1 Introduction

During the last century, fractional differential equations (FDEs) have fascinated the interest of many researchers due to their various applications in many fields of science, like physics, chemistry, biology, economics, engineering, signal processing, electromagnetics, etc. (see [13]). In many references, the basic notions and tools of fractional calculus can be observed; see, e.g., [46]. Recently, Almeida [7] defined a new fractional derivative called Ψ-Caputo fractional derivative and he published several scientific research works [8, 9]. Afterwards, several mathematicians concentrated their research on the generalized fractional operators; we cite them as examples [1015]. In this direction, researchers have focused their interests on the investigation of existence, uniqueness, and Ulam stability of FDEs using a number of definitions related to fractional derivatives as can be found in some works like [1621] and references therein, as well as in [22, 23].

In 1908, Paul Langevin formulated a new equation, named the Langevin equation, to define the evolution of some physical phenomena in fluctuating environments, like Brownian motion [24]. After this, other extensions of the Langevin equation have been studied in the works of many researchers [2531]. Nowadays, the existence, uniqueness, and stability of solutions for Langevin nonlinear BVPs have been established by many researchers using different kinds of fractional derivatives by applying Banach, Krasnoselskii, Shaefer, and Leray–Schauder classical fixed point theorems. For more information on this topic, the reader is advised to refer to [3239]. The results on the existence and Ulam–Hyers stability of solutions of Langevin fractional equation have been discussed in [29]. Motivated by the works cited above, several other types of stability will be discussed in this article for an advanced combined differential equation. More precisely, consider the fractional generalized Sturm–Liouville–Langevin (FGSLL) problem:

$$ \textstyle\begin{cases} {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} (\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} u( \mathfrak{z}) + \chi (\mathfrak{z}) u(\mathfrak{z}) ) = f( \mathfrak{z}, u(\mathfrak{z})), \quad \mathfrak{z} \in I=[0,R], \\ u(0) = 0, \qquad \eta (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{1}, \varPsi} u(R) + \chi (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2}, \varPsi} u(R) =0. \end{cases} $$
(1)

Here, \(\eta \in C(I,\mathbb{R}^{\star})\), \(\chi \in C(I,\mathbb{R})\), \(f:I\times \mathbb{R}\to \mathbb{R}\) is continuous, \({}^{C}\mathcal{D}_{0^{+}}^{\gamma ,\varPsi} \) is the Ψ-Caputo fractional derivative depending on an increasing function Ψ of order \(\gamma \in \{\alpha _{1},\alpha _{2},\sigma _{1},\sigma _{2}\}\), \(0<\alpha _{1},\alpha _{2}\leq 1\), and \(0<\sigma _{1}\), \(\sigma _{2}<\alpha _{2}\).

To show the novelty and generality of our BVP, we note that:

  1. 1.

    If \(\chi (\mathfrak{z})=0\), for each \(\mathfrak{z} \in I\), the (FGSLL)-problem (1) reduces to the standard form of the fractional Sturm–Liouville (FSL) problem for a nonlinear FDE, which is as follows:

    $$ \textstyle\begin{cases} {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} (\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} u( \mathfrak{z}) ) = f(\mathfrak{z}, u(\mathfrak{z})),\quad \mathfrak{z} \in I, \\ u(0) = 0,\qquad \eta (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{1}, \varPsi} u(R) =0, \end{cases} $$
    (2)

    and the considered (FSL)-problem (2) contains some problems involving different fractional derivative operators, for various choices of the function Ψ. Among these are interesting extensions:

    • If \(\varPsi (x)=x\), then the (FSL)-problem (2) reduces to the Caputo-type Sturm–Liouville (CSL) problem.

    • If \(\varPsi (x)=x^{\nu}\), then the (FSL)-problem (2) becomes the Caputo–Erdélyi–Kober-type Sturm–Liouville (CEKSL) problem.

    • If \(\varPsi (x)=\ln (x)\), then the (FSL)-problem (2) represents the Caputo–Hadamard-type Sturm–Liouville (CHSL) problem.

  2. 2.

    By choosing \(\eta (\mathfrak{z})\equiv 1\), \(\chi (\mathfrak{z})\equiv \lambda \) (\(\lambda \in \mathbb{R}\)), for \(\mathfrak{z} \in I\), the (FGSLL)-problem (1) reduces to the standard form of the fractional Langevin (FL) problem for a nonlinear FDE, which is as follows:

    $$ \textstyle\begin{cases} {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} ( {}^{C} \mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} u(\mathfrak{z}) +\lambda u( \mathfrak{z}) ) = f(\mathfrak{z},u(\mathfrak{z})),\quad \mathfrak{z} \in I, \\ u(0) = 0, \qquad {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{1},\varPsi} u(R) + \lambda {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} u(R) =0, \end{cases} $$
    (3)

    and the considered (FL)-equation (3) contains some problems involving many classical fractional derivative operators, for various choices of a function Ψ. Among these are interesting extensions:

    • If \(\varPsi (x)=x\), then the (FL)-problem (3) reduces to the Caputo-type Langevin (CL) problem.

    • If \(\varPsi (x)=x^{\nu}\), then the (FL)-problem (3) represents the Caputo–Erdélyi–Kober-type Langevin (CEKL) problem.

    • If \(\varPsi (x)=\ln (x)\), then the (FL)-problem (3) becomes the Caputo–Hadamard-type Langevin (CHL) problem.

Now, to organize the paper in a standard form for the readers, we arrange it as follows. In Sect. 2, we propose some definitions and lemmas that will be used to establish our theorems. In Sect. 3, we investigate the existence and uniqueness of the solution for the main (FGSLL)-problem (1) under some Ψ-Bielecki-type norm inequalities, and Sect. 4 presents the study of some stability results for the solutions of the (FGSLL)-problem (1), such as Ulam–Hyers, Ulam–Hyers–Rassias, and their generalizations, with the help of the generalized Gronwall inequality. Our main tools in this study are three fixed point theorems: the Banach contraction principle, Leray–Schauder, and Krasnoselskii theorems under some norm inequalities of the Ψ-Bielecki type. After that we give, in Sect. 5, three examples to illustrate our theoretical results. Finally, we complete the paper by a conclusion with some perspectives.

2 Essential concepts and basic tools

Some concepts are recalled in this section, and also some lemmas are proved.

Definition 2.1

([7])

Let \(\mu >0\), \(n\in \mathbb{N} \), \(I=[a,b]\) with \(-\infty \leq a< b\leq \infty \), \(\varphi :I \to \mathbb{R}\) be an integrable function, and \(\varPsi \in \mathcal{C}^{1}(I, \mathbb{R})\) increasing with \(\varPsi '(\mathfrak{z}) \neq 0\) for any \(\mathfrak{z} \in I\). The Ψ-Riemann–Liouville (R–L) fractional integral of order μ for φ that depends on Ψ is given as

$$ \mathcal{I}_{a^{+}}^{\mu ; \varPsi} \varphi (\mathfrak{z})= \frac{1}{\Gamma (\mu )} \int _{a}^{\mathfrak{z}} \varPsi '(s) \bigl( \varPsi (\mathfrak{z})-\varPsi (s)\bigr)^{ \mu -1} \varphi (s)\,ds. $$
(4)

Definition 2.2

([7])

Consider an interval \(I\subset \mathbb{R}\) and let \(\mu \in (n-1,n)\). Let also \(\varphi :I\to \mathbb{R}\) be an integrable function and Ψ be as given in Definition 2.1. Then, the Ψ-R–L fractional derivative of the order μ of the function φ with respect to Ψ is given as

$$ \begin{aligned} \mathcal{D}_{a^{+}}^{\mu ; \varPsi} \varphi (\mathfrak{z})&= \biggl(\frac {1}{\varPsi '(\mathfrak{z})} \frac {d}{d \mathfrak{z}} \biggr)^{n} \mathcal{I}_{a^{+}}^{n-\mu ; \varPsi} \varphi ( \mathfrak{z}) \\ &=\frac{1}{\Gamma (n-\mu )} \biggl( \frac{1}{\varPsi '(\mathfrak{z})} \frac{d}{d \mathfrak{z}} \biggr)^{n} \int _{a}^{\mathfrak{z}} \varPsi '(s) \bigl( \varPsi (\mathfrak{z})-\varPsi (s)\bigr)^{n- \mu -1} \varphi (s)\,ds, \end{aligned} $$
(5)

where \(n=[\mu ]+1\) and \([\mu ]\) indicates the integer part of μ.

Definition 2.3

([7])

Let \(\mu >0\), \(n\in \mathbb{N} \), \(I=[a,b]\) with \(-\infty \leq a< b\leq \infty \), \(\varPsi , \varphi \in C^{n}(I, \mathbb{R})\) be functions so that Ψ is increasing and \(\varPsi '(\mathfrak{z}) \neq 0\) for any \(\mathfrak{z} \in I\). The left-sided Ψ-Caputo fractional derivative of order μ for φ is defined by

$$ { }^{c}\mathcal{D}_{a^{+}}^{\mu ; \varPsi} \varphi ( \mathfrak{z})= \mathcal{I}_{a^{+}}^{n-\mu ; \varPsi} \biggl( \frac {1}{\varPsi '(\mathfrak{z})} \frac {\mathrm{d}}{\mathrm{d} \mathfrak{z}} \biggr)^{n} \varphi ( \mathfrak{z}), $$

where \(n=[\mu ]+1\) for \(\mu \notin \mathbb{N}\) and \(n=\mu \) for \(\mu \in \mathbb{N}\).

To simplify the notation, we put \(\varphi _{\varPsi}^{[n]}(\mathfrak{z})= ( \frac {1}{{\varPsi '}(\mathfrak{z})} \frac {\mathrm{d}}{\mathrm{d} \mathfrak{z}} )^{n} \varphi ( \mathfrak{z})\). Then, from the definition we can write

\({ }^{c} \mathcal{D}_{a^{+}}^{\mu ; \varPsi} \varphi (\mathfrak{z})= \begin{cases} \int _{a}^{\mathfrak{z}} \frac {\varPsi '(s)(\varPsi (\mathfrak{z})-\varPsi (s))^{n-\mu -1}}{\Gamma (n-\mu )} \varphi _{\varPsi}^{[n]}(s) \,\mathrm{d} s & \text{ if } \mu \notin \mathbb{N}, \\ \varphi _{\varPsi}^{[n]}(\mathfrak{z}) & \text{ if } \mu \in \mathbb{N}. \end{cases} \)

Lemma 2.4

([7])

Let \(\mu >0\) and \(\varphi :[a,b] \to \mathbb{R}\). The properties given below hold:

  • If \(\varphi \in \mathcal{C} ([a,b])\), then \({}^{C}\mathcal{D}_{a^{+}}^{\mu ,\varPsi} \mathcal{I}_{a^{+}}^{ \mu ,\varPsi} \varphi (\mathfrak{z}) =\varphi (\mathfrak{z})\).

  • If \(\varphi \in \mathcal{C}^{n-1} ([a,b])\), then

    $$ \mathcal{I}_{a^{+}}^{\mu ,\varPsi} {}^{C} \mathcal{D}_{a^{+}}^{ \alpha ,\varPsi} \varphi (\mathfrak{z}) = \varphi ( \mathfrak{z}) - \underset{k=0}{\overset{n-1}{\sum }} c_{k} \bigl( \varPsi ( \mathfrak{z}) - \varPsi (a) \bigr)^{k}, $$

    where \(c_{k} = \frac {\varphi _{\varPsi}^{[k]}(a)}{k!}\), \(\varphi _{\varPsi}^{[k]}(a) = [ \frac {1}{\varPsi ^{ \backprime } (\mathfrak{z})} \frac {d}{d\mathfrak{z}} ]^{k} \varphi (a)\), \(n-1< \mu \leq n\).

In particular, for \(\mu \in (0,1)\), we have \(\mathcal{I}_{a+}^{ \mu , \varPsi C} \mathcal{D}_{a+}^{\mu , \varPsi} \varphi ( \mathfrak{z})=\varphi (\mathfrak{z})-\varphi (a) \).

Now, we define the norms \(\|\cdot \|_{C}:C ( [ a,b ] ) \to \mathbb{R}\) and \(\|\cdot \|_{C_{\varPsi}^{[n]}}:C^{n} ( [ a,b ] ) \to \mathbb{R} \) by

$$ \Vert \varphi \Vert _{C}:= \underset{\mathfrak{z}\in [ a,b ] }{ \max } \bigl\vert \varphi (\mathfrak{z}) \bigr\vert \quad \text{and} \quad \Vert \varphi \Vert _{C_{\varPsi}^{[n]}}:=\underset{j=0}{\overset{n}{\sum }} \bigl\Vert \varphi _{ \varPsi}^{[j]} \bigr\Vert _{C}. $$

Lemma 2.5

([11])

If \(\varphi :C ( [ a,b ] ) \to \mathbb{R}\), then \(I_{a+}^{\mu , \varPsi} \varphi (\mathfrak{z})\) is well-defined for every \(\mathfrak{z} \in [a, b]\). In addition, we have

  1. (i)

    \(\mathcal{I}_{a+}^{\mu , \varPsi} \varphi (a)=0\);

  2. (ii)

    \(\Vert \mathcal{I}_{a+}^{\mu , \varPsi} \varphi \Vert _{C} \leq \frac {(\varPsi (\mathfrak{z})-\varPsi (a))^{\mu}}{\Gamma (\mu +1)} \|\varphi \|_{C} \).

Proof

From (4), we derive the following inequality:

$$ \bigl\vert \mathcal{I}_{a+}^{\mu , \varPsi} \varphi (\mathfrak{z}) \bigr\vert \leq \frac {(\varPsi (\mathfrak{z})-\varPsi (a))^{\mu}}{\Gamma (\mu +1)} \Vert \varphi \Vert _{C}, $$

which gives immediately \(\mathcal{I}_{a+}^{\mu , \varPsi} \varphi (a)=0\) and \(\Vert \mathcal{I}_{a+}^{\mu , \varPsi} \varphi \Vert _{C} \leq \frac {(\varPsi (\mathfrak{z})-\varPsi (a))^{\mu}}{\Gamma (\mu +1)} \|\varphi \|_{C} \). □

Lemma 2.6

([7])

The Ψ-Caputo derivatives of the fractional order are bounded and, for any \(\mu >0\), we have

$$ \|^{C} \mathcal{D}_{a+}^{\mu , \varPsi} \varphi \Vert _{C} \leq \frac {(\varPsi (b)-\varPsi (a))^{n-\mu}}{\Gamma (n+1-\mu )} \Vert \varphi \Vert _{C_{\varPsi}^{[n]}}. $$

Remark 2.7

From equality (5), we can easily obtain

$$ \bigl\vert { }^{c} \mathcal{D}_{a+}^{\mu , \varPsi} \varphi (\mathfrak{z}) \bigr\vert \leq \frac {(\varPsi (\mathfrak{z})-\varPsi (a))^{n-\mu}}{\Gamma (n+1-\mu )} \Vert \varphi \Vert _{C_{\varPsi}^{[n]}}, $$

which allows us to conclude that \({ }^{C} \mathcal{D}_{a+}^{\mu , \varPsi} \varphi (a)=0\).

Lemma 2.8

Let \(\mu , \theta >0\). We have

$$ \mathcal{I}_{0^{+}}^{\mu ; \varPsi} e^{\theta (\varPsi (\mathfrak{z})- \varPsi (0))} \leq \frac {e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} }{\theta ^{\mu}},\quad 0\leq \mathfrak{z}\leq R, $$
(6)

and

$$ \int _{0}^{\mathfrak{z}_{1}} \frac {\varPsi '(s) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\mu -1}}{\Gamma (\mu )} e^{\theta (\varPsi (s)-\varPsi (0))}\,ds \leq \frac {e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))} }{\theta ^{\mu}},\quad 0\leq \mathfrak{z}_{1}< \mathfrak{z}_{2} \leq R. $$
(7)

Proof

By applying the Ψ-R–L fractional operator \(\mathcal{I}_{0^{+}}^{\mu _{1},\varPsi} \) to the function \(\mathfrak{z} \mapsto e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \) together with the replacement of variables \(\mathrm{y}=\varPsi (\mathfrak{z})-\varPsi (s)\) and \(z=\theta \mathrm{y}\), we have

$$ \begin{aligned} \mathcal{I}_{0^{+}}^{\mu ; \varPsi} e^{\theta (\varPsi ( \mathfrak{z})-\varPsi (0))}&= \frac{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\Gamma (\mu )} \int _{0}^{\varPsi (\mathfrak{z})-\varPsi (0)} \mathrm{y}^{\mu -1} e^{- \theta \mathrm{y}} \,\mathrm{dy} \\ &= \frac{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\Gamma (\mu ) \theta ^{\mu}} \int _{0}^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} z^{\mu -1} e^{-z}\,dz \\ &\leq \frac{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\Gamma (\mu ) \theta ^{\mu}} \int _{0}^{\infty} \mathrm{z}^{\mu -1} e^{-z} \,\mathrm{dz} = \frac{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\theta ^{\mu}}. \end{aligned} $$

For the proof of the inequality (7), we again use the same replacement of variables \(\mathrm{y}=\varPsi (\mathfrak{z}_{2})-\varPsi (s)\) and \(z=\theta \mathrm{y}\), and we obtain

$$ \begin{aligned} &\int _{0}^{\mathfrak{z}_{1}} \frac {\varPsi '(s) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\mu -1}}{\Gamma (\mu )} e^{\theta (\varPsi (s)-\varPsi (0))}\,ds \\ &\quad =- \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\Gamma (\mu )} \int _{\varPsi (\mathfrak{z}_{2})-\varPsi (0)}^{\varPsi (\mathfrak{z}_{2})- \varPsi (\mathfrak{z}_{1})} \mathrm{y}^{\mu -1} e^{-\theta \mathrm{y}} \,\mathrm{dy} \\ &\quad = \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\Gamma (\mu ) \theta ^{\mu}} \int _{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (\mathfrak{z}_{1}))}^{ \theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))} z^{\mu -1} e^{-z}\,dz \\ &\quad \leq \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\Gamma (\mu ) \theta ^{\mu}} \int _{0}^{\infty} z^{\mu -1} e^{-z}\,dz = \frac {e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))} }{\theta ^{\mu}}. \end{aligned} $$

The proof is now complete. □

Lemma 2.9

Let \(0<\alpha _{1},\alpha _{2}\leq 1\), \(\alpha _{3} >0\), and \(0<\sigma _{1}\), \(\sigma _{2}<\alpha _{2}\). Suppose that \(h \in \mathcal{C}(I, \mathbb{R} )\), \(\eta \in \mathcal{C}(I,\mathbb{R}^{\star})\), and \(\chi \in \mathcal{C}(I,\mathbb{R})\). Then, u is a solution of

$$\begin{aligned} &{}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl( \eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} u( \mathfrak{z}) + \chi (\mathfrak{z}) u(\mathfrak{z}) \bigr) =h( \mathfrak{z}), \end{aligned}$$
(8)
$$\begin{aligned} &u(0) = 0, \end{aligned}$$
(9)
$$\begin{aligned} &\eta (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{1},\varPsi} u(R) + \chi (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} u(R) =0 \end{aligned}$$
(10)

if and only if it fulfills the integral equation given below:

$$ \begin{aligned} u(\mathfrak{z}) ={}& \mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} h( \mathfrak{z}) \biggr) -\mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}) u(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr)- \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} h(R) \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} h(R) \biggr)+ \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) \biggr], \end{aligned} $$
(11)

where

$$ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \biggr) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{1}{\eta (R)} \biggr) \neq 0. $$

Proof

By applying the Ψ-R–L fractional operators \(\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \) and \(\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \) on both sides of equation (8) and utilizing Lemma 2.4, we obtain two real numbers \(c_{0}\) and \(c_{1}\) such that

$$ u(\mathfrak{z}) = \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} h( \mathfrak{z}) \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{\chi (\mathfrak{z})}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{3},\varPsi} u(\mathfrak{z}) \biggr) +c_{0} \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \biggr) +c_{1}, $$
(12)

where \(c_{0}\) and \(c_{1}\) belong to \(\mathbb{R} \).

From the boundary condition (9), together with Lemma 2.5, it follows that \(c_{1} = 0\), and by using the second boundary condition (10), as well as taking into account the assumption

$$ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \biggr) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{1}{\eta (R)} \biggr) \neq 0, $$

after some computations we obtain

$$ \begin{aligned} c_{0} ={}& \frac { 1 }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr)-\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} h(R) \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} h(R) \biggr)+ \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) \biggr]. \end{aligned} $$

Replacing \(c_{0}\) with its value in (12), we get

$$ \begin{aligned} u(\mathfrak{z})={}& \mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} h( \mathfrak{z}) \biggr) -\mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}) u(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[ \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) + \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} h(R) \biggr) -\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} h(R) \biggr) \biggr]. \end{aligned} $$
(13)

For the reverse case, taking the Ψ-Caputo operator \({}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi}\) on both sides of equation (13) and applying again the operator \({}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi}\) after multiplying the obtained equation by η, and finally by exploiting Lemma 2.4, we find

$$ {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl(\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} u( \mathfrak{z}) + \chi (\mathfrak{z}) u(\mathfrak{z}) \bigr) =h( \mathfrak{z}). $$

To examine the boundary conditions, it is trivial to verify them using (13).

