monotone, and hemi-continuous.

Remark 4.4

Based on \(B_{i}\), we shall construct two groups of map**s \(\widetilde{A}_{i}:L^{2}(\Omega)\rightarrow L^{2}(\Omega)\) and \(A_{i}:L^{p_{i}}(\Omega)\rightarrow L^{p_{i}} (\Omega)\) in the following. Since \(B_{i}\) may not be coercive, different proof methods are employed while showing that both \(\widetilde{A}_{i}\) and \(A_{i}\) are m-accretive map**s, compared to the work done in [29].

Definition 4.1

For each \(i\in N^{+}\), define the map** \(\widetilde{A}_{i}:L^{2}(\Omega)\rightarrow L^{2}(\Omega)\) in the following way:

  • \(D(\widetilde{A}_{i})= \{u(x) \in L^{2}(\Omega): \mbox{there exists } h_{i}(x) \in L^{2}(\Omega)\mbox{ such that }h_{i}(x) = B_{i}u \}\), for any \(u \in D(\widetilde{A}_{i})\), \(\widetilde{A}_{i}u = h_{i}(x)\).

Proposition 4.1

The map** \(\widetilde{A}_{i}\) is m-accretive.

Proof

First, for every \(\lambda> 0\), the map** \(T_{i,\lambda} : H^{1}(\Omega)\rightarrow2^{(H^{1}(\Omega))^{*}}\) defined by \(T_{i,\lambda} = u + \lambda\widetilde{A}_{i}u\) is maximal monotone and coercive. It follows from the fact that \(L^{2}(\Omega)\subset(H^{1}(\Omega))^{*}\) and Lemma 4.1 that \(R(I+\lambda\widetilde{A}_{i}) = L^{2}(\Omega)\) for every \(\lambda > 0\).

Secondly, for any \(u_{i} \in D(\widetilde{A}_{i})\), \(\langle u_{1}-u_{2}, \widetilde{A}_{i}u_{1}-\widetilde{A}_{i}u_{2}\rangle= \langle u_{1}-u_{2}, B_{i}u_{1}-B_{i}u_{2}\rangle\geq0\) since \(B_{i}\) is monotone.

This complete the proof. □

Lemma 4.3

If \(f, g \in L^{2}(\Omega)\) and there exist \(u , v \in L^{2}(\Omega) \) such that \(f = u + \lambda\widetilde{A}_{i}u \), \(g = v + \lambda\widetilde{A}_{i}v \). Then

$$\int_{\Omega}|u-v|^{p_{i}}\, dx \leq \int_{\Omega}|f-g|^{p_{i}}\, dx, $$

where \(p_{i} \geq2\). (Functions \(u(x)\) and \(v(x)\) exist from Proposition  4.1.)

Proof

Define \(\psi: R\rightarrow R\) by \(\psi(t) = \frac{1}{p_{i}}|t|^{p_{i}}\), let \(\partial\psi: R\rightarrow R\) denote its subdifferential and for \(\mu> 0 \), let \((\partial\psi)_{\mu} : R\rightarrow R\) denote the Yosida approximation of ∂ψ. Let \(\psi_{\mu}\) be an indefinite integral of \((\partial \psi)_{\mu}\) so that \((\partial\psi)_{\mu}= \partial\psi_{\mu}\). We write \(\partial\psi_{\mu}= \chi_{\mu}: R\rightarrow R \) and observe that \(\chi_{\mu}\) is monotone, Lipschitz with constant \(\frac{1}{\mu}\) and differential everywhere except at \(t = 0 \).

Since

$$\psi_{\mu}\bigl(f(x)-g(x)\bigr)-\psi_{\mu}\bigl(u(x)-v(x) \bigr)\geq \bigl[\chi_{\mu}\bigl(u(x)-v(x)\bigr)\bigr] \bigl[ \bigl(f(x)-g(x)\bigr)-\bigl(u(x)-v(x)\bigr)\bigr] $$

for \(x \in\Omega\), we have

$$\int_{\Omega}\psi_{\mu}(f-g)\, dx \geq \int_{\Omega}\psi _{\mu}(u-v)\, dx + \int_{\Omega}\bigl[\chi_{\mu}(u-v)\bigr] \bigl[(f-g)-(u-v)\bigr]\, dx. $$

So, to prove the lemma, it suffices to prove that

$$\int_{\Omega}\chi_{\mu}(u-v) (\widetilde{A}_{i}u- \widetilde{A}_{i}v)\, dx \geq0 $$

for every \(\mu> 0 \) in view of the fact that \(\psi _{\mu}(t)\uparrow\psi(t)\) for every \(t\in R\) and the monotone convergence theorem.

Now, since

$$\begin{aligned}& \int_{\Omega}\chi_{\mu}(u-v) (\widetilde{A}_{i}u- \widetilde{A}_{i}v)\,dx \\& \quad = \bigl\langle \chi_{\mu}(u-v),B_{i}u-B_{i}v \bigr\rangle \\& \quad \geq \int_{\Omega} \bigl[\bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}+1} - \bigl(C(x)+|\nabla u|^{2}\bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}}|\nabla v| \\& \qquad {}-\bigl(C(x)+|\nabla v|^{2}\bigr)^{\frac{s_{i}}{2}}|\nabla v|^{m_{i}}|\nabla u|+ \bigl(C(x)+|\nabla v|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla v|^{m_{i}+1}\bigr] \chi'_{\mu }(u-v) \,dx \\& \quad = \int_{\Omega} \bigl[\bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}} - \bigl(C(x)+|\nabla v|^{2}\bigr)^{\frac{s_{i}}{2}}|\nabla v|^{m_{i}}\bigr] \bigl( \vert \nabla u\vert - |\nabla v| \bigr)\chi'_{\mu}(u-v) \,dx \\& \quad \geq0, \end{aligned}$$

the last inequality is available since \(\chi_{\mu}\) is monotone and \(\chi_{\mu}(0)=0\).

This completes the proof. □

Definition 4.2

For \(i\in N^{+}\), define the map** \(A_{i}:L^{p_{i}}(\Omega)\rightarrow L^{p_{i}} (\Omega)\) in the following way:

  1. (i)

    if \(p_{i} \geq2\), \(D(A_{i})= \{u(x) \in L^{p_{i}}(\Omega): \mbox{there exists }h_{i}(x) \in L^{p_{i}}(\Omega)\mbox{ such that }h_{i}(x) = B_{i}u \}\), for any \(u \in D(A_{i})\), \(A_{i} u = h_{i}(x)\);

  2. (ii)

    if \(\frac{2N}{N+1} < p_{i} < 2\), we define \(A_{i}: L^{p_{i}}(\Omega) \rightarrow L^{p_{i}}(\Omega)\) as the \(L^{p_{i}}\)-closure of \(\widetilde{A_{i}}: L^{2}(\Omega)\rightarrow L^{2}(\Omega)\) defined in Definition 4.1.

Proposition 4.2

For \(2 \leq p_{i} < + \infty\), the map** \(A_{i}:L^{p_{i}}(\Omega)\rightarrow L^{p_{i}}(\Omega)\) is m-accretive, where \(i\in N^{+}\).

Proof

First, we show that

$$R(I+\lambda A_{i}) = L^{p_{i}}(\Omega) $$

for every \(\lambda> 0\).

In fact, since \(p_{i} \geq2 \), then Proposition 4.1 implies that

$$R(I+\lambda\widetilde{A}_{i}) = L^{2}(\Omega)\supseteq L^{p_{i}}(\Omega). $$

Then for any \(f(x)\in L^{p_{i}}(\Omega)\), there is a \(u\in D(\widetilde{A}_{i})\) such that \(f = u+\lambda\widetilde{A}_{i}u\). Since \(0 = 0 + \lambda\widetilde{A}_{i}0 \), by Lemma 4.3, we have

$$\int_{\Omega}|u|^{p_{i}}\, dx \leq \int_{\Omega}|f|^{p_{i}}\, dx < +\infty. $$

That is, \(u\in L^{p_{i}}(\Omega)\) and so \(R(I+\lambda A_{i}) = L^{p_{i}}(\Omega)\) in view of the definition of \(A_{i}\).

Secondly, we shall show that \(A_{i}\) is accretive.

For any \(u_{j} \in D(A_{i})\), \(j = 1,2 \), we are left to show that

$$\bigl\langle |u_{1}-u_{2}|^{p_{i}-1} \operatorname{sgn}(u_{1}-u_{2}), A_{i}u_{1}-A_{i}u_{2} \bigr\rangle \geq0 . $$

It suffices for us to show that

$$\bigl\langle |u_{1}-u_{2}|^{p_{i}-1} \operatorname{sgn}(u_{1}-u_{2}) , B_{i}u_{1}-B_{i}u_{2} \bigr\rangle \geq0. $$

To this aim, take for a constant \(k > 0 \), define \(\chi_{k}: R\rightarrow R\) by

$$\chi_{k}(t) = \bigl\vert (t\wedge k)\vee(-k)\bigr\vert ^{p_{i}-1}\operatorname{sgn}t. $$