As a result, u is a solution to the problem (1), and the proof of Lemma 2.9 is now finished. □

Now, we pay attention to the space \(\mathfrak{C}= \mathcal{C} (I, \mathbb{R} )\) equipped with the well-known Ψ-Bielecki-type norm \(\Vert u\Vert _{\theta ,\alpha}\) proposed by previous works (see [40]) defined by

$$ \Vert u \Vert _{\theta ,\alpha}=\sup_{\mathfrak{z}\in I } \frac{ \vert u(\mathfrak{z}) \vert }{\mathbb{E}_{\alpha}[\theta (\varPsi (\mathfrak{z}) -\varPsi (0))^{\alpha}]},\quad \theta ,\alpha >0, $$

where \(\mathbb{E}_{\alpha} \) indicates the Mittag-Leffler function of one-parameter that is given as

$$ \mathbb{E}_{\alpha} ( z )= \underset{k=0}{\overset{\infty }{\sum }} \frac{z^{k}}{\Gamma ( k\alpha +1 )},\quad \alpha >0. $$

If we take \(\alpha \to 1 \) in the above norm \(\Vert u\Vert _{\theta ,\alpha}\), we obtain

$$ \Vert u \Vert _{\theta}:=\sup_{\mathfrak{z}\in I } \frac{ \vert u(\mathfrak{z}) \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}, \quad \theta >0, $$

and \(( \mathfrak{C}, \Vert u\Vert _{\theta } ) \) is a Banach space. We now focus on the key findings of our study.

3 Main results

For a good and straightforward continuation of our work, we propose the hypotheses as given below:

(H1) \(f: [0,R] \times \mathbb{R}\to \mathbb{R} \) is continuous.

(H2) For some positive real constant \(L_{f}\), we have

$$\begin{aligned}& \bigl\vert { f(\mathfrak{z},u_{1}) - f(\mathfrak{z},u_{2}) } \bigr\vert \leq L_{f} \vert {u_{1}-u_{2}} \vert , \quad \text{for each } u_{1},u_{2} \in \mathbb{R}, \mathfrak{z} \in [0,R]. \end{aligned}$$

(H3) \(\vert {f(\mathfrak{z},u)} \vert \leq \mathcal{K}_{f}(\mathfrak{z})\), \(\forall (\mathfrak{z},u) \in [0,R] \times \mathbb{R}\), with \(\mathcal{K}_{f} \in \mathcal{C} ([0,R], \mathbb{R}_{+} )\).

(H4) A function \(\mathfrak{g} \in \mathcal{C} ([0,R], \mathbb{R}_{+} )\) and a real constant \(d>0\) exist such that

$$ \bigl\vert {f(\mathfrak{z},u)} \bigr\vert \leq \mathfrak{g}( \mathfrak{z}) +d \vert u \vert ,\quad \forall (\mathfrak{z},u) \in [0,R] \times \mathbb{R}. $$

(H5) A positive real constant M exists such that

$$ \frac{M (1-d\Lambda _{\theta}-\nabla _{\theta})}{\Lambda _{\theta} \Vert \mathfrak{g} \Vert _{\theta} } >1. $$

Furthermore, to analyze the stability of UHR and GUHR, we adopt the assumption as given below:

(H6) A nondecreasing function \(\Upsilon \in \mathcal{C} ([0,R], \mathbb{R}_{+}) \) and a real constant \(\gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}} > 0\) exist such that for any \(\mathfrak{z} \in [0,R ]\), we have

$$ \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2},\varPsi} \Upsilon ( \mathfrak{z}) \le \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}} \Upsilon (\mathfrak{z}). $$
(14)

In light of Lemma 2.9, we can define the following operator:

$$\begin{aligned}& \mathcal{N}: \mathfrak{C}\rightarrow \mathfrak{C,} \\& \begin{aligned} \mathcal{N}u(\mathfrak{z})={}& \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} f\bigl(\mathfrak{z},u(\mathfrak{z}) \bigr) \biggr) - \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}) u(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) \\ &{} + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta} )(\mathfrak{z}) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R)}{\eta (R)} \mathcal{I}_{0^{+}}^{ \alpha _{3},\varPsi} u(R) \biggr) + \chi (R)\mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) \\ &{} -\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,u(R)\bigr) \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,u(R)\bigr) \biggr) \biggr], \end{aligned} \end{aligned}$$
(15)

where

$$ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \biggr) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{1}{\eta (R)} \biggr) \neq 0. $$

Now, we express the operator \(\mathcal{N}\) as a sum of two operators \(\mathcal{N}_{1}\) and \(\mathcal{N}_{2}\) as follows:

$$\begin{aligned} &\mathcal{N}_{1}u(\mathfrak{z})= \mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} f\bigl(\mathfrak{z},u(\mathfrak{z}) \bigr) \biggr) \\ &\hphantom{\mathcal{N}_{1}u(\mathfrak{z})=}{} - \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} )}{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} )} \\ &\hphantom{\mathcal{N}_{1}u(\mathfrak{z})=}{} \times \biggl[\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,u(R)\bigr) \biggr) \\ &\hphantom{\mathcal{N}_{1}u(\mathfrak{z})=}{} +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,u(R)\bigr) \biggr) \biggr], \\ & \mathcal{N}_{2}u(\mathfrak{z})=- \mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{\chi (\mathfrak{z}) u(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} )}{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &\hphantom{ \mathcal{N}_{2}u(\mathfrak{z})=}{} \times \biggl[ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{\chi (R)}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{3},\varPsi} u(R) \biggr) \biggr]. \end{aligned}$$

To facilitate the reading of the work, we utilize the following notations:

$$ \begin{aligned} &M_{f}:=\sup _{\mathfrak{z}\in I} \bigl\vert { f(\mathfrak{z},0) } \bigr\vert < \infty , \qquad M_{f,\theta}:=\sup_{\mathfrak{z}\in I} \frac { \vert { f(\mathfrak{z},0) } \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } < \infty , \\ &\underline{\eta}:=\underset{\mathfrak{z}\in I}{\inf } \bigl\vert \eta ( \mathfrak{z} ) \bigr\vert ,\qquad \overline{\chi}:= \underset{\mathfrak{z}\in I}{ \sup } \bigl\vert \chi ( \mathfrak{z} ) \bigr\vert , \end{aligned} $$

and, for more convenience, we put

$$\begin{aligned}& \begin{aligned} \Lambda ={}& \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac{ \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2} -\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} + \frac{ \vert {\eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2} -\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr], \end{aligned} \end{aligned}$$
(16)
$$\begin{aligned}& \begin{aligned} \nabla ={}& \frac{ \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}}}{ \underline{\eta} \Gamma (\alpha _{2}+1) } + \frac{ \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma ( \alpha _{2}-\sigma _{2}+1)} + \frac{ \vert {\eta (R) } \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma ( \alpha _{2}-\sigma _{1}+1)} \biggr], \end{aligned} \end{aligned}$$
(17)
$$\begin{aligned}& \begin{aligned} \Lambda _{\theta}={}& \frac {1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}}+ \frac {\frac{ ( \varPsi (R)-\varPsi (0) ))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} -\frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{}\times \biggl[ \frac { \vert { \chi (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac { \vert { \eta (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr], \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned}& \begin{aligned} \nabla _{\theta}:={}& \frac {\overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}} } \\ &{} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac{ \vert {\eta (R)} \vert \overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr], \end{aligned} \end{aligned}$$
(19)

and

$$ \mathcal{J}=\Lambda L_{f}+\nabla . $$
(20)

3.1 Uniqueness of solution by using Banach contraction principle

To prove the results, we first provide the Banach contraction principle as a reminder.

Lemma 3.1

([40])

Let \((U, d)\) be a complete metric space, and \(\mathbb{T}: U \rightarrow U\) a contraction. Then there is a unique fixed point of \(\mathbb{T}\) in U.

Theorem 3.2

Suppose that (H1) and (H2) are satisfied. Then the (FGSLL)-problem (1) has a unique solution if \(\mathcal{J} < 1 \), where \(\mathcal{J} \) is defined by (20).

Proof

First, we choose \(r_{1}\) such that

$$ r_{1} \geq \frac { \Lambda M_{f} }{ 1- \mathcal{J} }. $$

Briefly, our aim is to show that \(\mathcal{N} \mathcal{B}_{r_{1}} \subseteq \mathcal{B}_{r_{1}} \), where

$$ \mathcal{B}_{r_{1}}( u) = \bigl\{ u \in \mathfrak{C} : \Vert { u } \Vert \leq r_{1} \bigr\} $$

is a nonempty, closed, and convex subset of the Banach space \(\mathfrak{C} \).

For each \(\mathfrak{z}\in [0,R] \) and \(u \in \mathcal{B}_{r_{1}} \), we get

$$ \bigl\vert { f(\mathfrak{z},u) } \bigr\vert \leq \bigl\vert { f( \mathfrak{z},u)} - f(\mathfrak{z},0) \bigr\vert + \bigl\vert { f( \mathfrak{z},0) } \bigr\vert \leq L_{f} \vert {u} \vert + \bigl\vert { f(\mathfrak{z},0)} \bigr\vert , $$

which implies that

$$ \sup_{\mathfrak{z}\in [0,R] } \bigl\vert { f(\mathfrak{z},u) } \bigr\vert \leq L_{f} \Vert {u} \Vert + M_{f} . $$

Let \(u\in \mathcal{B}_{r_{1}}\), then

$$ \begin{aligned} & \bigl\vert { \mathcal{N} u(\mathfrak{z}) } \bigr\vert \\ &\quad \leq \biggl\vert { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(\mathfrak{z}, u(\mathfrak{z})\bigr) \biggr) } \biggr\vert + \biggl\vert { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}) u(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) } \biggr\vert \\ &\qquad {} + \frac{ \vert { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) } \vert }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl[ \biggl\vert { \eta (R) \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) } \biggr\vert + \biggl\vert { \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f\bigl(R, u(R)\bigr) \biggr) } \biggr\vert \\ &\qquad {} + \biggl\vert { \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} f\bigl(R, u(R)\bigr) \biggr) } \biggr\vert + \biggl\vert { \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) } \biggr\vert \biggr]. \end{aligned} $$

By using the property \(\vert \vert \kappa \vert - \vert \ell \vert \vert \le \vert \kappa +\ell \vert \) and taking into consideration

$$ \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} \neq \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)}, $$

we get

$$ \begin{aligned} \bigl\vert { \mathcal{N}u(\mathfrak{z}) } \bigr\vert \leq{}& \frac{(L_{f} \Vert {u} \Vert + M_{f}) (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac{ \overline{\chi} \Vert {u} \Vert (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} \\ &{} + \frac{ \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} \Vert {u} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} + \frac{ \vert { \eta (R) } \vert \overline{\chi} \Vert {u} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \\ &{} + \frac{ \vert { \chi (R) } \vert (L_{f} \Vert {u} \Vert + M_{f}) (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2} -\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} \\ &{} + \frac{ \vert { \eta (R) } \vert (L_{f} \Vert {u} \Vert + M_{f}) (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2} -\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr], \end{aligned} $$

which gives

$$\begin{aligned} \bigl\vert { \mathcal{N}u(\mathfrak{z}) } \bigr\vert \leq{}& \biggl( \frac{ \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2} -\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} + \frac{ \vert {\eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2} -\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \\ &{} + \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} \biggr) \bigl(L_{f} \Vert {u} \Vert + M_{f}\bigr) \\ &{} + \Vert {u} \Vert \biggl( \frac{ \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma ( \underline{\eta} \alpha _{2}-\sigma _{2}+1)}+ \frac{ \vert {\eta (R) } \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma ( +\alpha _{2}-\sigma _{1}+1)} \biggr] \\ &{} + \frac{ \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}}}{ \underline{\eta} \Gamma (\alpha _{2}+1) } \biggr); \end{aligned}$$

that is,

$$ \begin{aligned} \bigl\vert { \mathcal{N}u(\mathfrak{z}) } \bigr\vert & \leq \Lambda \bigl(L_{f} \Vert {u} \Vert + M_{f}\bigr) + \Vert {u} \Vert \nabla \\ &\leq \Lambda L_{f} r_{1}+\Lambda M_{f}+ r_{1} \nabla \\ &\leq r_{1}, \end{aligned} $$

which implies that \(\Vert \mathcal{N}u \Vert \leq r_{1} \). Thus, \(\mathcal{N} \) maps \(\mathcal{B}_{r_{1}} \) into itself.

The last step is to show that \(\mathcal{N} \) is a contraction map**. Letting \(u_{1},u_{2} \in \mathcal{B}_{r_{1}} \) and \(\mathfrak{z}\in [0,R] \), we have

$$ \begin{aligned} & \bigl\vert \mathcal{N}u_{1}( \mathfrak{z}) -\mathcal{N}u_{2}( \mathfrak{z}) \bigr\vert \\ &\quad \leq \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert {f\bigl( \mathfrak{z},u_{1}(\mathfrak{z})\bigr)-f\bigl( \mathfrak{z},u_{2}( \mathfrak{z})\bigr)} \bigr\vert \biggr)+\mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{ \vert {\chi (\mathfrak{z}) \vert {u_{1}(\mathfrak{z}) -u_{2}(\mathfrak{z})} \vert } \vert }{ \vert {\eta (\mathfrak{z})} \vert } \biggr) \\ &\qquad {}+ \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {}\times \biggl[ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{ \vert {\chi (R)} \vert \vert {u_{1}(R) -u_{2}(R)} \vert }{ \vert {\eta (R)} \vert } \biggr) \\ &\qquad {}+ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert {f\bigl(R,u_{1}(R)\bigr)-f\bigl(R,u_{2}(R)\bigr)} \bigr\vert \biggr) (R) \\ &\qquad {}+ \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{ \vert {\chi (R)} \vert \vert {u_{1}(R)-u_{2}(R)} \vert }{ \vert {\eta (R)} \vert } \biggr) \\ &\qquad {}+ \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert {f\bigl(R,u_{1}(R)\bigr)-f\bigl(R,u_{2}(R)\bigr)} \bigr\vert \biggr) \biggr] \\ &\quad \leq \frac{L_{f} \Vert {u_{1}-u_{2}} \Vert (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac{ \overline{\chi} \Vert {u_{1}-u_{2}} \Vert (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} \\ &\qquad {}+ \frac{ \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \vert { \eta (R)} \vert \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\underline{\eta}} )(R) - \vert { \chi (R)} \vert \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\underline{\eta}} )(R) } \vert } \\ &\qquad {}\times \biggl[ \frac{ \vert {\chi (R)} \vert \overline{\chi} \Vert {u_{1}-u_{2}} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} \\ &\qquad {}+ \frac{ \vert {\eta (R)} \vert \overline{\chi} \Vert {u_{1}-u_{2}} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \\ &\qquad {}+ \frac{ L_{f} \vert {\chi (R)} \vert \Vert {u_{1}-u_{2}} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} \\ &\qquad {}+ \frac{ L_{f} \vert {\eta (R)} \vert \Vert {u_{1}-u_{2}} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr]. \end{aligned} $$

Thus,

$$\begin{aligned} & \Vert \mathcal{N}u_{1} - \mathcal{N}u_{2} \Vert \\ &\quad \leq \biggl( \frac{L_{f} (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac{ \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{3}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{3}+\alpha _{2}+1)} \\ &\qquad {}+ \frac{ \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {}\times \biggl[ \frac{ \vert {\chi (R)} \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{3}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{3}+\alpha _{2}-\sigma _{2}+1)} + \frac{ \vert {\eta (R)} \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{3}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{3}+\alpha _{2}-\sigma _{1}+1)} \\ &\qquad {}+ \frac{ L_{f} \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} \\ &\qquad {}+ \frac{ L_{f} \vert {\eta (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \biggr) \Vert {u_{1}-u_{2}} \Vert , \end{aligned}$$

consequently, we get

$$ \Vert {\mathcal{N}u_{1} -\mathcal{N}u_{2}} \Vert \leq \mathcal{J} \Vert {u_{1}-u_{2}} \Vert . $$

Since \(\mathcal{J}< 1 \), hence \(\mathcal{N} \) is a contraction map**. Consequently, by the Banach contraction principle 3.1, we conclude that \(\mathcal{N} \) has a unique fixed point in \(\mathcal{B}_{r_{1}}\). Hence, the (FGSLL)-problem (1) has a unique solution on \([0,R]\). □

Now, we would like to prove Theorem 3.2 using the Ψ-Bielecki-type norm inequalities. Here, the strong condition \(\mathcal{J}< 1 \) is removed.

Theorem 3.3

Let (H1) and (H2) be satisfied. Then the (FGSLL)-problem (1) has a unique solution on \([0,R]\).

Proof

Let us choose

$$ r_{2}\geq \frac { \Lambda _{\theta} M_{f,\theta} }{ 1- (L_{f} \Lambda _{\theta}+ \nabla _{\theta})} , $$

where \(\Lambda _{\theta}\), \(\nabla _{\theta} \), and \(M_{f,\theta}\) are three constants defined previously.

Claim 1: One has \(\mathcal{N} \mathcal{B}_{r_{2},\theta} \subseteq \mathcal{B}_{r_{2}, \theta} \), where \(\mathcal{B}_{r_{2},\theta}(u) = \{ u \in \mathfrak{C} , \Vert {u} \Vert _{\theta} \leq r_{2} \} \) is a nonempty, closed, and convex subset of the Banach space \(\mathfrak{C} \).

For each \(\mathfrak{z}\in [0,R] \) and \(u \in \mathcal{B}_{r_{2},\theta} \), we have

$$ \frac { \vert { f(\mathfrak{z},u ) } \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } \leq \frac { \vert {f(\mathfrak{z},u) -f(\mathfrak{z},0)} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} + \frac { \vert {f(\mathfrak{z},0)} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } \leq \frac {L_{f} \vert {u} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} + \frac { \vert {f(\mathfrak{z},0) } \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} }, $$

which implies that

$$ \sup_{\mathfrak{z}\in [0,R] } \frac { \vert { f(\mathfrak{z},u ) } \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } \leq L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta}. $$

Let \(u \in \mathcal{B}_{r_{2},\theta}\), then

$$ \begin{aligned} \bigl\vert \mathcal{N}u(\mathfrak{z}) \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac {1}{ \vert \eta (\mathfrak{z}) \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \frac { \vert f(\mathfrak{z},u(\mathfrak{z})) \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } \biggr) \\ &{} + \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac { \vert \chi (\mathfrak{z}) \vert }{ \vert \eta (\mathfrak{z}) \vert } \mathcal{I}_{0^{+}}^{\alpha _{3},\varPsi} \frac { \vert u(\mathfrak{z}) \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } \biggr) \\ &{} + \frac {\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert \eta (\mathfrak{z}) \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac {1}{ \vert \eta (R) \vert } ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{ \vert \eta (R) \vert } ) } \vert } \\ &{} \times \biggl[ \bigl\vert \eta (R) \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac { \vert \chi \vert }{ \vert \eta \vert } \frac { \vert u(R) \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))} } \biggr) \\ &{} + \bigl\vert \eta (R) \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac {1}{ \vert \eta \vert } \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \frac { \vert f(R,u(R)) \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))} } \biggr) \\ &{} + \bigl\vert \chi (R) \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac {1}{ \vert \eta \vert } \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \frac { \vert f(R,u(R)) \vert e^{\theta (\varPsi (R)-\varPsi (0))} }{e^{\theta (\varPsi (R)-\varPsi (0))} } \biggr) \\ &{} + \bigl\vert \chi (R) \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac {\chi}{ \vert \eta \vert } \frac { \vert u(R) \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))} } \biggr) \biggr]. \end{aligned} $$

Using the estimate \(\vert \vert \kappa \vert - \vert \ell \vert \vert \le \vert \kappa +\ell \vert \) and taking into account

$$ \frac { \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} \neq \frac { \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)}, $$

we obtain

$$ \begin{aligned} \bigl\vert \mathcal{N}u(\mathfrak{z}) \bigr\vert \leq{}& \frac{(L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta} )}{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2},\varPsi} \bigl(e^{\theta ( \varPsi (\mathfrak{z})-\varPsi (0))}\bigr) \\ &{} + \frac{\overline{\chi} \Vert {u} \Vert _{\theta}}{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{2} ,\varPsi} \bigl(e^{\theta (\varPsi ( \mathfrak{z})-\varPsi (0))} \bigr) \\ &{} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \eta (R)} \vert \overline{\chi} \Vert {u} \Vert _{\theta}}{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \bigl(e^{ \theta (\varPsi (R)-\varPsi (0))} \bigr) \\ &{} + \frac{(L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta} ) \vert { \eta (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{1},\varPsi} \bigl(e^{\theta (\varPsi (R)-\varPsi (0))} \bigr) \\ &{} + \frac{(L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta} ) \vert { \chi (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \bigl(e^{\theta (\varPsi (R)-\varPsi (0))} \bigr) \\ &{} + \frac{\overline{\chi} \Vert {u} \Vert _{\theta}}{\underline{\eta}} \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \bigl(e^{\theta (\varPsi (R)-\varPsi (0))} \bigr) \biggr]. \end{aligned} $$

By exploiting (6), we get

$$\begin{aligned} \bigl\vert { \mathcal{N}u(\mathfrak{z}) } \bigr\vert \leq{}& \biggl( \frac {L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta} }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} + \frac { \overline{\chi} \Vert {u} \Vert _{\theta} }{ \underline{\eta} \theta ^{\alpha _{2}}} \\ &{} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} \Vert {u} \Vert _{\theta}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac { \vert { \eta (R) } \vert \overline{\chi} \Vert {u} \Vert _{\theta} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} + \frac { \vert { \chi (R) } \vert (L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta}) }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \\ &{} + \frac { \vert { \eta (R) } \vert (L_{f} \Vert {u} \Vert _{\theta}+ M_{f,\theta}) }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \biggr) e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}, \end{aligned}$$

which yields

$$ \Vert \mathcal{N}u \Vert _{\theta} \leq ( \Lambda _{\theta} L_{f}+\nabla _{\theta} )r_{2} +\Lambda _{ \theta} M_{f,\theta} \leq r_{2}. $$
(21)

This means that \(\mathcal{N} \) maps \(\mathcal{B}_{r_{2},\theta} \) into itself.

Claim 2: Operator \(\mathcal{N}\) is a contraction map**.

Let \(u_{1},u_{2} \in \mathcal{B}_{r_{2},\theta} \) and \(\mathfrak{z}\in [0,R] \), we have

$$ \begin{aligned} & \bigl\vert \mathcal{N}u_{1}( \mathfrak{z}) - \mathcal{N}u_{2}( \mathfrak{z}) \bigr\vert \\ &\quad \leq \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert f(\mathfrak{z}, u_{1}(\mathfrak{z}) ) -f(\mathfrak{z}, u_{2}(\mathfrak{z})) \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0) )} }\biggr) \biggr) \\ &\qquad {}+\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \vert {\chi (\mathfrak{z})} \vert }{ \vert {\eta (\mathfrak{z})} \vert } \mathcal{I}_{0^{+}}^{\alpha _{3},\varPsi} \biggl( \frac{ \vert u_{1}(\mathfrak{z}) -u_{2}(\mathfrak{z}) \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} } \biggr) \biggr) \\ &\qquad {}+ \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert { \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {}\times \biggl[ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{ \vert {\chi (R)} \vert }{ \vert {\eta (R)} \vert } \frac { \vert u_{1}(R) -u_{2}(R) \vert e^{\theta (\varPsi (R)-\varPsi (0))} }{e^{\theta (\varPsi (R)-\varPsi (0))} } \biggr) \\ &\qquad {}+ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert f(R, u_{1}(R) ) -f(R,u_{2}(R)) \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))} }\biggr) \biggr) \\ &\qquad {}+ \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{ \vert {\chi (R)} \vert }{ \vert {\eta (R)} \vert } \frac{ \vert u_{1}(R) -u_{2}(R) \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))} } \biggr) \\ &\qquad {}+ \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert f(R, u_{1}(R)) -f(R, u_{2}(R)) \vert e^{\theta (\varPsi (R)-\varPsi (0))} }{e^{\theta (\varPsi (R)-\varPsi (0))} }\biggr) \biggr) \biggr]. \end{aligned} $$

Simple computations give us

$$ \begin{aligned} & \bigl\vert \mathcal{N}u_{1}( \mathfrak{z}) -\mathcal{N}u_{2}( \mathfrak{z}) \bigr\vert \\ &\quad \leq \frac{L_{f} \Vert {u_{1}-u_{2}} \Vert _{\theta}}{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2},\varPsi} \bigl( e^{ \theta (\varPsi (\mathfrak{z})-\varPsi (0))} \bigr) + \frac{ \overline{\chi} \Vert {u_{1}-u_{2}} \Vert _{\theta}}{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \bigl( e^{\theta (\varPsi ( \mathfrak{z})-\varPsi (0))} \bigr) \\ &\qquad {}+ \frac{ \Vert {u_{1}-u_{2}} \Vert _{\theta} \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {}\times \biggl[ \frac{ \vert {\eta (R)} \vert \overline{\chi} }{\underline{\eta} } \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \bigl( e^{ \theta (\varPsi (R)-\varPsi (0))} \bigr) + \frac{L_{f} \vert {\eta (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{1},\varPsi} \bigl( e^{\theta (\varPsi (R)-\varPsi (0))} \bigr) \\ &\qquad {}+ \frac{ \overline{\chi} \vert {\chi (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} \bigl( e^{ \theta (\varPsi (R)-\varPsi (0))} \bigr)+ \frac{L_{f} \vert {\chi (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \bigl( e^{\theta (\varPsi (R)-\varPsi (0))} \bigr) \biggr]. \end{aligned} $$

By using (6), we get

$$\begin{aligned} & \bigl\vert \mathcal{N}u_{1}( \mathfrak{z}) -\mathcal{N}u_{2}( \mathfrak{z}) \bigr\vert \\ &\quad \leq \biggl( \frac {L_{f} }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} + \frac { \overline{\chi} }{\underline{\eta} \theta ^{\alpha _{2}}} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\eta (R)} \vert \overline{\chi} }{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}} } + \frac {L_{f} \vert {\eta (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}} } + \frac { \overline{\chi} \vert {\chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}} } + \frac {L_{f} \vert {\chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}} } \biggr] \biggr) e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \Vert {u_{1}-u_{2}} \Vert _{\theta}. \end{aligned}$$

Consequently,

$$ \begin{aligned} & \Vert {\mathcal{N}u_{1} - \mathcal{N}u_{2}} \Vert _{\theta } \\ &\quad \leq \biggl( \frac { L_{f} }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}} } +\frac { \overline{\chi} }{\underline{\eta} \theta ^{\alpha _{2}}} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\eta (R)} \vert \overline{\chi} }{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}} } + \frac {L_{f} \vert {\eta (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}} } + \frac { \overline{\chi} \vert {\chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}} }+ \frac {L_{f} \vert {\chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}} } \biggr] \biggr) \Vert {u_{1}-u_{2}} \Vert _{\theta}. \end{aligned} $$

Hence, we obtain

$$ \Vert {\mathcal{N}u_{1} -\mathcal{N}u_{2}} \Vert _{ \theta } \leq (L_{f} \Lambda _{\theta }+ \nabla _{\theta } ) \Vert {u_{1}-u_{2}} \Vert _{\theta}. $$

By choosing \(\theta >0\) large enough such that

$$ \begin{aligned} & \biggl( \frac { L_{f} }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}} } + \frac { \overline{\chi} }{\underline{\eta} \theta ^{\alpha _{2}+\alpha _{3}}} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\quad {} \times \biggl[ \frac { \vert {\eta (R)} \vert \overline{\chi} }{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}} } + \frac {L_{f} \vert {\eta (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}} } + \frac { \overline{\chi} \vert {\chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}} } + \frac {L_{f} \vert {\chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}} } \biggr] \biggr) < 1, \end{aligned} $$

we conclude that the map** \(\mathcal{N} \) is a contraction relative to the Ψ-Bielecki norm. Exploiting the Banach fixed point Theorem 3.1, it follows that \(\mathcal{N}\) has a unique fixed point which is a unique solution to the (FGSLL)-problem (1). □

Corollary 3.4

Let (H1) and (H2) be satisfied. Then,

  • If \(\chi (\mathfrak{z})=0\) for \(\mathfrak{z} \in I\), then we have \(\overline{\chi}=0\) and one solution is guaranteed for the (FSL)-problem (2) on I.

  • If \(\eta (\mathfrak{z})= 1\) and \(\chi (\mathfrak{z}) =\lambda \) (\(\lambda \in \mathbb{R}\)) for \(\mathfrak{z} \in I\), then we have \(\underline{\eta} =1\) and \(\overline{\chi}=|\lambda |\), and so the (FL)-problem (3) has a unique solution on I.

3.2 Application of Krasnoselskii’s fixed point theorem for existence results

First, we recall Arzelà–Ascoli and Krasnoselskii theorems and then give our main results.

Lemma 3.5

([40])

A family of functions in \(\mathcal{C}([a_{1},a_{2}])\) is relatively compact if it is both equicontinuous and uniformly bounded on \([a_{1},a_{2}]\).

Lemma 3.6

([40])

Consider a nonempty subset M of a Banach space U that is bounded, closed, and convex. Let \(\mathcal{P}\) and \(\mathcal{Q}\) be operators so that:

  1. 1.

    \(\mathcal{P} x+\mathcal{Q} y \in M\) whenever \(x, y \in M\),

  2. 2.

    \(\mathcal{Q}\) is a contraction,

  3. 3.

    \(\mathcal{P}\) is compact and continuous,

Then there exists \(\varpi \in M\) so that \(\varpi =\mathcal{P} \varpi +\mathcal{Q} \varpi \).

Now, we present the following existence theorem which is proved using the above lemmas.

Theorem 3.7

Suppose that (H1) and (H3) hold. The (FGSLL)-problem (1) has at least one solution defined on \([0,R]\) under the following condition:

$$ \nabla < 1. $$
(22)

Proof

We fix \(r_{3} \geq \frac { \Lambda \Vert { \mathcal{K}_{f}} \Vert }{1-\nabla} \) with \(\Vert { \mathcal{K}_{f}} \Vert =\sup_{ \mathfrak{z}\in [0,R]}|\mathcal{K}_{f}(\mathfrak{z})|\), and consider the closed ball \(\mathcal{B}_{r_{3}}(u)=\{u\in \mathfrak{C}, \Vert {u} \Vert \leq r_{3} \} \) which is a convex and nonempty subset of the Banach space \(\mathfrak{C}\). For each \(\mathfrak{z}\in [0,R]\) and any \(x\in \mathcal{B}_{r_{3}}\), we have

$$ \bigl\vert {\mathcal{N}u(\mathfrak{z})} \bigr\vert \leq \bigl\vert { \mathcal{N}_{1}u(\mathfrak{z})} \bigr\vert + \bigl\vert { \mathcal{N}_{2}u( \mathfrak{z})} \bigr\vert $$

which implies that

$$\begin{aligned} \Vert {\mathcal{N}u} \Vert \leq \Vert { \mathcal{N}_{1}u} \Vert + \Vert {\mathcal{N}_{2}u} \Vert . \end{aligned}$$
(23)

Claim 1: For \(u,v\in \mathcal{B}_{r_{3}} \) we show that \(\mathcal{N}_{1}u+ \mathcal{N}_{2}v \in \mathcal{B}_{r_{3}}\).

Let \(u \in \mathcal{B}_{r_{3}}\), then

$$ \begin{aligned} \bigl\vert { \mathcal{N}_{1}u( \mathfrak{z}) } \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert {f\bigl(\mathfrak{z},u(\mathfrak{z})\bigr)} \bigr\vert \biggr) \\ &{} + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac {1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac {1}{\eta (R)} ) } \vert } \\ &{} \times \biggl[ \bigl\vert { \eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac {1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert {f\bigl(R,u(R)\bigr)} \bigr\vert \biggr) \\ &{} + \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac {1}{ \vert { \eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert { f\bigl(R,u(R)\bigr)} \bigr\vert \biggr) \biggr]. \end{aligned} $$

By using \(\vert \vert \kappa \vert - \vert \ell \vert \vert \le \vert \kappa +\ell \vert \), where

$$ \frac { \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} \neq \frac { \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)}, $$

we get

$$ \begin{aligned} \bigl\vert { \mathcal{N}_{1}u( \mathfrak{z}) } \bigr\vert \leq {}& \biggl( \frac{(\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{1}+\alpha _{2}}}{\underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{\underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{}\times \biggl[ \frac{ \vert { \eta (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}}}{\underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1) } + \frac { \vert { \chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}}}{\underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} \biggr] \biggr) \Vert { \mathcal{K}_{f}} \Vert , \end{aligned} $$

which means that

$$ \begin{aligned} \Vert { \mathcal{N}_{1}u } \Vert \leq & \biggl( \frac{(\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}}}{\underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{}\times \biggl[ \frac{ \vert { \eta (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}}}{\underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1) } + \frac { \vert { \chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}}}{\underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} \biggr] \biggr) \Vert { \mathcal{K}_{f}} \Vert \end{aligned} $$

and yields

$$ \Vert {\mathcal{N}_{1}u} \Vert \leq \Lambda \Vert { \mathcal{K}_{f}} \Vert . $$
(24)

Similarly, if \(v \in \mathcal{B}_{r_{3}} \), then

$$ \begin{aligned} \bigl\vert { \mathcal{N}_{2}v( \mathfrak{z}) } \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \vert {\chi (\mathfrak{z})} \vert \vert {v(\mathfrak{z})} \vert }{ \vert {\eta (\mathfrak{z})} \vert } \biggr) + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &{} \times \biggl[ \bigl\vert { \eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{ \vert {\chi (R) v(R)} \vert }{ \vert {\eta (R)} \vert } \biggr) + \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{ \vert {\chi (R)} \vert \vert {v(R)} \vert }{ \vert {\eta (R)} \vert } \biggr) \biggr] \\ \leq{}& \frac{ \overline{\chi} \Vert {v} \Vert (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} \Vert {v} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} + \frac { \vert { \eta (R) } \vert \overline{\chi} \Vert {v} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \biggr]. \end{aligned} $$

This implies that

$$ \begin{aligned} \Vert { \mathcal{N}_{2}v } \Vert \leq{}& \biggl( \frac{ \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} + \frac { \vert { \eta (R) } \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \biggr] \biggr) \Vert {v} \Vert , \end{aligned} $$

yielding

$$ \Vert { \mathcal{N}_{2}v} \Vert \leq \nabla \Vert {v} \Vert . $$
(25)

Inserting (24) and (25) into (23), we get

$$ \Vert {\mathcal{N}_{1}u + \mathcal{N}_{2}v} \Vert \leq \Lambda _{\theta} \Vert { \mathcal{K}_{f}} \Vert + \nabla r_{3} \leq r_{3}, $$
(26)

which implies that \(\mathcal{N}_{1}u+ \mathcal{N}_{2}v \in \mathcal{B}_{r_{3}}\) for all \(u,v\in \mathcal{B}_{r_{3}}\). Thus assumption 1 of Lemma 3.6 is verified.

Claim 2: We show that \(\mathcal{N}_{2}\) is contraction.

For each \(u_{1},u_{2} \in \mathcal{B}_{r_{3}} \) and \(\mathfrak{z} \in [ 0,R ]\), we have

$$ \begin{aligned} & \bigl\vert \mathcal{N}_{2}u_{1}( \mathfrak{z}) -\mathcal{N}_{2}u_{2}( \mathfrak{z}) \bigr\vert \\ &\quad \leq \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac { \vert {\chi (\mathfrak{z})} \vert \vert {u_{1}(\mathfrak{z}) -u_{2}(\mathfrak{z})} \vert }{ \vert {\eta (\mathfrak{z})} \vert } \biggr) + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac {1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl[ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac { \vert {\chi (R)} \vert \vert {u_{1}(R) -u_{2}(R)} \vert }{ \vert {\eta (R)} \vert } \biggr) \\ &\qquad {} + \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac { \vert {\chi (R)} \vert \vert {u_{1}(R) -u_{2}(R)} \vert }{ \vert {\eta (R)} \vert } \biggr) \biggr] \\ &\quad \leq \frac{ \overline{\chi} \Vert {u_{1}-u_{2}} \Vert (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert \frac{ \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert {\eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\chi (R)} \vert \overline{\chi} \Vert {u_{1}-u_{2}} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} \\ &\qquad {} + \frac { \vert {\eta (R)} \vert \overline{\chi} \Vert {u_{1}-u_{2}} \Vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \biggr] \\ &\quad \leq \biggl( \frac{ \overline{\chi} (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\chi (R)} \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} + \frac { \vert {\eta (R)} \vert \overline{\chi} (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \biggr] \biggr) \Vert {u_{1}-u_{2}} \Vert , \end{aligned} $$

which yields

$$ \Vert {\mathcal{N}_{2}u_{1} -\mathcal{N}_{2}u_{2}} \Vert \leq \nabla \Vert {u_{1}-u_{2}} \Vert . $$

Hence, by (22), \(\mathcal{N}_{2}\) is a contraction.

Claim 3: Assumption 3 in Lemma 3.6 holds.

Take a sequence \(\{u_{n}\}_{n\in \mathbb{N}}\) with \(u_{n}\to u \in \mathfrak{C}\) as \(n\to \infty \). For \(\mathfrak{z} \in [ 0,R ] \), we get

$$\begin{aligned} & \bigl\vert \mathcal{N}_{1}u_{n}( \mathfrak{z}) -\mathcal{N}_{1}u( \mathfrak{z}) \bigr\vert \\ &\quad \leq \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac {\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \vert {f(\mathfrak{z},u_{n}(\mathfrak{z})) -f(\mathfrak{z},u(\mathfrak{z}))} \vert }{ \vert {\eta (\mathfrak{z})} \vert } \biggr) \\ &\qquad {} + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl[ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac {\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \vert {f(R,u_{n}(R)) -f(R,u(R))} \vert }{ \vert {\eta (R)} \vert } \biggr) \\ &\qquad {} + \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac {\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \vert {f(R,u_{n}(R)) -f(R,u(R))} \vert }{ \vert {\eta (R)} \vert } \biggr) \biggr] \\ &\quad \leq \biggl( \frac { (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} + \frac { \vert {\eta (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \biggr) \Vert {f_{n} -f } \Vert , \end{aligned}$$

with \(\Vert {f_{n} -f } \Vert = \underset{\mathfrak{z}\in [ 0,R ] }{\sup } \vert f( \mathfrak{z} ,u_{n}(\mathfrak{z}))-f(\mathfrak{z} ,u(\mathfrak{z})) \vert \). Thus

$$ \begin{aligned} & \Vert { \mathcal{N}_{1}u_{n} -\mathcal{N}_{1}u } \Vert \\ &\quad \leq \biggl( \frac { (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} + \frac { \vert {\eta (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \biggr) \Vert {f_{n} -f } \Vert , \end{aligned} $$

where

$$ \begin{aligned}& \biggl( \frac { (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} \\ &\quad {}+ \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\quad {} \times \biggl[ \frac { \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)}+ \frac { \vert {\eta (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \biggr)< \infty . \end{aligned} $$

The Lebesgue’s dominated convergence theorem and continuity of f lead to the conclusion that \(\Vert \mathcal{N}_{1}u_{n} -\mathcal{N}_{1}u \Vert \to 0\) as \(n\to \infty \). Therefore, \(\mathcal{N}_{1}\) is continuous. Furthermore, \(\mathcal{N}_{1} \) is uniformly bounded on \(\mathcal{B}_{r_{3}}\) as \(\Vert {\mathcal{N}_{1}u} \Vert \leq \Lambda \Vert { \mathcal{K}_{f}} \Vert \) due to (24). Also, \(\mathcal{N}_{1} \) is equicontinuous. Indeed, letting \(u \in \mathcal{B}_{r_{3}} \), for \(\mathfrak{z}_{1},\mathfrak{z}_{2}\in [0,R ]\), \(\mathfrak{z}_{1}<\mathfrak{z}_{2}\), we have

$$ \begin{aligned} & \bigl\vert \mathcal{N}_{1}u( \mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) \bigr\vert \\ &\quad \leq \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{2},u(\mathfrak{z}_{2}))}{\eta (\mathfrak{z}_{2})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{1},u(\mathfrak{z}_{1}))}{\eta (\mathfrak{z}_{1})} \biggr) \biggr\vert \\ &\qquad {} + \frac { \vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z}_{2})} ) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z}_{1})} ) \vert }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl\vert \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(R,u(R))}{\eta (R)} \biggr) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(R,u(R))}{\eta (R)} \biggr) \biggr\vert , \end{aligned} $$

i.e.,

$$\begin{aligned} & \bigl\vert \mathcal{N}_{1}u( \mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) \bigr\vert \\ &\quad \leq \frac { 1 }{ \underline{\eta} \Gamma ( \alpha _{2} ) \Gamma ( \alpha _{1} ) } \\ &\qquad {}\times \biggl[ \int _{0}^{\mathfrak{z}_{1}} \varPsi '(s) \bigl\vert \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{ \alpha _{2}-1} - \bigl( \varPsi ( \mathfrak{z}_{1} ) - \varPsi ( s ) \bigr) ^{\alpha _{2}-1} \bigr\vert \\ &\qquad {}\times \int _{0}^{s}\varPsi ' ( x ) \bigl( \varPsi ( s ) -\varPsi ( x ) \bigr) ^{\alpha _{1}-1} \bigl\vert f \bigl( x,u(x) \bigr) \bigr\vert \,dx \,ds \\ &\qquad {}+ \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}} \varPsi ' ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} \int _{0}^{s} \varPsi ' ( x ) \bigl( \varPsi ( s ) -\varPsi ( x ) \bigr) ^{\alpha _{1}-1} \bigl\vert f \bigl( x,u ( x ) \bigr) \bigr\vert \,dx \,ds \biggr] \\ &\qquad {}+ \frac { 1 }{ \vert {\eta (R) } \vert \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{ \vert {\eta (R) } \vert } ) - \vert { \chi (R) } \vert \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{ \eta (R) } ) } \\ &\qquad {}\times \biggl[ \frac { 1 }{ \underline{\eta} \Gamma ( \alpha _{2} ) } \biggl( \int _{0}^{\mathfrak{z}_{1}}\varPsi '(s) \bigl\vert \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} - \bigl( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) \bigr) ^{ \alpha _{2}-1} \bigr\vert \,ds \\ &\qquad {}+ \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}} \varPsi '(s) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1}\,ds \biggr) \biggr] \\ &\qquad {}\times \biggl[ \bigl\vert \eta (R) \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{ \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \vert f(R,u(R)) \vert }{ \vert \eta (R) \vert } \biggr) \\ &\qquad {}+ \bigl\vert \chi (R) \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{ \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} \vert f(R,u(R)) \vert }{ \vert \eta (R) \vert } \biggr) \biggr] \\ &\quad \leq \frac { \Vert { \mathcal{K}_{f}} \Vert }{ \underline{\eta} \Gamma ( \alpha _{1}+1 ) \Gamma ( \alpha _{2} ) } [ \int _{0}^{\mathfrak{z}_{1}}\varPsi '(s) \biggl[ \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} \bigl( \varPsi ( s ) - \varPsi (0) \bigr) ^{\alpha _{1}}\,ds \\ &\qquad {}- \int _{0}^{\mathfrak{z}_{1}} { \varPsi '}(s) \bigl( \varPsi ( \mathfrak{z}_{1} ) - \varPsi ( s ) \bigr) ^{\alpha _{2}-1} \bigl( \varPsi ( s ) -\varPsi (0) \bigr) ^{\alpha _{1}}\,ds \\ &\qquad {}+ \int _{\mathfrak{z}_{1}}^{ \mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{ \alpha _{2}-1} \bigl( \varPsi ( s ) -\varPsi (0) \bigr) ^{\alpha _{1}}\,ds \biggr] \\ &\qquad {}+ \frac { 1 }{ \vert \frac{ \vert \eta (R) \vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma ( \alpha _{2}-\sigma _{1}+1 ) } -\frac{ \vert \chi (R) \vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma ( \alpha _{2}-\sigma _{2}+1 ) } \vert } \\ &\qquad {}\times \biggl[ \frac{ 1 }{ \underline{\eta} \Gamma ( \alpha _{2}+1 ) } \bigl( \bigl( \varPsi ( \mathfrak{z}_{2}) -\varPsi (s) \bigr) ^{ \alpha _{2}} |^{\mathfrak{z}_{1}}_{0} - \bigl( \varPsi ( \mathfrak{z}_{1}) -\varPsi (s) \bigr) ^{\alpha _{2}} |^{ \mathfrak{z}_{1}}_{0} \\ &\qquad {}+ \bigl( \varPsi (\mathfrak{z}_{2}) -\varPsi (s) \bigr) ^{\alpha _{2}} |^{\mathfrak{z}_{2}}_{\mathfrak{z}_{1}} \bigr) \biggr] \\ &\qquad {}\times \biggl[ \frac{ \vert \eta (R) \vert \Vert { \mathcal{K}_{f}} \Vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma ( \alpha _{1}+\alpha _{2}-\sigma _{1}+1 ) } + \frac{ \vert \chi (R) \vert \Vert { \mathcal{K}_{f}} \Vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma ( \alpha _{1}+\alpha _{2}-\sigma _{2}+1 ) } \biggr]. \end{aligned}$$