Then \(\chi_{k}\) is monotone, Lipschitz with \(\chi_{k}(0) = 0\), and \(\chi' _{k}\) is continuous except at finitely many points on R. This shows that

$$\begin{aligned}& \bigl\langle |u_{1}-u_{2}|^{p_{i}-1} \operatorname{sgn}(u_{1}-u_{2}),B_{i}u_{1}-B_{i}u_{2} \bigr\rangle \\& \quad = \lim_{k\rightarrow+\infty} \int_{\Omega}\bigl\langle \bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u - \bigl(C(x)+|\nabla v|^{2}\bigr)^{\frac{s_{i}}{2}}|\nabla v|^{m_{i}-1}\nabla v,\nabla u - \nabla v\bigr\rangle \\& \qquad {}\times\chi'_{k}(u_{1}-u_{2}) \,dx \\& \quad \geq \int_{\Omega} \bigl[\bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}} - \bigl(C(x)+|\nabla v|^{2}\bigr)^{\frac{s_{i}}{2}}|\nabla v|^{m_{i}}\bigr] \\& \qquad {}\times\bigl( \vert \nabla u\vert - |\nabla v| \bigr)\chi'_{k}(u_{1}-u_{2}) \,dx \\& \quad \geq0. \end{aligned}$$

This completes the proof. □

Proposition 4.3

For \(\frac{2N}{N+1} < p_{i} < 2 \), the map** \(A_{i}:L^{p_{i}}(\Omega)\rightarrow L^{p_{i}}(\Omega)\) is m-accretive, where \(i \in N^{+}\).

Proof

For \(f(x) \in L^{p_{i}}(\Omega)\), we may choose a sequence \(\{f_{n}\}\subset L^{2}(\Omega)\) such that \(f_{n}(x) \rightarrow f(x)\) in \(L^{p_{i}}(\Omega)\), as \(n \rightarrow\infty\).

Proposition 4.1 implies that there is a \(u_{n} \in L^{2}(\Omega)\) such that \(u_{n} + \lambda\widetilde{A}_{i}u_{n} = f_{n}\), for \(n \geq1\).

Using Lemma 4.3, we have

$$\int_{\Omega}|u_{n}-u_{m}|^{p_{i}}\, dx \leq \int_{\Omega}|f_{n}-f_{m}|^{p_{i}}\, dx. $$

This implies that there is a \(u(x) \in L^{p_{i}}(\Omega)\) such that \(u_{n} \rightarrow u\) in \(L^{p_{i}}(\Omega)\) and then Definition 4.2 ensures that \(R(I+\lambda A_{i})= L^{p_{i}}(\Omega)\).

The nonexpansive property of \((I+\lambda A_{i})^{-1} : L^{p_{i}}(\Omega)\rightarrow L^{p_{i}}(\Omega)\) follows from Lemma 4.3, which implies that \(A_{i}\) is accretive.

This completes the proof. □

Lemma 4.4

([30])

Let Ω be a bounded conical domain in \(R^{N}\). If \(mp>N\), then \(W^{m,p}(\Omega) \hookrightarrow\hookrightarrow C_{B}(\Omega)\); if \(0< mp\leq N\) and \(q_{0}=\frac{Np}{N-mp}\), then \(W^{m,p}(\Omega)\hookrightarrow\hookrightarrow L^{q}(\Omega)\), where \(1\leq q< q_{0}\) and ‘↪↪’ means compact embedding.

Lemma 4.5

([31])

Let \(X_{0}\) denote the closed subspace of all constant functions in \(W^{1,p}(\Omega)\). Let X be the quotient space \(W^{1,p}(\Omega)/X_{0}\). For \(u\in W^{1,p}(\Omega)\), define the map** \(P:W^{1,p}(\Omega) \rightarrow X_{0}\) by \(Pu=\frac{1}{\operatorname{meas}(\Omega)}\int_{\Omega}u \, dx\). Then there is a constant \(C>0\), such that \(\forall u\in W^{1,p}(\Omega)\),

$$\|u-Pu\|_{p}\leq C\|\nabla u\|_{(L^{p}(\Omega))^{N}}. $$

Theorem 4.1

For \(i\in R^{+}\), \(N(A_{i}) = \{u \in L^{p_{i}}(\Omega): u(x) \equiv \mathit{constant}\textit{ on }\Omega\}\).

Proof

(i) \(p_{i} \geq2\).