Finally, we get

$$ \begin{aligned} & \bigl\vert \mathcal{N}_{1}u( \mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) \bigr\vert \\ &\quad \leq \biggl[ \frac { ( \varPsi ( R ) -\varPsi (0) ) ^{\alpha _{1}} ( ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( 0 ) ) ^{\alpha _{2}} - ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( 0 ) ) ^{\alpha _{2}} ) }{ \underline{\eta} \Gamma ( \alpha _{1}+1 ) \Gamma ( \alpha _{2}+1 ) } \\ &\qquad {} + \frac { ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( 0 ) ) ^{\alpha _{2}} - ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( 0 ) ) ^{\alpha _{2}} }{ \Gamma ( \alpha _{2}+1 ) \vert \frac{ \vert \eta (R) \vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{2}-\sigma _{1}} }{ \Gamma ( \alpha _{2}-\sigma _{1}+1 ) } -\frac{ \vert \chi (R) \vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{2}-\sigma _{2}} }{ \Gamma ( \alpha _{2}-\sigma _{2}+1 ) } \vert } \\ &\qquad {} \times \biggl( \frac{ \vert \eta (R) \vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{1}+\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma ( \alpha _{1}+\alpha _{2}-\sigma _{1}+1 ) } + \frac { \vert \chi (R) \vert ( \varPsi (R) -\varPsi (0) ) ^{\alpha _{1}+\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma ( \alpha _{1}+\alpha _{2}-\sigma _{2}+1 ) } \biggr) \biggr] \Vert { \mathcal{K}_{f}} \Vert . \end{aligned} $$
(27)

The right-hand side of (27) is clearly independent of u and \(|\mathcal{N}_{1}u(\mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) |\to 0\) as \(\mathfrak{z}_{2}\to \mathfrak{z}_{1}\). Hence, this implies that \(\mathcal{N}_{1} \mathcal{B}_{r_{3}}\) is equicontinuous and \(\mathcal{N}_{1}\) maps bounded subsets into relatively compact subsets, which implies that \(\mathcal{N}_{1} \mathcal{B}_{r_{3}}\) is relatively compact.

Therefore, using Lemma 3.5, we determine that \(\mathcal{N}_{1}\) is compact in \(\mathcal{B}_{r_{3}}\). Then, in view of Lemma 3.6, this guarantees at least one solution for the problem (1) in \([ 0,R ]\). □

Before stating and proving the results via Krasnoselskii and Leray–Schauder fixed point theorems under the Ψ-Bielecki’s norm, we provide an auxiliary lemma which is related to the proof of the equicontinuity property.

Lemma 3.8

For a given \(\eta \in C(I,\mathbb{R}^{\star})\), let (H1) and (H3) hold. For all \(\theta >0\) and with \(0< \alpha _{i} \leq 1\), \(i \in \{1,2\}\), we have

$$ \begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{2},u(\mathfrak{z}_{2})) }{\eta (\mathfrak{z}_{2})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{1},u(\mathfrak{z}_{1}))}{\eta (\mathfrak{z}_{1})} \biggr) \biggr\vert \\ &\quad \leq \frac{1}{\underline{\eta}} \biggl( \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} - \frac{e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} \\ &\qquad {} + \frac{1}{\theta ^{\alpha _{1}} \Gamma ( \alpha _{2} )} \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}\varPsi ' ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) - \varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta ( \varPsi (s)-\varPsi (0))}\,ds \biggr) \Vert { \mathcal{K}_{f}} \Vert _{\theta}, \end{aligned} $$
(28)

and

$$ \begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{1}) u(\mathfrak{z}_{1})}{\eta (\mathfrak{z}_{1})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{2}) u(\mathfrak{z}_{2})}{\eta (\mathfrak{z}_{2})} \biggr) \biggr\vert \\ &\quad \leq \frac {\overline{\chi}}{\underline{\eta}} \biggl( \frac{e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} - \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} \\ &\qquad {} - \frac{1}{\theta ^{\alpha _{1}} \Gamma ( \alpha _{2} )} \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)- \varPsi (0))}\,ds \biggr) \Vert {u} \Vert _{\theta}. \end{aligned} $$
(29)

Proof

Let \(\mathfrak{z}_{1},\mathfrak{z}_{2} \in [0, R]\) where \(\mathfrak{z}_{1}<\mathfrak{z}_{2}\), we have

$$ \begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{2},u(\mathfrak{z}_{2})) }{\eta (\mathfrak{z}_{2})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{1},u(\mathfrak{z}_{1}))}{\eta (\mathfrak{z}_{1})} \biggr) \biggr\vert \\ &\quad \leq \biggl\vert \int _{0}^{\mathfrak{z}_{1}} \biggl[ \frac {\varPsi '(s) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{\eta ( s ) \Gamma ( \alpha _{2} ) }- \frac {\varPsi ' ( s ) ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{\eta ( s ) \Gamma ( \alpha _{2} ) } \biggr] \\ &\qquad {} \times \int _{0}^{s} \frac {{\varPsi '} ( x ) ( \varPsi ( s ) -\varPsi ( x ) ) ^{\alpha _{1}-1}}{ \Gamma ( \alpha _{1} ) }f \bigl( x,u( x) \bigr)\,dx \,ds \\ &\qquad {} + \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}} \frac {{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{2} )-\varPsi ( s ) ) ^{\alpha _{2}-1}}{ \vert \eta \vert ( s ) \Gamma ( \alpha _{2} ) } \int _{0}^{s} \frac {{\varPsi '} ( x ) ( \varPsi ( s ) -\varPsi ( x ) ) ^{\alpha _{1}-1}}{\Gamma ( \alpha _{1} ) }f \bigl( x,u ( x ) \bigr)\,dx \,ds \biggr\vert \\ &\quad \leq \int _{0}^{\mathfrak{z}_{1}} \biggl\vert \frac {{\varPsi '}(s) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{\eta ( s ) \Gamma ( \alpha _{2} ) }- \frac {{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{\eta ( s ) \Gamma ( \alpha _{2} ) } \biggr\vert \\ &\qquad {} \times \int _{0}^{s} \frac {\mathfrak{\varPsi}' ( x ) ( \varPsi ( s ) -\varPsi ( x ) ) ^{\alpha _{1}-1} \vert {f(x,u(x))} \vert e^{\theta (\varPsi (x)-\varPsi (0))}}{\Gamma ( \alpha _{1} ) e^{\theta (\varPsi (x)-\varPsi (0))}}\,dx\,ds \\ &\qquad {} + \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}} \frac {{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{2} )-\varPsi ( s ) ) ^{\alpha _{2}-1}}{ \vert \eta \vert ( s ) \Gamma ( \alpha _{2} ) } \\ &\qquad {} \times \int _{0}^{s} \frac {{\varPsi '} ( x ) ( \varPsi ( s ) -\varPsi ( x ) ) ^{\alpha _{1}-1} \vert {f(x,u(x))} \vert e^{\theta (\varPsi (x)-\varPsi (0))}}{\Gamma ( \alpha _{1} ) e^{\theta (\varPsi (x)-\varPsi (0))}}\,dx \,ds. \end{aligned} $$

By using (7), we get

$$\begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{2},u(\mathfrak{z}_{2})) }{\eta (\mathfrak{z}_{2})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{1},u(\mathfrak{z}_{1}))}{\eta (\mathfrak{z}_{1})} \biggr) \biggr\vert \\ &\quad \leq \biggl( \int _{0}^{\mathfrak{z}_{1}} \biggl\vert \frac {{\varPsi '}(s) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{\eta ( s ) \Gamma ( \alpha _{2} ) } - \frac {{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{\eta ( s ) \Gamma (\alpha _{2} )} \biggr\vert \frac {e^{\theta (\varPsi (s)-\varPsi (0))}}{ \theta ^{\alpha _{1}}}\,ds \\ &\qquad {} + \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}} \frac {{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)-\varPsi (0))}}{\underline{\eta} \Gamma ( \alpha _{2} ) \theta ^{\alpha _{1}}}\,ds \biggr) \Vert { \mathcal{K}_{f}} \Vert _{\theta}, \end{aligned}$$

thus, we have

$$ \begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{2},u(\mathfrak{z}_{2})) }{\eta (\mathfrak{z}_{2})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f(\mathfrak{z}_{1},u(\mathfrak{z}_{1}))}{\eta (\mathfrak{z}_{1})} \biggr) \biggr\vert \\ &\quad \leq \frac {1}{\underline{\eta} \Gamma (\alpha _{2} ) \theta ^{\alpha _{1}}} \biggl( \int _{0}^{\mathfrak{z}_{1}}{\varPsi '}(s) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{ \alpha _{2}-1} e^{\theta (\varPsi (s)-\varPsi (0))}\,ds \\ &\qquad {} - \int _{0}^{\mathfrak{z}_{1}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{1} ) - \varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta ( \varPsi (s)-\varPsi (0))}\,ds \\ &\qquad {} + \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{ \varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{ \theta (\varPsi (s)-\varPsi (0))}\,ds \biggr) \Vert { \mathcal{K}_{f}} \Vert _{\theta} \\ &\quad \leq \frac {1}{\underline{\eta}\theta ^{\alpha _{1}}} \biggl( \frac {e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{2}}} - \frac {e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{2}}} \\ &\qquad {} + \frac {1}{\Gamma ( \alpha _{2} )} \int _{ \mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)-\varPsi (0))}\,ds \biggr) \Vert { \mathcal{K}_{f}} \Vert _{\theta}. \end{aligned} $$

Similarly, for \(\mathfrak{z}_{1},\mathfrak{z}_{2} \in [0, R]\) where \(\mathfrak{z}_{1}<\mathfrak{z}_{2}\), we get

$$ \begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{1}) u(\mathfrak{z}_{1})}{\eta (\mathfrak{z}_{1})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{2}) u(\mathfrak{z}_{2})}{\eta (\mathfrak{z}_{2})} \biggr) \biggr\vert \\ & \quad \leq \int _{0}^{\mathfrak{z}_{1}} \biggl\vert \frac{{\varPsi '}(s) ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{ \Gamma ( \alpha _{2} ) } - \frac{{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{ \Gamma ( \alpha _{2} ) } \biggr\vert \\ &\qquad {} \times \frac{ \vert \chi (s) \vert \vert u(s) \vert e^{\theta (\varPsi (s)-\varPsi (0))}}{ \vert \eta (s)|e^{\theta (\varPsi (s)-\varPsi (0))} \vert }\,ds \\ &\qquad {} + \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}} \frac{{\varPsi '} ( s ) ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) ) ^{\alpha _{2}-1}}{ \Gamma ( \alpha _{2} ) } \frac{ \vert \chi (s) \vert \vert u(s) \vert e^{\theta (\varPsi (s)-\varPsi (0))}}{ \vert \eta (s)|e^{\theta (\varPsi (s)-\varPsi (0))} \vert }\,ds \\ &\quad \leq \frac{\overline{\chi} \Vert {u} \Vert _{\theta}}{\underline{\eta} \Gamma (\alpha _{2} )} \biggl[ \int _{0}^{\mathfrak{z}_{1}}{\varPsi '}(s) \bigl( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) \bigr) ^{ \alpha _{2}-1} e^{\theta (\varPsi (s)-\varPsi (0))}\,ds \\ &\qquad {} - \int _{0}^{\mathfrak{z}_{1}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)- \varPsi (0))}\,ds \\ &\qquad {} + \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{ \varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{ \theta (\varPsi (s)-\varPsi (0))}\,ds \biggr]. \end{aligned} $$

By using (6) and (7), we obtain

$$ \begin{aligned} & \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{1}) u(\mathfrak{z}_{1})}{\eta (\mathfrak{z}_{1})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{2}) u(\mathfrak{z}_{2})}{\eta (\mathfrak{z}_{2})} \biggr) \biggr\vert \\ &\quad \leq \frac {\overline{\chi}}{\underline{\eta}} \biggl( \frac{e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{2}}} - \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{2}}} \\ &\qquad {} +\frac{1}{ \Gamma ( \alpha _{2} )} \int _{ \mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)-\varPsi (0))}\,ds \biggr) \Vert {u} \Vert _{\theta}. \end{aligned} $$

The proof is complete. □

Now, we discuss existence results by using the Krasnoselskii fixed point theorem and some inequalities of the Ψ-Bielecki’s norm-type.

Theorem 3.9

Let (H1) and (H3) hold. Then, at least one solution exists for the (FGSLL)-problem (1) on \([0,R]\).

Proof

We fix \(r_{4} \geq \frac { \Lambda _{\theta} \Vert { \mathcal{K}_{f}} \Vert _{\theta}}{1-\nabla _{\theta}} \), where \(\Lambda _{\theta}\) and \(\nabla _{\theta}\) are constants defined by (18) and (19) and focus on the nonempty closed ball \(\mathcal{B}_{r_{4},\theta}(u)=\{u\in \mathfrak{C}, \Vert { \mathrm{u}} \Vert _{\theta} \leq r_{4} \} \) which is convex in the Banach space \(\mathfrak{C}\).

For each \(\mathfrak{z} \in [ 0,R ] \) and \(x \in \mathcal{B}_{r_{4},\theta} \),

$$ \frac { \vert {\mathcal{N}u(\mathfrak{z})} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} \leq \frac { \vert {\mathcal{N}_{1}u(\mathfrak{z})} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}+ \frac { \vert {\mathcal{N}_{2}u(\mathfrak{z})} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}, $$

which implies that

$$ \Vert {\mathcal{N}u} \Vert _{\theta} \leq \Vert { \mathcal{N}_{1}u} \Vert _{\theta} + \Vert { \mathcal{N}_{2}u} \Vert _{\theta} . $$
(30)

Claim 1: For \(u,v\in \mathcal{B}_{r_{4},\theta} \), one has \(\mathcal{N}_{1}u+ \mathcal{N}_{2}v \in \mathcal{B}_{r_{4},\theta}\).

To show this, let \(u \in \mathcal{B}_{r_{4},\theta}\). Then

$$ \begin{aligned} \bigl\vert \mathcal{N}_{1}u(\mathfrak{z}) \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert { f(\mathfrak{z},u(\mathfrak{z}))} \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}\biggr) \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } )}{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &{} \times \biggl[ \bigl\vert { \eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{ \vert { \eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert { f(R,u(R))} \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))}}\biggr) \biggr) \\ &{} + \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{1}{ \vert { \eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert { f(R,u(R))} \vert e^{\theta (\varPsi (R)-\varPsi (0))}}{e^{\theta (\varPsi (R)-\varPsi (0))}}\biggr) \biggr) \biggr]. \end{aligned} $$

By using \(\vert \vert a \vert - \vert b \vert \vert \le \vert a+b \vert \) and taking into account

$$ \frac { \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} \neq \frac { \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)}, $$

we find

$$\begin{aligned} \bigl\vert { \mathcal{N}_{1}u( \mathfrak{z}) } \bigr\vert \leq{} &\biggl( \frac {\mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2},\varPsi} (e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))})}{\underline{\eta}} \\ &{} + \frac {\frac{1}{\underline{\eta}} (\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} 1)(\mathfrak{z}) }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \eta (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{1},\varPsi} \bigl(e^{ \theta (\varPsi (R)-\varPsi (0))}\bigr) \\ &{} + \frac { \vert { \chi (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \bigl(e^{ \theta (\varPsi (R)-\varPsi (0))}\bigr) \biggr] \biggr) \Vert { \mathcal{K}_{f}} \Vert _{\theta} \\ \leq{}& \biggl( \frac{1}{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}}+ \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{\underline{\eta} \Gamma (\alpha _{2}+1)}}{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \eta (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}}+ \frac { \vert { \chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \biggr] \biggr)e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \Vert { \mathcal{K}_{f}} \Vert _{\theta}. \end{aligned}$$

Consequently,

$$\begin{aligned} \Vert { \mathcal{N}_{1}u } \Vert \leq{}& \biggl( \frac{1}{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}}+ \frac {\frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)}}{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \eta (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}}+ \frac { \vert { \chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \biggr] \biggr) \Vert { \mathcal{K}_{f}} \Vert _{\theta}, \end{aligned}$$

which means that

$$ \Vert {\mathcal{N}_{1}u} \Vert \leq \Lambda _{\theta} \Vert {\mathcal{K}_{f}} \Vert _{\theta}. $$
(31)

Similarly, if \(v \in \mathcal{B}_{r_{4},\theta} \), then

$$\begin{aligned} \bigl\vert \mathcal{N}_{2}v(\mathfrak{z}) \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac { \vert {\chi (\mathfrak{z})} \vert \vert {v(\mathfrak{z})} \vert }{ \vert {\eta (\mathfrak{z})} \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \biggr) \\ &{} + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &{} \times \biggl[ \bigl\vert { \eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac { \vert {\chi (R)} \vert \vert {v(R)} \vert }{ \vert {\eta (R)} \vert e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \\ &{} + \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac { \vert {\chi (R)} \vert \vert {v(R)} \vert }{ \vert {\eta (R)} \vert e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \biggr] \\ \leq{}& \biggl( \frac { \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}}}+ \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} -\frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}}+ \frac { \vert { \eta (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \Vert {v} \Vert _{\theta} e^{\theta ( \varPsi (\mathfrak{z})-\varPsi (0))}, \end{aligned}$$

implying the following inequality:

$$\begin{aligned} \Vert { \mathcal{N}_{2}v } \Vert _{\theta}\leq{}& \biggl( \frac { \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}}}+ \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} -\frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}}+ \frac { \vert { \eta (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \Vert {v} \Vert _{\theta}. \end{aligned}$$

This yields

$$ \Vert { \mathcal{N}_{2}v} \Vert _{\theta} \leq \nabla _{ \theta} \Vert {v} \Vert _{\theta}. $$
(32)

Inserting (31) and (32) into (30) gives

$$ \Vert {\mathcal{N}_{1}u + \mathcal{N}_{2}v} \Vert _{\theta} \leq \Lambda _{\theta} \Vert { \mathcal{K}_{f}} \Vert _{ \theta} +\nabla _{\theta} r_{4} \leq r_{4}, $$

which implies that \(\mathcal{N}_{1}u+ \mathcal{N}_{2}v \in \mathcal{B}_{r_{4},\theta}\) for all \(u,v\in \mathcal{B}_{r_{4},\theta}\), and so assumption 1 of Lemma 3.6 is satisfied.

Claim 2: We show that \(\mathcal{N}_{2}\) is a contraction.

For each \(u_{1},u_{2} \in \mathcal{B}_{r_{4},\theta} \), \(\mathfrak{z} \in [ 0,R ]\), we estimate

$$ \begin{aligned} \bigl\vert \mathcal{N}_{2}u_{1}( \mathfrak{z}) -\mathcal{N}_{2}u_{2}( \mathfrak{z}) \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac { \vert {\chi (\mathfrak{z})} \vert \vert {u_{1}(\mathfrak{z})-u_{2}(\mathfrak{z})} \vert }{ \vert {\eta (\mathfrak{z})} \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \biggr) \\ &{} + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R)\mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac {1}{\eta (R)} ) + \chi (R)\mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac {1}{\eta (R)} ) } \vert } \\ &{} \times \biggl[ \bigl\vert {\eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac { \vert {\chi (R)} \vert \vert {u_{1}(R )-u_{2}(R)} \vert }{ \vert {\eta (R)} \vert e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \\ &{} + \bigl\vert {\chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac { \vert {\chi (R)} \vert \vert {u_{1}(R )-u_{2}(R)} \vert }{ \vert {\eta (R)} \vert e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \biggr] \\ \leq{}& \biggl( \frac { \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}}}+ \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert \frac{ \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert {\eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \vert } \\ &{} \times \biggl[ \frac { \vert {\chi (R)} \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac { \vert {\eta (R)} \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr) e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \Vert {u_{1}-u_{2}} \Vert _{\theta} \\ \leq{}& \biggl( \frac { \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}}}+ \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert \frac{ \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert {\eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{\Gamma (\alpha _{2}-\sigma _{1}+1)} \vert } \\ &{} \times \biggl[ \frac { \vert {\chi (R)} \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac { \vert {\eta (R)} \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \Vert {u_{1}-u_{2}} \Vert _{\theta}. \end{aligned} $$

Then, this gives

$$ \Vert {\mathcal{N}_{2}u_{1} -\mathcal{N}_{2}u_{2}} \Vert _{ \theta} \leq \nabla _{\theta} \Vert {u_{1}-u_{2}} \Vert _{ \theta}. $$

By choosing \(\theta >0\) large enough so that

$$ \begin{aligned} &\biggl( \frac { \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}}}+ \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert \frac{ \vert {\chi (R)} \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert {\eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{\Gamma (\alpha _{2}-\sigma _{1}+1)} \vert } \\ &\quad {} \times \biggl[ \frac { \vert {\chi (R)} \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac { \vert {\eta (R)} \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr)= \nabla _{\theta}< 1, \end{aligned} $$

it follows that \(\mathcal{N}_{2}\) is a contraction.

Claim 3: Next, we will verify that condition 3 of Lemma 3.6 holds.

Consider a sequence \(u_{n}\) so that \(u_{n}\to u \in \mathfrak{C}\) as \(n\to \infty \). For \(\mathfrak{z} \in [ 0,R ] \), we get the following inequality:

$$\begin{aligned} & \bigl\vert \mathcal{N}_{1}u_{n}( \mathfrak{z}) -\mathcal{N}_{1}u( \mathfrak{z}) \bigr\vert \\ &\quad \leq \frac {1}{\underline{\eta}}\mathcal{I}_{0^{+}}^{\alpha _{1}+ \alpha _{2},\varPsi} \biggl( \frac { \vert {f(\mathfrak{z},u_{n}(\mathfrak{z}))-f(\mathfrak{z},u(\mathfrak{z}))} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}e^{ \theta (\varPsi (\mathfrak{z})-\varPsi (0))} \biggr) \\ &\qquad {} + \frac { \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert {\eta (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac { \vert {f(R,u_{n}(R))-f(R,u(R))} \vert }{e^{\theta (\varPsi (R)-\varPsi (0))}}e^{ \theta (\varPsi (R)-\varPsi (0))} \biggr) \\ &\qquad {} + \frac { \vert {\chi (R)} \vert }{\underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac { \vert {f(R,u_{n}(R))-f(R,u(R))} \vert }{e^{\theta (\varPsi (R)-\varPsi (0))}}e^{ \theta (\varPsi (R)-\varPsi (0))} \biggr) \biggr]. \end{aligned}$$

Thus

$$ \begin{aligned} \bigl\vert \mathcal{N}_{1}u_{n}( \mathfrak{z}) -\mathcal{N}_{1}u( \mathfrak{z}) \bigr\vert \leq{}& \biggl( \frac{1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} \\ &{} + \frac{ \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac{ \vert {\chi (R)} \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac{ \vert {\eta (R)} \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \biggr) e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \Vert {f_{n} -f} \Vert _{\theta}, \end{aligned} $$

and so

$$ \begin{aligned} \Vert {\mathcal{N}_{1}u_{n} - \mathcal{N}_{1}u } \Vert _{\theta}\leq{}& \biggl( \frac {1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} \\ &{} + \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert {\chi (R)} \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac { \vert {\eta (R)} \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \Vert {f_{n} -f } \Vert _{\theta}, \end{aligned} $$

with

$$ \Vert {f_{n} -f } \Vert _{\theta} = \underset{t\in [ 0,R ] }{\sup } \frac { \vert f(\mathfrak{z} ,u_{n}(\mathfrak{z}))-f(\mathfrak{z} ,u(\mathfrak{z})) \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} $$

and

$$ \begin{aligned} &\biggl( \frac {1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}}+ \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\quad {} \times \biggl[ \frac { \vert {\chi (R)} \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac { \vert {\eta (R)} \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \biggr)< \infty . \end{aligned} $$

The Lebesgue’s dominated convergence theorem, along with the continuity of f, leads to the conclusion that \(\Vert \mathcal{N}_{1}u_{n} -\mathcal{N}_{1}u \Vert _{\theta} \to 0\) as \(\mathfrak{z}\to \infty \). Therefore, \(\mathcal{N}_{1}\) is continuous. Besides, \(\mathcal{N}_{1}\) is uniformly bounded on \(\mathcal{B}_{r_{4},\theta}\) as \(\Vert {\mathcal{N}_{1}v} \Vert _{\theta} \leq \Lambda \Vert {\mathcal{K}_{f}} \Vert _{\theta}\), due to (31).

Also, \(\mathcal{N}_{1} \) is equicontinuous. Indeed, let \(u \in \mathcal{B}_{r_{4},\theta} \). Then for \(\mathfrak{z}_{1},\mathfrak{z}_{2}\in [0,R ]\), \(\mathfrak{z}_{1}<\mathfrak{z}_{2}\), we have

$$\begin{aligned} & \bigl\vert \mathcal{N}_{1}u( \mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) \bigr\vert \\ &\quad \leq \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z}_{2})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl( \mathfrak{z}_{2},u(\mathfrak{z}_{2})\bigr) \biggr) - \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac {1}{\eta (\mathfrak{z}_{1})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(\mathfrak{z}_{1},u( \mathfrak{z}_{1})\bigr) \biggr) \biggr\vert \\ &\qquad {} + \frac{ \vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z}_{1})} ) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z}_{2})} ) \vert }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac {1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac {1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl[ \bigl\vert \eta (R) \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac {1}{ \vert \eta (R) \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert f\bigl(R,u(R)\bigr) \bigr\vert \biggr) \\ &\qquad {} + \bigl\vert \chi (R) \bigr\vert \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{ \vert \eta (R) \vert } \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} \bigl\vert f\bigl(R,u(R)\bigr) \bigr\vert \biggr) \biggr] . \end{aligned}$$

By using (28), we get

$$ \begin{aligned} \bigl\vert \mathcal{N}_{1}u( \mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) \bigr\vert \leq{}& \frac{1}{\underline{\eta}} \biggl( \frac {e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} - \frac{e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} \\ &{} + \frac{1}{\Gamma ( \alpha _{2} )\theta ^{\alpha _{1}}} \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)- \varPsi (0))}\,ds \\ &{} + \frac {\frac{ ( \varPsi ( \mathfrak{z}_{1}) -\varPsi ( s) )^{\alpha _{2}} - ( \varPsi ( \mathfrak{z}_{2}) -\varPsi ( s) )^{\alpha _{2}}}{\Gamma (\alpha _{2}+1 )} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert \eta (R) \vert }{\theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} + \frac { \vert \chi (R) \vert }{\theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \biggr] \biggr) e^{\theta (\varPsi (R)-\varPsi (0))} \Vert { \mathcal{K}_{f}} \Vert _{\theta}. \end{aligned} $$
(33)

The independence of the right-hand side of (33) with respect to u is apparent and \(|\mathcal{N}_{1}u(\mathfrak{z}_{2}) -\mathcal{N}_{1}u( \mathfrak{z}_{1}) |\to 0\) as \(\mathfrak{z}_{2}\to \mathfrak{z}_{1}\). Hence, \(\mathcal{N}_{1} \mathcal{B}_{r_{4},\theta}\) is equicontinuous and \(\mathcal{N}_{1}\) maps bounded sets to relatively compact sets, so that \(\mathcal{N}_{1} \mathcal{B}_{r_{4},\theta}\) is relatively compact. Using the Arzelà–Ascoli theorem, we can conclude that \(\mathcal{N}_{1}\) is compact in \(\mathcal{B}_{r_{4},\theta}\).

Then because Lemma 3.6 is verified, this shows that the (FGSLL)-problem (1) has at least one solution defined on \([0,R]\). □

Remark 3.10

The advantage of proving Theorem 3.7 by using the Ψ-Bielecki-type norm is that the strong condition \(\nabla _{\theta}< 1 \) is removed.

Corollary 3.11

Let (H1) and (H3) hold. Then

  • If \(\chi (\mathfrak{z}) = 0\) for all \(\mathfrak{z} \in I\), then we get \(\overline{\chi}=0\) and find that the (FSL)-problem (2) has at least one solution defined on I.

  • If \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) (\(\lambda \in \mathbb{R}\)) for \(t \in I\), then we have \(\underline{\eta} =1\) and \(\overline{\chi}=|\lambda |\). We also find that the (FL)-problem (3) has at least one solution defined on I.

3.3 Existence results via Leray–Schauder fixed point theorem

First, we recall Leray–Schauder nonlinear alternative theorem and then give our main results.

Lemma 3.12

([40])

Assume that U is a Banach space, \(\mathcal{C}\) is a convex and closed subset of U, \(\mathcal{M}\) is an open subset of \(\mathcal{C}\), and 0 belongs to \(\mathcal{M}\). Let \(\mathbb{T}: \overline{\mathcal{M}} \rightarrow \mathcal{C}\) be a map that is continuous and compact, i.e., \(\mathbb{T}(\overline{\mathcal{M}})\) is a relatively compact subset of \(\mathcal{C}\). Then either

  • \(\mathbb{T}\) has a fixed point in \(\overline{\mathcal{M}}\), or

  • There exists a point \(x \in \partial \mathcal{M}\), where \(\partial \mathcal{M}\) denotes the boundary of \(\mathcal{M}\) in \(\mathcal{C}\), and then there is a scalar \(\lambda \in (0,1)\) such that \(\lambda \mathbb{T}(x) = x\).

Theorem 3.13

Let (H1) and (H3)(H5) hold. Then at least one solution exists for the (FGSLL)-problem (1) on \([0,R]\).

Proof

Pay attention to the operator \(\mathcal{N}: \mathfrak{C} \rightarrow \mathfrak{C} \) given by (15).

Claim 1: Operator \(\mathcal{N} \) maps bounded sets to bounded sets in \(\mathfrak{C} \).

For \(r_{5}>0\), assume that \(\mathcal{B}_{r_{5},\theta}(u) = \{ u \in \mathfrak{C}, \Vert {u} \Vert _{\theta} \leq r_{5} \} \) is a bounded set in \(\mathfrak{C} \). Let \(u \in \mathcal{B}_{r_{5},\theta} \), then

$$ \begin{aligned} \bigl\vert \mathcal{N}u(\mathfrak{z}) \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert { f(\mathfrak{z},u(\mathfrak{z}))} \vert }{e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}e^{ \theta (\varPsi (\mathfrak{z})-\varPsi (0))} \biggr) \biggr) \\ &{} + \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{ \vert {\chi (\mathfrak{z})} \vert \vert u(\mathfrak{z}) \vert }{ \vert {\eta (\mathfrak{z}) } \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}} e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert {\eta (\mathfrak{z})} \vert } ) }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &{} \times \biggl[ \bigl\vert { \eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert { f(R,u(R))} \vert }{e^{\theta (\varPsi (R)-\varPsi (0))}}e^{ \theta (\varPsi (R)-\varPsi (0))} \biggr) \biggr) \\ &{} + \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{1}{ \vert {\eta (R)} \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \biggl( \frac { \vert { f(R,u(R))} \vert }{e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \biggr) \\ &{} + \bigl\vert { \eta (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{ \vert {\chi (R) \vert u(R) \vert } \vert }{ \vert {\eta (R)} \vert e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \\ &{} + \bigl\vert { \chi (R)} \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{ \vert {\chi (R) \vert u(R) \vert } \vert }{ \vert {\eta (R)} \vert e^{\theta (\varPsi (R)-\varPsi (0))}} e^{\theta (\varPsi (R)-\varPsi (0))} \biggr) \biggr]. \end{aligned} $$

By exploiting the well-known inequality \(\vert \vert \kappa \vert - \vert \ell \vert \vert \le \vert \kappa +\ell \vert \) and taking into account

$$ \frac { \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} \neq \frac { \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)}, $$

we get

$$ \begin{aligned} \bigl\vert \mathcal{N}u(\mathfrak{z}) \bigr\vert \leq {}&\biggl( \frac {e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}}+ \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{\underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \eta (R)} \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} + \frac { \vert { \chi (R)} \vert e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \biggr] \biggr) \Vert \mathfrak{g} \Vert _{\theta} \\ &{} +d \Vert {u} \Vert _{\theta} \\ &{} + \biggl( \frac {\overline{\chi}e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\underline{\eta} \theta ^{\alpha _{2}}} + \frac { \frac{ (\varPsi (\mathfrak{z})-\varPsi (0))^{\alpha _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}}+ \frac{ \vert { \eta (R) } \vert \overline{\chi} e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \Vert {u} \Vert _{\theta}. \end{aligned} $$

This implies that

$$\begin{aligned} \Vert \mathcal{N}u \Vert _{\theta}\leq{}& \biggl( \frac {1}{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}}+ \frac { \frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{\Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \eta (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}}+ \frac { \vert { \chi (R)} \vert }{\underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \biggr] \biggr) \Vert \mathfrak{g} \Vert _{\theta} +d r_{5} \\ &{} + \biggl( \frac {\overline{\chi}}{\underline{\eta} \theta ^{\alpha _{2}}}+ \frac {\frac{ (\varPsi (R)-\varPsi (0))^{\alpha _{2}} }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi}}{\underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}}+ \frac { \vert { \eta (R) } \vert \overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \biggr) r_{5}, \end{aligned}$$

which yields

$$ \Vert {\mathcal{N}u} \Vert _{\theta} \leq \Lambda _{\theta} \Vert \mathfrak{g} \Vert _{\theta} +d r_{5} +\nabla _{\theta} r_{5}=l. $$

Claim 2: Operator \(\mathcal{N}\) maps bounded sets to equicontinuous sets in \(\mathfrak{C}\).

Assuming that the points \(\mathfrak{z}_{1}, \mathfrak{z}_{2} \in [ 0,R ]\) are arbitrary with \(\mathfrak{z}_{1} < \mathfrak{z}_{2}\) and \(u \in \mathcal{B}_{r_{5},\theta} \), where \(\mathcal{B}_{r_{5},\theta} \) is a bounded set in \(\mathfrak{C}\), we get

$$ \begin{aligned} & \bigl\vert \mathcal{N}u(\mathfrak{z}_{2}) -\mathcal{N}u( \mathfrak{z}_{1}) \bigr\vert \\ &\quad \leq \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z}_{2})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl( \mathfrak{z}_{2},u(\mathfrak{z}_{2})\bigr) \biggr) - \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z}_{1})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(\mathfrak{z}_{1},u( \mathfrak{z}_{1})\bigr) \biggr) \biggr\vert \\ &\qquad {} + \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{1}) u(\mathfrak{z}_{1})}{\eta (\mathfrak{z}_{1})} \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}_{2}) u(\mathfrak{z}_{2})}{\eta (\mathfrak{z}_{2})} \biggr) \biggr\vert \\ &\qquad {} + \frac{ \vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z}_{1})} ) -\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z}_{2})} ) \vert }{ \vert {\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \vert } \\ &\qquad {} \times \biggl[ \biggl\vert \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) - \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f \bigl(R,u(R)\bigr) \biggr) \\ &\qquad {} - \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,u(R)\bigr) \biggr) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) \biggr\vert \biggr]. \end{aligned} $$

By using (28) and (29), we get

$$ \begin{aligned} & \bigl\vert \mathcal{N}u(\mathfrak{z}_{2}) -\mathcal{N}u( \mathfrak{z}_{1}) \bigr\vert \\ &\quad \leq \frac{1}{\underline{\eta}} \biggl( \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} - \frac{e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} \\ &\qquad {} + \frac{1}{\theta ^{\alpha _{1}}\Gamma (\alpha _{2} )} \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)- \varPsi (0))}\,ds \biggr) \Vert { \mathcal{K}_{f}} \Vert _{ \theta} \\ &\qquad {} +\frac {\overline{\chi}}{\underline{\eta}} \biggl( \frac{e^{\theta (\varPsi (\mathfrak{z}_{1})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} - \frac{e^{\theta (\varPsi (\mathfrak{z}_{2})-\varPsi (0))}}{\theta ^{\alpha _{1}+\alpha _{2}}} \\ &\qquad {} - \frac{1}{\theta ^{\alpha _{1}}\Gamma (\alpha _{2} )} \int _{\mathfrak{z}_{1}}^{\mathfrak{z}_{2}}{\varPsi '} ( s ) \bigl( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) \bigr) ^{\alpha _{2}-1} e^{\theta (\varPsi (s)- \varPsi (0))}\,ds \biggr) \Vert {u} \Vert _{\theta} \\ &\qquad {} + \frac {\frac{ ( \varPsi ( \mathfrak{z}_{1} ) -\varPsi ( s ) )^{\alpha _{2}} - ( \varPsi ( \mathfrak{z}_{2} ) -\varPsi ( s ) )^{\alpha _{2}}}{\Gamma (\alpha _{2}+1 )} e^{\theta (\varPsi (R)-\varPsi (0))}}{ \vert { \frac{ \vert { \chi (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{2}} }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert (\varPsi (R)-\varPsi (0))^{\alpha _{2}-\sigma _{1}} }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &\qquad {} \times \biggl[ \frac { \vert \eta (R) \vert \Vert { \mathcal{K}_{f}} \Vert _{\theta}}{\theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} + \frac { \vert \chi (R) \vert \Vert { \mathcal{K}_{f}} \Vert _{\theta}}{\theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac {\overline{\chi} \vert \eta (R) \vert \Vert {u} \Vert _{\theta}}{\theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} + \frac {\overline{\chi} \vert \chi (R) \vert \Vert {u} \Vert _{\theta}}{\theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} \biggr]. \end{aligned} $$

Observe that, as \(\mathfrak{z}_{1} \rightarrow \mathfrak{z}_{2} \), the right-hand side goes to zero uniformly. This means that it does not depend on u. Furthermore, by Lemma 3.5, the operator \(\mathcal{N}: \mathfrak{C} \rightarrow \mathfrak{C} \) is completely continuous.

Eventually, we prove that the set of all solutions of the equation \(\lambda \mathcal{N}(u)=u \) is bounded for \(\lambda \in (0,1) \).

Following similar computations as in the first claim, we have

$$ \bigl\vert {u(\mathfrak{z})} \bigr\vert = \bigl\vert {\lambda \mathcal{N}u(\mathfrak{z})} \bigr\vert \leq \bigl[\Lambda _{\theta} \bigl( \Vert \mathfrak{g} \Vert _{\theta} +d \Vert {u} \Vert _{\theta} \bigr) +\nabla _{\theta} \Vert {u} \Vert _{ \theta}\bigr] e^{\theta (\varPsi (\mathfrak{z})-\varPsi (0))} . $$

Taking the norm for \(t \in [0,R] \), we have the following:

$$ \Vert {u} \Vert _{\theta} \leq \Lambda _{\theta} \Vert \mathfrak{g} \Vert _{\theta} +( d \Lambda _{\theta} +\nabla _{ \theta}) \Vert {u} \Vert _{\theta}, $$

which leads to

$$ \frac { \Vert {u} \Vert _{\theta} (1- d \Lambda _{\theta} -\nabla _{\theta})}{\Lambda _{\theta} \Vert \mathfrak{g} \Vert _{\theta} } \leq 1. $$

In accordance with (H4), then there exists \(M > 0 \) such that \(\Vert {u} \Vert _{\theta} \neq M \). Define a set

$$ \mathcal{M}_{\theta} =\bigl\{ u \in \mathfrak{C}: \Vert {\mathrm{u} } \Vert _{\theta} < M \bigr\} , $$

and consider the fact that \(\mathcal{N}: \overline{\mathcal{M}_{\theta}} \rightarrow \mathcal{C}\) is continuous and completely continuous. The choice of \(\mathcal{M}_{\theta}\) gives that there is no \(x \in \partial \mathcal{M}_{\theta}\) such that \(\lambda \mathcal{N}(u)=u \) for some \(\lambda \in (0,1) \). As a result, we conclude by Lemma 3.12 that \(\mathcal{N}\) has a fixed point \(u \in \overline{\mathcal{M}_{\theta}} \) that corresponds to a solution of the (FGSLL)-problem (1). □

Corollary 3.14

Let (H1),(H4), and (H5) hold.

  • If \(\chi (\mathfrak{z}) = 0\) for \(t \in I\), then we get \(\overline{\chi}=0\) and obtain that at least one solution for the (FSL)-problem (2) is guaranteed on I.

  • If \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) for \(t \in I\) and \(\lambda \in \mathbb{R}\), then we have \(\underline{\eta}=1\) and \(\overline{\chi}=|\lambda |\). We also conclude that at least one solution for the (FL)-problem (3) is guaranteed on I.

4 Stability analysis

This section analyzes the stability property. In other words, in the present section, we will discuss UH, GUH, UHR, and GUHR stability of the given (FGSLL)-problem (1).