Let \(u(x) \in N(A_{i})\), then \(0 = \langle u,B_{i}u \rangle= \int_{\Omega}(C(x)+|\nabla u|^{2})^{\frac{s_{i}}{2}}|\nabla u |^{m_{i}+1}\, dx \geq\int_{\Omega}|\nabla u|^{p_{i}}\, dx \geq0\), which implies that \(u(x) \equiv \mathrm{constant}\). That is, \(N(A_{i}) \subset \{u \in L^{p_{i}}(\Omega): u(x) \equiv \mathrm{constant}\mbox{ on }\Omega\}\).

On the other hand, suppose \(u(x) \equiv \mathrm{constant}\). Then \(0 = \langle v, B_{i}u\rangle\), for \(\forall v \in W^{1,p_{i}}(\Omega)\). Then \(u \in N(A_{i})\). The result follows.

(ii) \(\frac{2N}{N+1} < p_{i} < 2\).

Suppose \(u \in L^{p_{i}}(\Omega)\) and \(u(x) \equiv \mathrm{constant}\). Let \(u_{n} \equiv u\), then \(\widetilde{A}_{i}u_{n} = 0\) in view of (i). Thus \(\{u \in L^{p_{i}}(\Omega): u(x) \equiv \mathrm{constant}\mbox{ on }\Omega\} \subset N(A_{i})\) in view of the definition of \(A_{i}\).

On the other hand, let \(u \in N(A_{i})\). Then there exist \(\{u_{n}\}\) and \(\{f_{n}\}\) in \(L^{2}(\Omega)\) such that \(u_{n} \rightarrow u\), \(f_{n} \rightarrow0\) in \(L^{p_{i}}(\Omega)\) and \(\widetilde{A}_{i} u_{n} = f_{n}\). Now, define the following functions:

$$ \eta(t) = \left \{ \textstyle\begin{array}{l@{\quad}l} |t|^{p_{i}-1}\operatorname{sgn}t, &\mbox{if }|t|\geq1, \\ t , &\mbox{if }|t| < 1 \end{array}\displaystyle \right . $$

and

$$ \xi(t) = \left \{ \textstyle\begin{array}{l@{\quad}l} |t|^{2-\frac{2}{p_{i}}}\operatorname{sgn}t,& \mbox{if }|t|\geq1, \\ t ,& \mbox{if }|t| < 1. \end{array}\displaystyle \right . $$

Then for \(u \in L^{2}(\Omega)\), the function \(t \in R \rightarrow \int_{\Omega}\xi(u+t) \, dx \in R\) is continuous and \(\lim_{t \rightarrow\pm\infty}\int_{\Omega}\xi(u+t) \, dx = \pm\infty\). Therefore, there exists \(t_{u} \in R\) such that \(\int_{\Omega}\xi(u+t_{u})\, dx = 0\). So, for \(u_{n} \in L^{2}(\Omega)\), we may assume that there exists \(t_{n} \in R\) such that \(\int_{\Omega}\xi(u_{n}+t_{n}) \, dx = 0\) and \(\widetilde{A}_{i} u_{n} = f_{n}\), for \(n\geq1\). Let \(v_{n} = u_{n} + t_{n}\), then \(\widetilde{A}_{i} v_{n} = \widetilde{A}_{i} u_{n} = f_{n}\), for \(n\geq1\).

Now, we compute the following:

$$\begin{aligned}& \Vert f_{n}\Vert _{p_{i}}\biggl( \int_{|v_{n}|\leq1} |v_{n}|^{p_{i}'}\,dx + \int _{|v_{n}|\geq1} |v_{n}|^{2} \,dx \biggr)^{\frac{p_{i} -1}{p_{i}}} \\& \quad \geq \Vert f_{n}\Vert _{p_{i}}\biggl( \int_{|v_{n}|\leq1} |v_{n}|^{p_{i}'}\,dx + \int _{|v_{n}|\geq1} |v_{n}|^{p_{i}} \,dx \biggr)^{\frac{p_{i} -1}{p_{i}}} \\& \quad = \Vert f_{n}\Vert _{p_{i}}\bigl\Vert \eta(v_{n})\bigr\Vert _{p_{i}'}\geq\bigl\langle \eta(v_{n}),f_{n} \bigr\rangle \\& \quad = \bigl\langle \eta(v_{n}),\widetilde{A}_{i}v_{n} \bigr\rangle \geq \int_{\Omega}|\nabla v_{n}|^{p_{i}} \eta'(v_{n})\,dx \\& \quad \geq \mathrm{const.} \int_{\Omega}\bigl\vert \nabla\bigl(\xi(v_{n})\bigr) \bigr\vert ^{p_{i}}\,dx . \end{aligned}$$
(4.2)