4.1 Ulam stability

Let \(\varepsilon > 0\), \(L_{f}> 0\), and let \(\phi : [0,R ] \to \mathbb{R}_{+} \) be continuous. We will examine the set of inequalities as below (\(\mathfrak{z} \in [0,R ]\)):

$$\begin{aligned} & \bigl\vert {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl(\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} \overset{\backsim }{u}(\mathfrak{z}) + \chi (\mathfrak{z}) \overset{\backsim }{u}( \mathfrak{z}) \bigr) -f\bigl(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z}) \bigr) \bigr\vert \le \varepsilon , \end{aligned}$$
(34)
$$\begin{aligned} & \bigl\vert {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl(\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} \overset{\backsim }{u}(\mathfrak{z}) + \chi (\mathfrak{z}) \overset{\backsim }{u}( \mathfrak{z}) \bigr) -f\bigl(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z}) \bigr) \bigr\vert \le \phi (\mathfrak{z}), \end{aligned}$$
(35)
$$\begin{aligned} & \bigl\vert {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl(\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} \overset{\backsim }{u}(\mathfrak{z}) + \chi (\mathfrak{z}) \overset{\backsim }{u}( \mathfrak{z}) \bigr) -f\bigl(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z}) \bigr) \bigr\vert \le \varepsilon \phi ( \mathfrak{z}). \end{aligned}$$
(36)

Definition 4.1

([34])

The (FGSLL)-problem (1) is UH stable if there exists \(\mathcal{C}_{f}>0\) so that for any \(\varepsilon >0\) and each solution \(\overset{\backsim}{u}\in \mathcal{C}([0,R],\mathbb{R})\) of the inequality (34), there exists \(u \in \mathcal{C}([0,R],\mathbb{R})\) as a solution of the (FGSLL)-problem (1) with

$$ \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) -u(\mathfrak{z}) \bigr\vert \le \mathcal{C}_{f} \varepsilon , \quad \mathfrak{z} \in [0,R ]. $$

Definition 4.2

([34])

The (FGSLL)-problem (1) has GUH stability if there exists a positive constant \(\mathcal{C}_{f} \) so that for any \(\varepsilon > 0 \) and for any solution \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R}) \) of the inequality (34), there exists \(u \in \mathcal{C} ([0,R], \mathbb{R}) \) as a solution of the (FGSLL)-problem (1) with

$$ \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) -u(\mathfrak{z}) \bigr\vert \le \Upsilon (\varepsilon ),\quad \mathfrak{z} \in [0,R ]. $$

Definition 4.3

([34])

The (FGSLL)-problem (1) is UHR stable asymptotically if and only if there exists \(C>0\) so that for each \(\varepsilon > 0\) and for each solution \(\overset{\backsim}{u}\in \mathcal{C}([0,R],\mathbb{R})\) of the inequality (36), there exists \(u\in \mathcal{C}([0,R],\mathbb{R})\) as a solution of (FGSLL)-problem (1) with

$$ \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) -u(\mathfrak{z}) \bigr\vert \le \varepsilon \mathcal{C}_{f,\Upsilon}\Upsilon (\mathfrak{z}), \quad \mathfrak{z} \in [0,R ]. $$

Definition 4.4

([34])

The (FGSLL)-problem (1) is GUHR stable with respect to ϒ if there exists a real number \(\mathcal{C}_{f,\Upsilon}>0 \) so that for any solution \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R}) \) of the inequality (35), there exists \(u \in \mathcal{C} ([0,R], \mathbb{R}) \) as a solution of the (FGSLL)-problem (1) with

$$ \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) -u(\mathfrak{z}) \bigr\vert \le \mathcal{C}_{f, \Upsilon}\Upsilon (\mathfrak{z}),\quad \mathfrak{z} \in [0,R ]. $$

Remark 4.5

(1) Definition 4.2 is implied by Definition 4.1,

(2) Definition 4.4 is implied by Definition 4.3,

(3) Definition 4.1 is implied by Definition 4.3 for \(\Upsilon ( \cdot )=1 \).

Remark 4.6

A continuous function \(\overset{\backsim}{u} \in \mathcal{C}([0,R], \mathbb{R})\) is a solution of the inequality (34) iff there exists \(g \in \mathcal{C}([0,R], \mathbb{R})\), a continuous function depending on \(\overset{\backsim}{u}\) such that

$$\begin{aligned}& \textsf{(1)} \quad \bigl\vert g(\mathfrak{z}) \bigr\vert \le \varepsilon ,\quad \mathfrak{z} \in [0,R ], \\& \textsf{(2)} \quad {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl( \eta (\mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} \overset{\backsim }{u}(\mathfrak{z}) + \chi (\mathfrak{z}) \overset{\backsim }{u}( \mathfrak{z}) \bigr) =f\bigl(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z}) \bigr) +g(\mathfrak{z}), \quad \mathfrak{z} \in [0,R ], \end{aligned}$$

hold.

Remark 4.7

The essential condition for a function \(\overset{\backsim}{u} \in \mathcal{C}([0,R], \mathbb{R})\) to satisfy inequality (36) is the existence of a function \(w \in \mathcal{C}([0,R], \mathbb{R})\) that depends on the solution \(\overset{\backsim}{u}\) and satisfies the following conditions:

$$\begin{aligned}& \textsf{(1)} \quad \bigl\vert w(\mathfrak{z}) \bigr\vert \le \varepsilon \Upsilon (\mathfrak{z}),\quad \mathfrak{z} \in [0,R ], \\& \textsf{(2)} \quad {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} \bigl( \eta (\mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} \overset{\backsim }{u}(\mathfrak{z}) +\chi (\mathfrak{z}) \overset{\backsim }{u}( \mathfrak{z}) \bigr) =f\bigl(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z}) \bigr) +w(\mathfrak{z}),\quad \mathfrak{z} \in [0,R ]. \end{aligned}$$

The following lemma, a generalized version of Gronwall inequality, plays a crucial role in establishing our main stability results.

Lemma 4.8

([41])

Suppose that u, v are two functions in \(L^{1}([0, R])\) and g in \(\mathcal{C}([0, R])\). Let \(\varPsi \in \mathcal{C}^{1}[0, R]\) be an increasing function so that \({\varPsi '}(\mathfrak{z}) \neq 0\), \(\forall \mathfrak{z} \in [0, R]\). Suppose, in addition, that

(1) u and v are nonnegative;

(2) g is nonnegative and nondecreasing.

If

$$ u(\mathfrak{z}) \leq v(\mathfrak{z})+g(\mathfrak{z}) \int _{0}^{ \mathfrak{z}} {\varPsi '}(\tau ) \bigl(\varPsi (\mathfrak{z})-\varPsi ( \tau )\bigr)^{\alpha -1} u(\tau )\,d\tau , $$

then

$$ u(\mathfrak{z}) \leq v(\mathfrak{z})+ \int _{0}^{\mathfrak{z}} \sum_{k=1}^{ \infty} \frac {[g(\mathfrak{z}) \Gamma (\alpha )]^{k}}{\Gamma (\alpha k)} { \varPsi '}(\tau )\bigl[\varPsi (\mathfrak{z})- \varPsi (\tau )\bigr]^{\alpha k-1} v(\tau )\,d\tau , \quad \forall \mathfrak{z} \in [0, R]. $$

Furthermore, if v is nondecreasing, then

$$ u(\mathfrak{z}) \leq v(\mathfrak{z}) \mathbb{E}_{\alpha} \bigl(g( \mathfrak{z}) \Gamma (\alpha )\bigl[\varPsi (\mathfrak{z})-\varPsi (\tau ) \bigr]^{ \alpha} \bigr), \quad \forall \mathfrak{z} \in [0, R]. $$

Proof

See [42]. □

Remark 4.9

([41])

Let \(\alpha >0\), \(I=[0, R]\), and \(\varPsi \in \mathcal{C}^{1}(I, \mathbb{R})\) be increasing with \({\varPsi '}(\mathfrak{z}) \neq 0\) for all \(\mathfrak{z} \in I\). Assume that v is a nonnegative function with the local integrability on \([0, R]\) and let u be nonnegative and locally integrable on \([0, R]\) with

$$ u(\mathfrak{z}) \leq v(\mathfrak{z})+R \int _{0}^{\mathfrak{z}} { \varPsi '}(\tau ) \bigl[\varPsi (\mathfrak{z})-\varPsi (\tau )\bigr]^{\alpha -1} u( \tau )\,d\tau , \quad \forall \mathfrak{z} \in [0, R]. $$

Then

$$ u(\mathfrak{z}) \leq v(\mathfrak{z})+ \int _{0}^{\mathfrak{z}} \sum_{k=1}^{ \infty} \frac {[R \Gamma (\alpha )]^{k}}{\Gamma (\alpha k)} {\varPsi '}( \tau )\bigl[\varPsi (\mathfrak{z})- \varPsi (\tau )\bigr]^{\alpha k-1} v(\tau )\,d\tau , \quad \forall \mathfrak{z} \in [0, R]. $$

Lemma 4.10

Let \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R}) \) is a solution of the inequality (34) and \(\alpha _{i} \in (0,1]\), \(i \in \{1,2\}\). Then \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R})\) satisfies

$$\begin{aligned} \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) -\mathcal{Z}( \mathfrak{z})- \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \leq \Lambda \epsilon , \end{aligned}$$
(37)

where

$$ \begin{aligned} \mathcal{Z}(\mathfrak{z})={}&- \mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{\chi (\mathfrak{z}) \overset{\backsim }{u}(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{\chi (R) \overset{\backsim }{u}(R)}{\eta (R)} \biggr) -\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R, \overset{\backsim }{u}(R)\bigr) \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,\overset{ \backsim }{u}(R)\bigr) \biggr) + \chi (R) \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{\chi (R) \overset{\backsim }{u}(R)}{\eta (R)} \biggr) \biggr], \end{aligned} $$
(38)

with Λ given by (16).

Proof

Let \(\overset{\backsim }{u}\) be a solution of (34). By Lemma 2.9 and Remark 4.6(2), we get

$$ \textstyle\begin{cases} {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{1},\varPsi} (\eta ( \mathfrak{z}) {}^{C}\mathcal{D}_{0^{+}}^{\alpha _{2},\varPsi} \overset{\backsim }{u}(\mathfrak{z}) + \chi (\mathfrak{z}) \overset{\backsim }{u}(\mathfrak{z}) ) =f(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z})) +g(\mathfrak{z}),\quad \mathfrak{z} \in (0,R), \\ \overset{\backsim }{u}(0) = 0,\qquad \eta (R) {}^{C}\mathcal{D}_{0^{+}}^{ \sigma _{1},\varPsi} \overset{\backsim }{u}(R) + \chi (R) {}^{C} \mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} \overset{\backsim }{u}(R) =0, \end{cases} $$
(39)

and then the solution of problem (39) can be given as

$$ \begin{aligned} \overset{\backsim }{u}(\mathfrak{z}) ={}& \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{1}{\eta} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} f\bigl(\mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \biggr)+ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} g(\mathfrak{z}) \biggr) -\mathcal{I}_{0^{+}}^{\alpha _{2}, \varPsi} \biggl( \frac{\chi (\mathfrak{z}) \overset{\backsim }{u}(\mathfrak{z}) }{\eta (\mathfrak{z})} \biggr) \\ &{} - \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} f\bigl(R,\overset{ \backsim }{u}(R) \bigr) \biggr) \\ &{} +\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} g(R) \biggr)- \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R) \overset{\backsim }{u}(R)}{\eta (R)} \biggr) \\ &{} +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,\overset{ \backsim }{u}(R) \bigr) \biggr) \\ &{} +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} g(R) \biggr)- \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) \overset{\backsim }{u}(R)}{\eta (R)} \biggr) \biggr]. \end{aligned} $$

Due to Remark 4.6(1), we can write

$$ \begin{aligned} \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) - \mathcal{Z}( \mathfrak{z})-\mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \leq{}& \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{ \vert \eta (\mathfrak{z}) \vert } \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} \bigl\vert g(\mathfrak{z}) \bigr\vert \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{ \vert \eta (\mathfrak{z}) \vert } ) }{ \vert \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) \vert } \\ &{} \times \biggl[ \bigl\vert \eta (R) \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{ \vert \eta (R) \vert } \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} \bigl\vert g(R) \bigr\vert \biggr) \\ &{} + \bigl\vert \chi (R) \bigr\vert \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{1}{ \vert \eta (R) \vert } \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} \bigl\vert g(R) \bigr\vert \biggr) \biggr]. \end{aligned} $$

By using Remark 4.6(1), we acquire

$$ \begin{aligned} & \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) - \mathcal{Z}( \mathfrak{z})-\mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ &\quad \leq \biggl( \frac{( \varPsi (\mathfrak{z}) -\varPsi (0) )^{\alpha _{1} + \alpha _{2}}}{ \underline{\eta} \Gamma (\alpha _{1} +\alpha _{2}+1) }+ \frac{ \frac{( \varPsi (\mathfrak{z}) - \varPsi (0) )^{\alpha _{2}}}{ \Gamma (\alpha _{2}+1) } }{ \vert { \vert { \eta (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{\alpha _{2}-\sigma _{1}}}{ \Gamma (\alpha _{2}-\sigma _{1}+1) } - \vert {\chi (R)} \vert \frac{( \varPsi (R) -\varPsi (0) )^{ \alpha _{2}-\sigma _{2}}}{ \Gamma (\alpha _{2}-\sigma _{2}+1) } } \vert } \\ &\qquad {} \times \biggl[ \frac{ \vert \eta (R) \vert ( \varPsi (R) -\varPsi (0) )^{\alpha _{1} + \alpha _{2}-\sigma _{1}}}{ \underline{\eta} \Gamma (\alpha _{1} +\alpha _{2}-\sigma _{1}+1) } + \frac{ \vert \chi (R) \vert ( \varPsi (R) -\varPsi (0) )^{\alpha _{1} + \alpha _{2}-\sigma _{2}}}{ \underline{\eta} \Gamma (\alpha _{1} +\alpha _{2}-\sigma _{2}+1) } \biggr] \biggr) \varepsilon \\ &\quad \leq \biggl( \frac{( \varPsi (R) -\varPsi (0) )^{\alpha _{1} + \alpha _{2}}}{ \underline{\eta} \Gamma (\alpha _{1} +\alpha _{2}+1) }+ \frac{ \frac{( \varPsi (R) -\varPsi (0) )^{\alpha _{2}}}{ \Gamma (\alpha _{2}+1) } }{ \vert { \vert { \eta (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{\alpha _{2}-\sigma _{1}}}{ \Gamma (\alpha _{2}-\sigma _{1}+1) } - \vert {\chi (R)} \vert \frac{( \varPsi (R) -\varPsi (0) )^{ \alpha _{2}-\sigma _{2}}}{ \Gamma (\alpha _{2}-\sigma _{2}+1) } } \vert } \\ &\qquad {} \times \biggl[ \frac{ \vert \eta (R) \vert ( \varPsi (R) -\varPsi (0) )^{\alpha _{1} + \alpha _{2}-\sigma _{1}}}{ \underline{\eta} \Gamma (\alpha _{1} +\alpha _{2}-\sigma _{1}+1) } + \frac{ \vert \chi (R) \vert ( \varPsi (R) -\varPsi (0) )^{\alpha _{1} + \alpha _{2}-\sigma _{2}}}{ \underline{\eta}. \Gamma (\alpha _{1} +\alpha _{2}-\sigma _{2}+1) } \biggr] \biggr) \varepsilon . \end{aligned} $$

The proof of (37) is finished. □

Theorem 4.11

Let (H1) and (H2) hold. The (FGSLL)-problem (1) is UH stable in \(\mathcal{C}([0,R],\mathbb{R})\).

Proof

Let \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R})\) be a solution of (34), and \(u \in \mathcal{C} ([0,R], \mathbb{R}) \) be a unique solution of (1). By using Lemma 4.10, it gives

$$ u=\mathcal{X}(\mathfrak{z}) +\mathcal{I}_{a^{+}}^{\alpha _{1} + \alpha _{2} ; \varPsi} f \bigl(t,\overset{\backsim }{u}(\mathfrak{z})\bigr), $$

where

$$ \begin{aligned} \mathcal{X}(\mathfrak{z})={}& - \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}) u(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) - \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f\bigl(R,u(R) \bigr) \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,u(R)\bigr) \biggr) + \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) u(R)}{\eta (R)} \biggr) \biggr]. \end{aligned} $$
(40)

Clearly, if \(u(0)=\overset{\backsim }{u}(0)\) and

$$ \eta (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{1},\varPsi} u(R) + \chi (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} u(R)=\eta (R) {}^{C} \mathcal{D}_{0^{+}}^{\sigma _{1},\varPsi} \overset{\backsim }{u}(R) + \chi (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} \overset{\backsim }{u}(R), $$

then we obtain that \(\mathcal{X}(\mathfrak{z})=\mathcal{Z}(\mathfrak{z})\).

By the help of Lemma 4.10 and the known inequality \(\vert u+v \vert \le \vert u \vert + \vert v \vert \) for any \(\mathfrak{z}\in [0,R] \), we get

$$ \begin{aligned} \bigl\vert \overset{\backsim }{u}( \mathfrak{z})-u( \mathfrak{z}) \bigr\vert ={}& \bigl\vert \overset{\backsim }{u}( \mathfrak{z})- \mathcal{X}(\mathfrak{z}) - \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl(\mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ \le{}& \bigl\vert \overset{\backsim }{u}(\mathfrak{z})-\mathcal{Z}( \mathfrak{z})- \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl(\mathfrak{z},u(\mathfrak{z}) \bigr) \bigr\vert \\ &{} + \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} \bigl\vert f\bigl( \mathfrak{z},u(\mathfrak{z})\bigr) -f\bigl(\mathfrak{z}, \overset{\backsim }{u}( \mathfrak{z})\bigr) \bigr\vert + \bigl\vert \mathcal{Z}( \mathfrak{z})- \mathcal{X}(\mathfrak{z}) \bigr\vert \\ \le{}& \Lambda \epsilon + \frac{L_{f}}{\Gamma ( \alpha _{1}+\alpha _{2} ) } \int _{0}^{ \mathfrak{z}} \varPsi ' ( s ) \bigl( \varPsi ( \mathfrak{z} ) -\varPsi ( s ) \bigr)^{ \alpha _{1}+ \alpha _{2} -1} \bigl\vert \overset{\backsim }{u}(s)-u(s) \bigr\vert \,ds \\ \le{}& \Lambda \epsilon \biggl(1 + \int _{0}^{\mathfrak{z}} \underset{k=1}{\overset{\infty }{ \sum }} \frac{L_{f}^{k}}{\Gamma ( k ( \alpha _{1}+\alpha _{2} ) +1 ) } \varPsi ' ( s ) \bigl( \varPsi ( \mathfrak{z} ) -\varPsi ( s ) \bigr) ^{k ( \alpha _{1}+ \alpha _{2} ) -1}\,ds \biggr) \\ \le{}& \Lambda \epsilon \underset{k=0}{\overset{\infty }{\sum}} \frac{L^{k}_{f} ( \varPsi (\mathfrak{z} ) -\varPsi ( 0 ) ) ^{k ( \alpha _{1}+\alpha _{2} ) }}{\Gamma ( k ( \alpha _{1}+\alpha _{2} ) +1 ) } \\ \le{}& \Lambda \epsilon \underset{k=0}{\overset{\infty }{\sum }} \frac{L^{k}_{f} ( \varPsi (R) -\varPsi ( 0 ) ) ^{k ( \alpha _{1}+\alpha _{2} ) }}{\Gamma ( k ( \alpha _{1}+\alpha _{2} ) +1 ) } \\ ={}& \Lambda \epsilon \mathbb{E}_{\alpha _{1}+\alpha _{2}} \bigl( L_{f} \bigl( \varPsi (R) -\varPsi ( 0 ) \bigr)^{ \alpha _{1}+ \alpha _{2} } \bigr). \end{aligned} $$
(41)

For simplicity, we take \(\mathcal{C}_{f}:=\Lambda \mathbb{E}_{\alpha _{1}+\alpha _{2}} ( L_{f} ( \varPsi (R) -\varPsi ( 0 ) )^{ \alpha _{1}+ \alpha _{2} } )\). Then (41) becomes

$$ \bigl\vert \overset{\backsim }{u}(\mathfrak{z})-u(\mathfrak{z}) \bigr\vert \le \mathcal{C}_{f} \epsilon . $$

Thus, the (FGSLL)-problem (1) is UH stable. □

Corollary 4.12

Let (H1) and (H2) hold.

  • If \(\chi (\mathfrak{z}) = 0\) for all \(\mathfrak{z} \in I\), then we have \(\overline{\chi}=0\) and the (FSL)-problem (2) is UH stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

  • If \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) (\(\lambda \in \mathbb{R}\)) for \(\mathfrak{z} \in I\), then we have \(\underline{\eta}=1\) and \(\overline{\chi}=|\lambda |\). We also find that the (FL)-problem (3) is UH stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

Now, if \(\Upsilon (\varepsilon )= \varepsilon \mathcal{C}_{f}\) with \(\Upsilon (0)=0\), we have a corollary as follows.

Corollary 4.13

Let (H1) and (H2) hold. Then the (FGSLL)-problem (1) is GUH stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

  • If \(\chi (\mathfrak{z}) = 0\) for all \(\mathfrak{z} \in I\), then \(\overline{\chi}=0\) and the (FSL)-problem (2) is GUH stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

  • If \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) (\(\lambda \in \mathbb{R}\)) for \(\mathfrak{z} \in I\), then we have \(\underline{\eta} =1\) and \(\overline{\chi}=|\lambda |\). We also have that the (FL)-problem (3) is GUH stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

In the sequel, we focus on the UHR and generalized UHR stability.

Lemma 4.14

Let \(\alpha _{i} \in (0,1]\), \(i \in \{1,2\}\), and suppose \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R}) \) is a solution of (34).

Then \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R})\) satisfies

$$\begin{aligned} \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) -\mathcal{Z}(\mathfrak{z})- \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \leq \varPsi \varepsilon \gamma _{\Upsilon} \Upsilon (\mathfrak{z}), \end{aligned}$$

where

$$\begin{aligned} \varPsi := \frac {1}{ \underline{\eta}}+ \frac { \frac{( \varPsi (R) -\varPsi (0) )^{\alpha _{2}}}{\Gamma (\alpha _{2}+1)}}{ \vert { \vert { \eta (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{\alpha _{2}-\sigma _{1}}}{ \Gamma (\alpha _{2}-\sigma _{1}+1) } - \vert {\chi (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{ \alpha _{2}-\sigma _{2}}}{\Gamma (\alpha _{2}-\sigma _{2}+1) } } \vert } \biggl[ \frac{ \vert \eta (R) \vert }{ \underline{\eta} } + \frac{ \vert \chi (R) \vert }{ \underline{\eta}} \biggr], \end{aligned}$$
(42)

and \(\mathcal{Z}\) is given by (38).

Proof

Assuming that \(\overset{\backsim}{u}\) is a solution of (36), we can utilize Lemma 2.9 and Remark 4.7(2) to obtain

$$ \textstyle\begin{cases} { }^{c} \mathcal{D}_{a+}^{\alpha , \varPsi} ( { }^{c} \mathcal{D}_{a+}^{\alpha , \varPsi} \overset{\backsim }{u}(\mathfrak{z}) + \mu \overset{\backsim }{u}(\mathfrak{z}) ) =f(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z})) +w(\mathfrak{z}),\quad \mathfrak{z} \in (0,R), \\ \overset{\backsim }{u}(0) = 0, \qquad \eta (R) {}^{C}\mathcal{D}_{0^{+}}^{ \sigma _{1},\varPsi} \overset{\backsim }{u}(R) + \chi (R) {}^{C} \mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} \overset{\backsim }{u}(R) =0, \end{cases} $$
(43)

and then the solution of problem (43) may be given as

$$\begin{aligned} \overset{\backsim }{u}(\mathfrak{z})={}& \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} f\bigl(\mathfrak{z}, \overset{\backsim }{u}(\mathfrak{z})\bigr) \biggr)+ \mathcal{I}_{0^{+}}^{ \alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} w( \mathfrak{z}) \biggr) - \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{\chi (\mathfrak{z}) \overset{\backsim }{u}(\mathfrak{z})}{\eta (\mathfrak{z})} \biggr) \\ &{} + \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &{} \times \biggl[ -\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} f\bigl(R,\overset{ \backsim }{u}(R)\bigr) \biggr) \\ &{} -\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} w(R) \biggr) +\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{\chi (R) \overset{\backsim }{u}(R)}{\eta (R)} \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} f\bigl(R,\overset{ \backsim }{u}(R) \bigr) \biggr) \\ &{} -\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2}, \varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} w(R) \biggr)+ \chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{2},\varPsi} \biggl( \frac{\chi (R) \overset{\backsim }{u}(R)}{\eta (R)} \biggr) \biggr]. \end{aligned}$$

Thanks to Remark 4.7(2) and assumption (H6), we have

$$ \begin{aligned} & \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) - \mathcal{Z}( \mathfrak{z})-\mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ &\quad = \biggl\vert \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} \biggl( \frac{1}{\eta (\mathfrak{z})} \mathcal{I}_{0^{+}}^{\alpha _{1}, \varPsi} w(\mathfrak{z}) \biggr)+ \frac{ \mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} ( \frac{1}{\eta (\mathfrak{z})} ) }{ \eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} ( \frac{1}{\eta (R)} ) +\chi (R) \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi} ( \frac{1}{\eta (R)} ) } \\ &\qquad {} \times \biggl[-\eta (R) \mathcal{I}_{0^{+}}^{\alpha _{2}- \sigma _{1},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{ \alpha _{1},\varPsi} w(R) \biggr) -\chi (R) \mathcal{I}_{0^{+}}^{ \alpha _{2}-\sigma _{2},\varPsi} \biggl( \frac{1}{\eta (R)} \mathcal{I}_{0^{+}}^{\alpha _{1},\varPsi} w(R) \biggr) \biggr] \biggr\vert . \end{aligned} $$

By using Remark 4.7(1), we get

$$ \begin{aligned} & \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) - \mathcal{Z}( \mathfrak{z})-\mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ &\quad \leq \frac{1}{ \underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+ \alpha _{2},\varPsi} \bigl( \varepsilon \Upsilon (\mathfrak{z}) \bigr)+ \frac{ \frac{1}{ \underline{\eta}} (\mathcal{I}_{0^{+}}^{\alpha _{2},\varPsi} 1 )(\mathfrak{z}) }{ \vert { \frac{ \vert { \eta (R)} \vert }{\underline{\eta}} ( \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{1},\varPsi} 1 )(R) - \frac{ \vert {\chi (R)} \vert }{\underline{\eta}} ( \mathcal{I}_{0^{+}}^{\alpha _{2}-\sigma _{2},\varPsi}1 )(R) } \vert } \\ &\qquad {} \times \biggl[ \frac{ \vert \eta (R) \vert }{ \underline{\eta}} \mathcal{I}_{0^{+}}^{\alpha _{1}+ \alpha _{2}-\sigma _{1},\varPsi} \bigl( \varepsilon \Upsilon (R) \bigr) + \frac{ \vert \chi (R) \vert }{ \underline{\eta}} \mathcal{I}_{0^{+}}^{ \alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \bigl( \varepsilon \Upsilon (R) \bigr) \biggr]. \end{aligned} $$

In view of inequality (14), it follows that

$$ \begin{aligned} & \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) - \mathcal{Z}( \mathfrak{z})-\mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ &\quad \leq \biggl( \frac{\gamma _{\Upsilon ,\alpha _{1} +\alpha _{2}}}{ \underline{\eta}} + \frac{ \frac{( \varPsi (\mathfrak{z}) - \varPsi (0) )^{\alpha _{2}}}{ \Gamma (\alpha _{2}+1) } }{ \vert { \vert { \eta (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{\alpha _{2}-\sigma _{1}}}{ \Gamma (\alpha _{2}-\sigma _{1}+1) } - \vert {\chi (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{ \alpha _{2}-\sigma _{2}}}{ \Gamma (\alpha _{2}-\sigma _{2}+1) } } \vert } \\ &\qquad {} \times \biggl[ \frac{\gamma _{\Upsilon ,\alpha _{1} +\alpha _{2}-\sigma _{1}} \vert \eta (R) \vert }{ \underline{\eta} } + \frac{\gamma _{\Upsilon ,\alpha _{1} +\alpha _{2}-\sigma _{2}} \vert \chi (R) \vert }{ \underline{\eta}} \biggr] \biggr) \varepsilon \Upsilon (\mathfrak{z}). \end{aligned} $$

Finally, we conclude that

$$ \begin{aligned} & \bigl\vert \overset{\backsim }{u}(\mathfrak{z}) - \mathcal{Z}( \mathfrak{z})-\mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ &\quad \leq \biggl( \frac{1}{ \underline{\eta}}+ \frac{ \frac{( \varPsi (R) -\varPsi (0 ) )^{\alpha _{2}}}{ \Gamma (\alpha _{2}+1) } }{ \vert { \vert { \eta (R)} \vert \frac{( \varPsi (R) - \varPsi (0) ) ^{\alpha _{2}-\sigma _{1}}}{ \Gamma (\alpha _{2}-\sigma _{1}+1) } - \vert {\chi (R)} \vert \frac{( \varPsi (R) - \varPsi (0) )^{ \alpha _{2}-\sigma _{2}}}{ \Gamma (\alpha _{2}-\sigma _{2}+1) } } \vert } \\ &\qquad {} \biggl[ \frac{ \vert \eta (R) \vert }{ \underline{\eta} } + \frac{ \vert \chi (R) \vert }{ \underline{\eta}} \biggr] \biggr) \varepsilon \gamma _{\Upsilon} \Upsilon (\mathfrak{z}). \end{aligned} $$

The proof of (4.10) is now complete. □

Theorem 4.15

Let (H1), (H2), and (H6) hold. Then the (FGSLL)-problem (1) is UHR stable in \(\mathcal{C}([0,R],\mathbb{R})\).

Proof

Let \(\overset{\backsim }{u} \in \mathcal{C} ([0,R], \mathbb{R})\) be a solution of (36) and u be a unique solution for the (FGSLL)-problem (1). By applying Lemma 4.14, it yields that

$$ u=\mathcal{X}(\mathfrak{z}) +\mathcal{I}_{a^{+}}^{\alpha _{1} + \alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}( \mathfrak{z})\bigr), $$

where \(\mathcal{X} \) is given by (40). Similarly, if \(u(0)=\overset{\backsim }{u}(0)\) and

$$ \eta (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{1},\varPsi} u(R) + \chi (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} u(R)=\eta (R) {}^{C} \mathcal{D}_{0^{+}}^{\sigma _{1},\varPsi} \overset{\backsim }{u}(R) + \chi (R) {}^{C}\mathcal{D}_{0^{+}}^{\sigma _{2},\varPsi} \overset{\backsim }{u}(R), $$

then \(\mathcal{X}(\mathfrak{z})=\mathcal{Z}(\mathfrak{z})\).

Applying Lemma 4.14, the triangle inequality, and inequality (14), for any \(t \in [0,R] \), we then may write

$$ \begin{aligned}&\bigl\vert \overset{\backsim }{u}(\mathfrak{z})-u( \mathfrak{z}) \bigr\vert \\ &\quad = \bigl\vert \overset{\backsim }{u}(\mathfrak{z})- \mathcal{X}(\mathfrak{z}) - \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) \bigr\vert \\ &\quad \le \bigl\vert \overset{\backsim }{u}(\mathfrak{z})-\mathcal{Z}( \mathfrak{z})- \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} f\bigl(\mathfrak{z},u(\mathfrak{z}) \bigr) \bigr\vert \\ &\qquad {} + \mathcal{I}_{a^{+}}^{\alpha _{1} +\alpha _{2} ; \varPsi} \bigl\vert f\bigl( \mathfrak{z},\overset{\backsim }{u}(\mathfrak{z})\bigr) -f\bigl( \mathfrak{z},u( \mathfrak{z})\bigr) \bigr\vert + \bigl\vert \mathcal{Z}( \mathfrak{z})- \mathcal{X}(\mathfrak{z}) \bigr\vert \\ &\quad \le \varPsi \varepsilon \gamma _{\Upsilon} \Upsilon (\mathfrak{z})+ \frac{L_{f}}{\Gamma ( \alpha _{1}+\alpha _{2} ) } \int _{0}^{ \mathfrak{z}} \varPsi ' ( s ) \bigl( \varPsi ( \mathfrak{z} ) -\varPsi ( s ) \bigr)^{ \alpha _{1}+ \alpha _{2} -1} \bigl\vert \overset{\backsim }{u}(s)-u(s) \bigr\vert \,ds \\ &\quad \le \varPsi \varepsilon \gamma _{\Upsilon} \biggl[ \Upsilon ( \mathfrak{z}) + \int _{0}^{\mathfrak{z}} \underset{k=1}{\overset{\infty }{ \sum }} \frac{L_{f}^{k}}{\Gamma ( k ( \alpha _{1}+\alpha _{2} ) ) } \varPsi ' ( s ) \bigl( \varPsi ( \mathfrak{z} ) -\varPsi ( s ) \bigr) ^{k ( \alpha _{1}+ \alpha _{2} ) -1} \Upsilon (s)\,ds \biggr]. \end{aligned} $$

Since ϒ is nondecreasing (see condition (H6)), for all \(s \in [0,\mathfrak{z}] \), we obtain \(\Upsilon (s)\le \Upsilon (\mathfrak{z})\) and can write

$$ \begin{aligned} \bigl\vert \overset{\backsim }{u}(\mathfrak{z})-u( \mathfrak{z}) \bigr\vert &\le \varPsi \varepsilon \gamma _{\Upsilon} \Upsilon (\mathfrak{z}) \biggl[ 1 + \underset{k=1}{\overset{\infty }{\sum }} \frac {L_{f}^{k}}{\Gamma ( k ( \alpha _{1}+\alpha _{2} ) ) } \frac { ( \varPsi ( \mathfrak{z} ) -\varPsi ( 0 ) ) ^{k ( \alpha _{1}+\alpha _{2} ) }}{k ( \alpha _{1}+\alpha _{2} )} \biggr] \\ &\le \varPsi \varepsilon \gamma _{\Upsilon} \Upsilon (\mathfrak{z}) \underset{k=0}{\overset{\infty }{\sum }} \frac{L^{k}_{f} ( \varPsi (R) -\varPsi ( 0 ) ) ^{k ( \alpha _{1}+\alpha _{2} ) }}{\Gamma ( k ( \alpha _{1}+\alpha _{2} ) +1 )} \\ &=\varepsilon \gamma _{\Upsilon} \Upsilon (\mathfrak{z}) \varPsi \mathbb{E}_{\alpha _{1}+\alpha _{2}} \bigl( L_{f} \bigl( \varPsi (R) - \varPsi ( 0 ) \bigr)^{ \alpha _{1}+\alpha _{2} } \bigr), \end{aligned} $$

where Ψ is provided by (42). Thus,

$$ \bigl\vert \overset{\backsim }{u}(\mathfrak{z})-u(\mathfrak{z}) \bigr\vert \le \mathcal{C}_{f,\Upsilon} \Upsilon (\mathfrak{z}) \varepsilon , $$

with

$$ \mathcal{C}_{f,\Upsilon}:= \gamma _{\Upsilon} \varPsi \mathbb{E}_{ \alpha _{1}+\alpha _{2}} \bigl(L_{f} \bigl( \varPsi (R) -\varPsi ( 0 ) \bigr)^{ \alpha _{1}+\alpha _{2} } \bigr). $$

Then, the (FGSLL)-problem (1) is UHR stable. □

Corollary 4.16

Let the assumptions (H1), (H2), and (H6) hold.

  • If \(\chi (\mathfrak{z}) = 0\) for all \(\mathfrak{z} \in I\), then \(\overline{\chi}=0\) and the (FSL)-problem (2) is UHR stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

  • If \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) (\(\lambda \in \mathbb{R}\)) for \(\mathfrak{z} \in I\), then we have \(\underline{\eta}=1\) and \(\overline{\chi}=|\lambda |\). Furthermore, the (FL)-problem (3) is UHR stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

Now, we take \(\varepsilon =1\) in \(\vert \overset{\backsim }{u}(\mathfrak{z})-u(\mathfrak{z}) \vert \le \mathcal{C}_{f,\Upsilon} \Upsilon (\mathfrak{z}) \varepsilon \) with \(\Upsilon (0)=0\). Then we have the following.

Corollary 4.17

Suppose that (H1), (H2), and (H6) are fulfilled. Then the (FGSLL)-problem (1) is GUHR stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

  • If \(\chi (\mathfrak{z}) = 0\) for all \(\mathfrak{z} \in I\), then we have \(\overline{\chi}=0\) and the (FSL)-problem (2) is GUHR stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

  • If \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) (\(\lambda \in \mathbb{R}\)) for \(\mathfrak{z} \in I\), then we have \(\underline{\eta} =1\) and \(\overline{\chi}=|\lambda |\). In addition, the (FL)-problem (3) is GUHR stable in \(\mathcal{C} ([0,R], \mathbb{R})\).

5 Illustrative examples

Here, three test examples are used to show the effectiveness of the proposed techniques.

Example 5.1

Two cases are formulated that require less restrictive conditions for a unique solution. Then we analyze the stability results based on the (FGSLL)-problem (1).

First case. We fix \(\alpha _{1}=\frac{1}{3}\), \(\alpha _{2}=\frac{5}{6}\), \(\sigma _{1}=\frac{2}{3}\), \(\sigma _{2}= \frac{1}{2}\), \(\varPsi (\mathfrak{z})=\mathfrak{z}\) for \(\mathfrak{z} \in [0,1]\), \(\eta (\mathfrak{z})=e^{10^{2}}+10^{-3}\mathfrak{z}\), and \(\chi ( \mathfrak{z})= 0\) for \(\mathfrak{z} \in [0,1]\). We have \(\overline{\chi}=\chi (1)=0\), \(\eta (1)=e^{10^{2}}+10^{-3}\) and \(\underline{\eta}=e^{10^{2}}\). In this case, the (FGSLL)-problem (1) is reduced to the (CSL)-problem (Caputo-type Sturm–Liouville)

$$ \textstyle\begin{cases} {}^{C}{D}_{0^{+}}^{\frac{1}{3}} ((e^{10^{2}}+10^{-3}\mathfrak{z}) {}^{C}{D}_{0^{+}}^{ \frac{5}{6}} \mathrm{u}(\mathfrak{z}) ) = \frac { \vert u(\mathfrak{z}) \vert e^{\mathfrak{z}} }{(1+ \vert u(\mathfrak{z}) \vert ) (9+\mathfrak{z})^{2}}, \quad \mathfrak{z} \in [0,1], \\ \mathrm{u}(0) = 0, \qquad { (e^{10^{2}}+10^{-3}) {}^{C}{D}_{0^{+}}^{ \frac{2}{3}} \mathrm{u}(1) =0}. \end{cases} $$
(44)

The conditions (H1) and (H2) are satisfied so that

$$ \begin{aligned} \bigl\vert f ( \mathfrak{z},u_{2} ) -f ( \mathfrak{z},u_{1} ) \bigr\vert &\le \biggl\vert { \frac {e^{\mathfrak{z}}}{(9+\mathfrak{z})^{2}} \frac { \vert u_{1}(\mathfrak{z}) \vert }{1+ \vert u_{1}(\mathfrak{z}) \vert } - \frac {e^{\mathfrak{z}}}{(9+\mathfrak{z})^{2}} \frac { \vert u_{2}(\mathfrak{z}) \vert }{1+ \vert u_{2}(\mathfrak{z}) \vert } } \biggr\vert \\ & \leq \biggl\vert {\frac {e^{\mathfrak{z}}}{(9+\mathfrak{z})^{2}} } \biggr\vert \vert {u_{1}-u_{2}} \vert \\ &\leq \frac {e}{10^{2}} \vert {u_{1}-u_{2}} \vert ,\quad \text{for all } u_{1},u_{2} \in \mathbb{R}, \mathfrak{z}\in [0,1]. \end{aligned} $$

Then, we have \(L_{f}=\frac {e}{10^{2}}\). Hence,

$$ \begin{aligned} \mathcal{J}& = \frac {L_{f} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \frac {1 }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac { \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { L_{f} \vert {\eta (R)} \vert }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \\ &= \frac {e}{10^{2} e^{10^{2}} \Gamma (\frac{13}{6})} + \frac{1}{ \Gamma (\frac {11}{6}) \vert { \frac {e^{10^{2}}+10^{-3}}{ \Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {(e^{10^{2}}+10^{-3})e}{10^{2} e^{10^{2}}\Gamma (\frac{3}{2})} \biggr] < 1, \end{aligned} $$

where \(\mathcal{J}\) is given by (20). Now, all the assumptions of Theorem 3.2 are satisfied. Thus the (CSL)-problem (44) has a unique solution on \([0,1]\).

Similarly, by choosing \(\theta >0\) large enough such that

$$\begin{aligned} L_{f} \Lambda _{\theta}+ \nabla _{\theta}&= L_{f} \biggl( \frac {1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} + \frac {\frac{1 }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { \vert { \eta (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \\ &= \frac {e}{10^{2} e^{10^{2}} \theta ^{\frac{7}{6}} } + \frac {1}{ \Gamma (\frac {11}{6}) \vert {\frac {e^{10^{2}}+10^{-3}}{ \Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {(e^{10^{2}}+10^{-3})e}{10^{2} e^{10^{2}} \theta ^{\frac{1}{2}} } \biggr] < 1, \end{aligned}$$

where \(\Lambda _{\theta} \) and \(\nabla _{\theta}\) are the constants given by (18) and (19), the conditions of Theorem 3.3 are fulfilled. Thus the (CSL)-problem (44) has a unique solution on \([0,1]\). Moreover, we have

$$ \begin{aligned} \mathcal{C}_{f}&= \frac { 1 }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \frac{ 1 }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { \vert {\eta (R) } \vert }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \mathbb{E}_{\alpha _{1}+\alpha _{2}} ( L_{f} ) \\ &=\frac{1}{e^{10^{2}}\Gamma (\frac{13}{6})} + \frac{1}{ \Gamma (\frac{11}{6}) \vert { \frac{e^{10^{2}}+10^{-3}}{ \Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {e^{10^{2}}+10^{-3}}{e^{10^{2}} \Gamma (\frac{3}{2})} \biggr] \mathbb{E}_{\frac{7}{6}} \bigl( 10^{-2} e \bigr) >0 . \end{aligned} $$

Hence, from Theorem 4.11, the (CSL)-problem (44) is UH and GUH stable on \([0,1]\).

By taking \(\Upsilon (\mathfrak{z})= ( \varPsi (\mathfrak{z}) -\varPsi ( 0 ) )^{\frac{1}{6}}=\mathfrak{z}^{\frac{1}{6}} \), it follows that

$$\begin{aligned} &\mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2},\varPsi} \Upsilon ( \mathfrak{z})= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})} \mathfrak{z}^{8} \Upsilon (\mathfrak{z}) \le \gamma _{\Upsilon , \alpha _{1}+\alpha _{2}} \Upsilon (\mathfrak{z}), \quad \text{where } \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}}= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})}, \\ &\mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{1},\varPsi} \Upsilon (\mathfrak{z})= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})}\mathfrak{z}^{4} \Upsilon (\mathfrak{z}) \le \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}- \sigma _{1}} \Upsilon (\mathfrak{z}),\quad \text{where } \gamma _{ \Upsilon ,\alpha _{1}+\alpha _{2}-\sigma _{1}}= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})}, \\ &\mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \Upsilon (\mathfrak{z})= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{11}{6})}\mathfrak{z}^{5} \Upsilon (\mathfrak{z}) \le \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}- \sigma _{2}} \Upsilon (\mathfrak{z}),\quad \text{where } \gamma _{ \Upsilon ,\alpha _{1}+\alpha _{2}-\sigma _{2}}= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{11}{6})}. \end{aligned}$$

The inequality (14) is satisfied with

$$ \gamma _{\Upsilon}=\max \{ \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}- \sigma _{2}}, \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}-\sigma _{1}}, \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}} \} = \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})} >0, $$

where

$$ \begin{aligned} \varPsi &=\frac {1}{ \underline{\eta}}+ \frac { \frac{1}{\Gamma (\alpha _{2}+1)}}{ \vert { \frac { \vert { \eta (R)} \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1) } } \vert } \biggl[ \frac { \vert \eta (R) \vert }{ \underline{\eta} } \biggr]= e^{-10^{2}} + \frac {1}{ \Gamma (\frac{11}{6}) \vert { \frac {e^{10^{2}}+10^{-3}}{ \Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {e^{10^{2}}+10^{-3}}{ e^{10^{2}}} \biggr]. \end{aligned} $$

Then

$$ \begin{aligned} \mathcal{C}_{f,\Upsilon}&=\gamma _{\Upsilon} \varPsi \mathbb{E}_{\alpha _{1}+\alpha _{2}} (L_{f} ) \\ &= \frac {\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})} \biggl( e^{-10^{2}} + \frac {1}{ \Gamma (\frac{11}{6}) \vert { \frac {e^{10^{2}}+10^{-3}}{ \Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {e^{10^{2}}+10^{-3}}{ e^{10^{2}}} \biggr] \biggr) \mathbb{E}_{ \frac{7}{6}} \bigl( 10^{-2} e \bigr) >0. \end{aligned} $$

Therefore, in view of Theorem 4.15, the (CSL)-problem (44) is UHR and GUHR stable on \([0,1]\).