Using Lemma 4.5,

$$ \int_{\Omega}\bigl\vert \nabla\bigl(\xi(v_{n})\bigr) \bigr\vert ^{p_{i}}\, dx \geq \mathrm{const.}\bigl\Vert \xi(v_{n})\bigr\Vert ^{p_{i}}_{1,p_{i},\Omega}. $$
(4.3)

Then Lemma 4.4 implies that

$$\begin{aligned} \bigl\Vert \xi(v_{n})\bigr\Vert ^{p_{i}}_{1,p_{i},\Omega} \geq& \mathrm{const.} \bigl\Vert \xi(v_{n})\bigr\Vert ^{p_{i}}_{p_{i}'} \\ =& \mathrm{const.}\biggl( \int_{|v_{n}|\leq1} |v_{n}|^{p_{i}'}\, dx + \int_{|v_{n}|\geq1} |v_{n}|^{(2-\frac{2}{p_{i}})p_{i}'} \, dx \biggr)^{\frac{p_{i}}{p_{i}'}} \\ =& \mathrm{const.}\biggl( \int_{|v_{n}|\leq1} |v_{n}|^{p_{i}'}\, dx + \int_{|v_{n}|\geq1} |v_{n}|^{2}\, dx \biggr)^{\frac{p_{i}}{p_{i}'}}. \end{aligned}$$
(4.4)

From (4.2)-(4.4), we know that \(\|\xi(v_{n})\|^{p_{i}}_{1,p_{i},\Omega}\leq \mathrm{const.}\|f_{n}\|_{p_{i}} \rightarrow0\), as \(n \rightarrow\infty\). Then \(\xi(v_{n}) \rightarrow0\) in \(L^{p_{i}'}(\Omega)\). Since the Nemytskyi map** \(u \in L^{p_{i}'}(\Omega) \rightarrow\xi^{-1}(u) \in L^{p_{i}}(\Omega)\) is continuous, \(v_{n} \rightarrow0\) in \(L^{p_{i}}(\Omega)\). Then \(u(x) \equiv \mathrm{constant}\). Thus \(N(A_{i})\subset\{u \in L^{p_{i}}(\Omega): u(x) \equiv \mathrm{constant}\mbox{ on }\Omega\}\).

This completes the proof. □

Remark 4.5

Two infinite families of m-accretive map**s related to nonlinear p-Laplacian-like differential systems are constructed, which emphasizes the importance of the study on approximating common zero points of infinite nonlinear m-accretive map**s.

Remark 4.6

Theorem 4.1 helps us to see the assumption that \(\bigcap_{i = 1}^{\infty}N(A_{i})\neq\emptyset\) in Theorems 3.1 and 3.2 are valid.

Definition 4.3

If \(f(x) \equiv0\) in (4.1), then the solution \(u(x)\) of (4.1) is called the equilibrium solution to the p-Laplacian-like differential systems (4.1).

Theorem 4.2

For \(i \in N^{+}\), \(u(x) \in N(A_{i})\) if and only if \(u(x)\) is the equilibrium solution of (4.1).

Proof

It is easy to see that if \(u(x) \in N(A_{i})\), then \(u(x)\) is the equilibrium solution of (4.1). On the other hand, if \(u(x)\) is the equilibrium solution of (4.1), then

$$-\operatorname{div}\bigl[\bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u\bigr] = 0,\quad \mbox{a.e. in }\Omega. $$

Thus for \(\forall\varphi\in C_{0}^{\infty}(\Omega)\), by using the property of generalized function, we have

$$\begin{aligned} 0 &= \bigl\langle \varphi, -\operatorname{div}\bigl[\bigl(C(x)+|\nabla u|^{2}\bigr)^{\frac {s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u\bigr]\bigr\rangle \\ & = \int_{\Omega}-\operatorname{div}\bigl[\bigl(C(x)+|\nabla u|^{2}\bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u\bigr] \varphi \, dx \\ & = \int_{\Omega}\bigl\langle \bigl(C(x)+|\nabla u|^{2} \bigr)^{\frac{s_{i}}{2}}|\nabla u|^{m_{i}-1}\nabla u, \nabla\varphi\bigr\rangle \, dx = \langle\varphi,B_{i}u \rangle, \end{aligned}$$

which implies that \(u(x) \in N(A_{i})\).

This completes the proof. □

Remark 4.7

Based on Theorem 4.2, Theorems 3.1 and 3.2 can be applied to approximate the equilibrium solution of (4.1).