Second case. We fix \(\alpha _{1}=\frac {1}{3}\), \(\alpha _{2}=\frac {5}{6}\), \(\sigma _{1}=\frac {2}{3}\), \(\sigma _{2}=\frac {1}{2}\), \(\varPsi (\mathfrak{z})=\mathfrak{z}\), \(\eta (\mathfrak{z}) = 1\) for \(\mathfrak{z} \in [0,1]\), and \(\chi (\mathfrak{z})=10^{-3}\) for \(\mathfrak{z} \in [0,1]\). We get \(\eta (1)=\underline{\eta}=1\) and \(\chi (1)=\overline{\chi}=10^{-3}\). In this case, the (FGSLL)-problem (1) is reduced to (CL)-problem (Caputo-type Langevin)

$$ \textstyle\begin{cases} {}^{C}{D}_{0^{+}}^{\frac{1}{3}} ( {}^{C}{D}_{0^{+}}^{\frac{5}{6}} \mathrm{u}(\mathfrak{z}) +10^{-3} \mathrm{u}(\mathfrak{z}) ) = \frac { \vert u(\mathfrak{z}) \vert e^{\mathfrak{z}} }{(1+ \vert u(\mathfrak{z}) \vert ) (9+\mathfrak{z})^{2}}, \quad \mathfrak{z} \in [0,1], \\ \mathrm{u}(0) = 0, \qquad {}^{C}{D}_{0^{+}}^{\frac{2}{3}} \mathrm{u}(1) +10^{-3} {}^{C}{D}_{0^{+}}^{\frac{1}{2}} \mathrm{u}(1) =0. \end{cases} $$
(45)

The conditions (H1) and (H2) are satisfied with \(L_{f}=\frac {e}{10^{2}}\). Hence,

$$ \begin{aligned} \mathcal{J}={}& \frac {L_{f} }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)} + \frac { \overline{\chi} }{ \underline{\eta} \Gamma (\alpha _{2}+1)}+ \frac { 1 }{ \Gamma (\alpha _{2}+1) \vert { \frac { \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac { \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert {\chi (R)} \vert \overline{\chi} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} + \frac { \vert {\eta (R)} \vert \overline{\chi} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} + \frac { L_{f} \vert {\chi (R)} \vert }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} \\ &{}+ \frac { L_{f} \vert {\eta (R)} \vert }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \\ ={}& \frac {e}{10^{2} \Gamma (\frac{13}{6})} + \frac {1}{10^{3} \Gamma (\frac{11}{6})} \\ &{} + \frac {1}{ \Gamma (\frac{11}{6}) \vert { \frac {1}{10^{3} \Gamma (\frac{4}{3})} -\frac {1}{ \Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {1}{10^{6} \Gamma (\frac{4}{3})} + \frac {1}{10^{3} \Gamma (\frac{7}{6})} + \frac {e}{10^{5} \Gamma (\frac{5}{3})} + \frac {e}{10^{2} \Gamma (\frac{3}{2})} \biggr] \\ < {}&1. \end{aligned} $$

All the assumptions of Theorem 3.2 hold. Hence, the (CL)-problem (45) has a unique solution on \([0,1]\). Similarly, by choosing \(\theta >0\) large enough such that

$$ \begin{aligned} L_{f} \Lambda _{\theta}+ \nabla _{\theta} ={}&L_{f} \biggl( \frac {1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} + \frac {\frac{1 }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} -\frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { \vert { \chi (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac { \vert { \eta (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \biggr) \\ &{} + \frac {\overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}} }+ \frac { \frac{1}{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac{ \vert {\eta (R)} \vert \overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \\ ={}&\frac {e}{10^{2} \theta ^{\frac{7}{6}} } + \frac {1}{10^{3} \theta ^{\frac{5}{6}} } \\ &{} + \frac {1}{ \Gamma (\frac{11}{6}) \vert { \frac {1}{10^{3}\Gamma (\frac{4}{3})} - \frac {1}{\Gamma (\frac{7}{6})} } \vert } \biggl[\frac {1}{10^{3} \theta ^{\frac{1}{6}} } + \frac {e}{10^{2} \theta ^{\frac{1}{2}} } + \frac {1}{10^{6} \theta ^{\frac{1}{3}} } + \frac {e}{10^{5} \theta ^{\frac{2}{3}}} \biggr] < 1, \end{aligned} $$

all the conditions of Theorem 3.3 are fulfilled. Then the (CL)-problem (45) admits one solution uniquely on \([0,1]\). In addition, we have

$$ \begin{aligned} \mathcal{C}_{f}={}& \frac {1}{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}+1)}+ \frac { \frac{1}{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \\ &{} \times \biggl[ \frac { \vert { \chi (R) } \vert }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{2}+1)} + \frac { \vert {\eta (R) } \vert }{ \underline{\eta} \Gamma (\alpha _{1}+\alpha _{2}-\sigma _{1}+1)} \biggr] \mathbb{E}_{\alpha _{1}+\alpha _{2}} ( L_{f} ) \\ ={}&\frac {1}{\Gamma (\frac{13}{6})} + \frac {1}{ \Gamma (\frac{11}{6}) \vert { \frac {1}{10^{3}\Gamma (\frac{4}{3})} - \frac {1}{\Gamma (\frac{7}{6})} } \vert } \biggl[ \frac {1}{10^{3} \Gamma (\frac{5}{3})} + \frac {1}{ \Gamma (\frac{3}{2})} \biggr] \mathbb{E}_{\frac{7}{6}} \biggl( \frac {e}{10^{2}} \biggr) >0 . \end{aligned} $$

From Theorem 4.11, it follows that the (CL)-problem (45) is UH and GUH stable on \([0,1]\). Taking \(\Upsilon (\mathfrak{z})= ( \varPsi (\mathfrak{z}) -\varPsi ( 0 ) )^{\frac{1}{6}}=\mathfrak{z}^{\frac{1}{6}} \), we obtain

$$\begin{aligned}& \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2},\varPsi} \Upsilon ( \mathfrak{z}) = \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})} \mathfrak{z}^{2} \Upsilon ( \mathfrak{z}) \le \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})} \Upsilon ( \mathfrak{z}) =\gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}} \Upsilon ( \mathfrak{z}), \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}}= \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})}, \\& \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{1},\varPsi} \Upsilon (\mathfrak{z}) = \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})}\mathfrak{z}^{4} \Upsilon (\mathfrak{z}) \le \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})} \Upsilon ( \mathfrak{z}) =\gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}-\sigma _{1}} \Upsilon ( \mathfrak{z}), \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}- \sigma _{1}}=\frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})}, \\& \mathcal{I}_{0^{+}}^{\alpha _{1}+\alpha _{2}-\sigma _{2},\varPsi} \Upsilon (\mathfrak{z}) = \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{11}{6})}\mathfrak{z}^{5} \Upsilon (\mathfrak{z}) \le \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{11}{6})} \Upsilon ( \mathfrak{z}) =\gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}-\sigma _{2}} \Upsilon ( \mathfrak{z}), \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}- \sigma _{2}}=\frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{5}{3})}. \end{aligned}$$

The inequality (14) is satisfied with

$$ \gamma _{\Upsilon}=\max \{ \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}- \sigma _{2}}, \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}-\sigma _{1}}, \gamma _{\Upsilon ,\alpha _{1}+\alpha _{2}} \} = \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})} >0, $$

where

$$ \begin{aligned}\varPsi &= \frac {1}{ \underline{\eta}}+ \frac { \frac{1}{\Gamma (\alpha _{2}+1)}}{ \vert { \frac{ \vert { \eta (R)} \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1) } - \frac{ \vert {\chi (R)} \vert }{\Gamma (\alpha _{2}-\sigma _{2}+1) } } \vert } \biggl[ \frac{ \vert \eta (R) \vert }{ \underline{\eta} } + \frac{ \vert \chi (R) \vert }{ \underline{\eta}} \biggr] \\ & = 1+ \frac {1001}{10^{3} \Gamma (\frac{11}{6}) \vert { \frac{1}{10^{3}\Gamma (\frac{4}{3})} - \frac{1}{\Gamma (\frac{7}{6})} } \vert }. \end{aligned}$$

Then

$$ \mathcal{C}_{f,\Upsilon}= \frac{\Gamma (\frac{7}{6})}{\Gamma (\frac{7}{3})} \biggl( 1+ \frac {1001}{10^{3} \Gamma (\frac{11}{6}) \vert { \frac{1}{10^{3}\Gamma (\frac{4}{3})} - \frac{1}{\Gamma (\frac{7}{6})} } \vert } \biggr) \mathbb{E}_{\frac{7}{6}} \biggl(\frac{e}{10^{2}} \biggr) >0. $$

Therefore, from Theorem 4.15, the (CL)-problem (45) is UHR and GUHR stable on \([0,1]\).

Example 5.2

We start with the (FGSLL)-problem (1) and choose \(\alpha _{1}=\frac{4}{5}\), \(\alpha _{2}=\frac{\sqrt{5}}{7}\), \(\sigma _{1}=\frac{2}{7}\), \(\sigma _{2}=\frac{1}{4}\), \(\varPsi (x)=x^{3}\). For \(\mathfrak{z} \in [0,1]\), \(\eta (\mathfrak{z})=1\) and \(\chi (\mathfrak{z})=10^{-4}\) for \(\mathfrak{z} \in [0,1]\), we have \(\underline{\eta}=\eta (1)=1\) and \(\chi (1)=\overline{\chi}=10^{-4}\). In this case, the (FGSLL)-problem (1) is reduced to (CEKL)-problem (Caputo–Erdélyi–Kober-type Langevin)

$$ \textstyle\begin{cases} {}^{C}\mathcal{D}_{0^{+}}^{\frac{4}{5}} ( {}^{C}\mathcal{D}_{0^{+}}^{ \frac{\sqrt{5}}{7}} \mathrm{u}(\mathfrak{z}) +10^{-4}\mathrm{u}( \mathfrak{z}) ) = \frac { \vert u(\mathfrak{z}) \vert e^{\mathfrak{z}}}{(9+\mathfrak{z})^{2} (1+ \vert u(\mathfrak{z}) \vert )}, \quad \mathfrak{z} \in [0,1], \\ \mathrm{u}(0) = 0, \qquad {}^{C}\mathcal{D}_{0^{+}}^{\frac{2}{7}} \mathrm{u}(1) +10^{-4}{}^{C}\mathcal{D}_{0^{+}}^{\frac{1}{4}} \mathrm{u}(1)=0. \end{cases} $$
(46)

The conditions (H1) and (H3) are satisfied with

$$ \biggl\vert \frac { \vert u(\mathfrak{z}) \vert e^{\mathfrak{z}}}{(9+\mathfrak{z})^{2} (1+ \vert u(\mathfrak{z}) \vert )} \biggr\vert \leq \frac {e^{\mathfrak{z}}}{(9+\mathfrak{z})^{2}}= \mathcal{K}_{f}(\mathfrak{z}). $$

Hence,

$$ \begin{aligned} \nabla ={}& \frac { \overline{\chi} }{ \underline{\eta} \Gamma (\alpha _{2}+1) } + \frac { \frac{1}{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{2}+1)} + \frac { \vert {\eta (R) } \vert \overline{\chi} }{ \underline{\eta} \Gamma (\alpha _{2}-\sigma _{1}+1)} \biggr] \\ ={}&\frac {1}{ 10^{4} \Gamma (\frac{7+\sqrt{5}}{7}) } \\ &{} + \frac { 1 }{ \Gamma (\frac{7+\sqrt{5}}{7}) \vert { \frac{ 1 }{ 10^{4} \Gamma (\frac{21+4\sqrt{5}}{28}) } -\frac{ 1 }{ 10^{4} \Gamma (\frac{5+\sqrt{5}}{7}) } } \vert } \biggl[ \frac { 1 }{ 10^{8} \Gamma (\frac{21+4\sqrt{5}}{28})} + \frac { 1 }{ 10^{4} \Gamma (\frac{5+\sqrt{5}}{7}) } \biggr] < 1. \end{aligned} $$
(47)

The assumptions of Theorem 3.7 are met. Hence, the (CEKL)-problem (46) has at least one solution defined on \([0,1]\). Similarly, by choosing \(\theta >0\) large enough such that

$$ \begin{aligned} \nabla _{\theta} &= \frac {\overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}} }+ \frac { \frac{ 1 }{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac { \vert {\eta (R)} \vert \overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \\ & =\frac {1}{ 10^{4} \theta ^{\frac{\sqrt{5}}{7}} } + \frac { 1 }{ \Gamma (\frac{7+\sqrt{5}}{7}) \vert { \frac{ 1 }{ 10^{4} \Gamma (\frac{21+4\sqrt{5}}{28}) } -\frac{ 1 }{ 10^{4} \Gamma (\frac{5+\sqrt{5}}{7}) } } \vert } \biggl[ \frac { 1 }{ 10^{8} \theta ^{ \frac{4\sqrt{5}-7}{7} }} + \frac { 1 }{ \underline{\eta} \theta ^{\frac{\sqrt{5}-2}{7}}} \biggr] < 1, \end{aligned} $$

and by utilizing Theorem 3.9, we conclude the (CEKL)-problem (46) has at least one solution defined on \([0,1]\).

Example 5.3

Based on the (FGSLL) problem (1), we take \(\alpha _{1}=\frac{3}{4}\), \(\alpha _{2}=\frac{\sqrt{5}}{7}\), \(\sigma _{1}=\frac{2}{7}\), \(\sigma _{2}=\frac{1}{4}\), \(\varPsi (x)=x^{3}\), \(\eta (\mathfrak{z})= 1\) for \(\mathfrak{z} \in [0,1]\), and \(\chi (\mathfrak{z})= 10^{-2}\) for \(\mathfrak{z} \in [0,1]\). We have \(\underline{\eta}=\eta (1)=1\) and \(\chi (1)=\overline{\chi}= 10^{-2}\). In this case, the (FGSLL)-problem (1) is reduced to (CEKL)-problem (Caputo–Erdélyi–Kober-type Langevin)

$$ \textstyle\begin{cases} {}^{C}\mathcal{D}_{0^{+}}^{\frac{3}{4}} ( {}^{C}\mathcal{D}_{0^{+}}^{ \frac{\sqrt{5}}{7}} \mathrm{u}(\mathfrak{z}) +10^{-2} \mathrm{u}( \mathfrak{z}) ) = \frac {3+ \vert u(\mathfrak{z}) \vert }{9e^{\mathfrak{z}^{2}}\sqrt{1+\mathfrak{z}^{4}} (5+ \vert u(\mathfrak{z}) \vert ) }, \quad \mathfrak{z} \in [0,1], \\ \mathrm{u}(0) = 0,\qquad {}^{C}\mathcal{D}_{0^{+}}^{\frac{2}{3}} \mathrm{u}(1) +10^{-2} {}^{C}\mathcal{D}_{0^{+}}^{\frac{1}{2}} \mathrm{u}(1) =0. \end{cases} $$
(48)

The conditions (H1), (H3), (H4), and (H5) are satisfied with

$$ \biggl\vert \frac {3+ \vert u(\mathfrak{z}) \vert }{9e^{\mathfrak{z}^{2}}\sqrt{1+\mathfrak{z}^{4}} (5+ \vert u(\mathfrak{z}) \vert ) } \biggr\vert \leq \frac{1}{9e^{\mathfrak{z}^{2}}\sqrt{1+\mathfrak{z}^{4}} }= \mathcal{K}_{f}(\mathfrak{z}) , $$

and

$$ \begin{aligned} \biggl\vert \frac {3+ \vert u(\mathfrak{z}) \vert }{9e^{\mathfrak{z}^{2}}\sqrt{1+\mathfrak{z}^{4}} (5+ \vert u(\mathfrak{z}) \vert ) } \biggr\vert & \leq \frac {3}{9e^{\mathfrak{z}^{2}}\sqrt{1+\mathfrak{z}^{4}} (5+ \vert u(\mathfrak{z}) \vert ) } + \frac { \vert u(\mathfrak{z}) \vert }{9e^{\mathfrak{z}^{2}}\sqrt{1+\mathfrak{z}^{4}} (5+ \vert u(\mathfrak{z}) \vert ) } \\ &\leq \mathfrak{g}(\mathfrak{z})+d \vert {u} \vert , \end{aligned} $$

such that \(\mathfrak{g}(\mathfrak{z})= \frac {1}{3e^{\mathfrak{z}^{2}} \sqrt{1+\mathfrak{z}^{4}}}\), \(d=1\), and \(\Vert \mathfrak{g} \Vert _{\theta}=\frac {1}{3}\), where

$$\begin{aligned}& \begin{aligned} \Lambda _{\theta} &= \frac {1}{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}}} + \frac {\frac{1}{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} -\frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac { \vert { \chi (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{2}}} + \frac { \vert { \eta (R) } \vert }{ \underline{\eta} \theta ^{\alpha _{1}+\alpha _{2}-\sigma _{1}}} \biggr] \\ &=\frac {1}{ \theta ^{\frac{21+4\sqrt{5}}{28}}} + \frac {1}{ \Gamma (\frac{7+\sqrt{5}}{7}) \vert \frac{ 1 }{10^{2} \Gamma (\frac{21+4\sqrt{5}}{28})} -\frac{ 1 }{ \Gamma (\frac{5+\sqrt{5}}{7})} \vert } \biggl[ \frac { 1 }{10^{2} \theta ^{\frac{7+2\sqrt{5}}{14}}} + \frac { 1 }{\theta ^{\frac{13+4\sqrt{5}}{28}}} \biggr], \end{aligned} \\& \begin{aligned} \nabla _{\theta} &= \frac {\overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}} }+ \frac { \frac{1}{ \Gamma (\alpha _{2}+1)} }{ \vert { \frac{ \vert { \chi (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{2}+1)} - \frac{ \vert { \eta (R) } \vert }{ \Gamma (\alpha _{2}-\sigma _{1}+1)} } \vert } \biggl[ \frac{ \vert { \chi (R) } \vert \overline{\chi} }{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{2}}} + \frac{ \vert {\eta (R)} \vert \overline{\chi}}{ \underline{\eta} \theta ^{\alpha _{2}-\sigma _{1}}} \biggr] \\ &=\frac {1}{10^{2} \theta ^{\frac{\sqrt{5}}{7}}} + \frac {1}{ \Gamma (\frac{7+\sqrt{5}}{7}) \vert \frac{ 1 }{10^{2} \Gamma (\frac{21+4\sqrt{5}}{28})} -\frac{ 1 }{ \Gamma (\frac{5+\sqrt{5}}{7})} \vert } \biggl[ \frac { 1 }{10^{4} \theta ^{\frac{4\sqrt{5}-7}{28}}} + \frac { 1 }{10^{2} \theta ^{\frac{\sqrt{5}-2}{7}}} \biggr], \end{aligned} \end{aligned}$$

and

$$ \frac {M (1-d\Lambda _{\theta}-\nabla _{\theta})}{\Lambda _{\theta} \Vert \mathfrak{g} \Vert _{\theta} } >1. $$

Hence, from Theorem 3.13, we conclude that the (CEKL)-problem (48) has at least one solution defined on \([0,1]\).

6 Conclusion

We conclude this paper with some useful findings. First, we studied the existence and uniqueness of solutions for a new class generalizing the differential equations of Sturm–Liouville–Langevin (1) including two fractional derivative operators in the Ψ-Caputo sense. When \(\chi (\mathfrak{z})=0\) for \(\mathfrak{z} \in I\), we obtained the (FSL)-differential equation (2) (Sturm–Liouville problem), and if \(\eta (\mathfrak{z}) = 1\) and \(\chi (\mathfrak{z}) = \lambda \) (\(\lambda \in \mathbb{R}\)) for \(\mathfrak{z} \in I\), we obtained the (FL)-differential equation (3) (Langevin problem). The acquired results have been established via Banach’s contraction, Krasnoselskii and Leray–Schauder fixed point theorems using some norm inequalities of the Ψ-Bielecki-type. Moreover, we proved different kinds of stability in the sense of Ulam, such as Ulam–Hyers, Ulam–Hyers–Rassias, generalized Ulam–Hyers and generalized Ulam–Hyers–Rassias. Also, to prove our results, we applied the generalized Gronwall integral inequality.

The second main idea of the current research was to use the Ψ-Bielecki-type norm to reduce the constraints of the (FGSLL)-problem (1) to prove the results of existence and uniqueness. The advantage of this norm (Bielecki’s norm) can be found by comparing the conditions of Theorems 3.2 and 3.3, and by removing the strong condition \(\mathcal{J}<1\) that appeared in proving Theorem 3.2 using the classical supremum norm, while Theorem 3.3 does not require this condition. It is also done by comparing the conditions of Theorems 3.7 and 3.9. In a future work, researchers may consider using the Ψ-Hilfer or other fractional derivative operators, such as the fractal-fractional derivative, to establish the existence, uniqueness, and stability of solutions to the (FGSLL)-problem (1).