Background

Natural killer/T cell lymphoma (NKTCL) is a unique subtype of non-Hodgkin lymphoma with poor prognosis, which predominantly occurs in East Asia and Latin America [1]. The occurrence of NKTCL is associated with Epstein-Barr virus (EBV) infection, although the actual mechanism remains elusive [2]. Currently, the asparaginase-based chemotherapy is used as the first-line treatment for NKTCL, which helps to notably improve the survival of NKTCL patients [1, 3]. Yet approximately 40–50% of patients, especially those in advanced NKTCL stages, do not respond well to this treatment and frequently experience relapse after the first-line treatment [4, 5]. Patients with relapsed/refractory NKTCL had poor prognosis with a median overall survival (OS) less than 1 year [6]. So far, there is a lack of progress in the development of targeted therapy for NKTCL, which urges a need for better understanding of the molecular pathogenesis of NKTCL.

Recent applications of genome sequencing on NKTCL patients revealed recurrent mutational targets such as RNA helicase (e.g., DDX3X), tumor suppressors (e.g., TP53), and genes involved in the JAK-STAT and RAS-MAPK signaling pathways, as well as epigenetic modulators (e.g., KMT2C and KMT2D) [

Methods

Patients and NGS

Patients diagnosed with NKTCL during 2010–2020 at Sun Yat-sen University Cancer Center, Sichuan Cancer Hospital, and the Sixth Affiliated Hospital of Sun Yat-sen University were retrospectively enrolled in this study. A total of 42 patients (19 primary, 23 relapsed/refractory) were enrolled and subjected to WES. Technical details of DNA extraction and NGS are described in the Additional file 1: Supplementary materials and methods. In addition, raw NKTCL WGS and WES reads from several published studies were retrieved and reanalyzed as well, which include (1) the International Cancer Genome Consortium (ICGC), with 23 WGS datasets (20 primary, 3 relapsed/refractory) [19]; (2) the European Genome-phenome Archive (EGA), with 12 WGS datasets (2 primary, 10 relapsed/refractory) [20]; and (3) the National Omics Data Encyclopedia (NODE), which includes data on primary patients with 36 WGS and 50 WES datasets [Somatic mutation calling

Somatic SNVs and INDELs were detected with MuTect2 (v4.1.0.0) [21] and annotated by ANNOVAR (v2020Jun08) [22]. MSIsensor-pro (v1.2.0) [23] was utilized to evaluate microsatellite instability (MSI), generating an MSI score for each sample. SigProfiler Tools (v1.2.14) [24] were used for extracted and visualized mutational signatures. Somatic CNVs were called by CNVkit (v0.9.9) [25] and ASCAT (v3.1.1) [26]. The KEGG pathway enrichment analysis for gene-level CNVs was performed by clusterProfiler (v4.7.1.3) [27]. The aneuploidy score was calculated using the get_Aneuploidy_score() function implemented in sigminer (v2.1.9) [28]. For WGS data, we also examined the landscape of SVs using manta (v1.6.0) [29], profiled chromothripsis events with ShatterSeek (v1.1) [32]. A total of 151 patients were successfully classified into four clusters (C1–C4) (Fig. 6A). As for the remaining 12 patients, no characteristic driver genetic alterations were identified and therefore we classified them as the C0 cluster, although their genomes did show substantial alterations (mean SNVs = 26.4 per sample, mean CNVs = 63.6 per sample, mean SVs = 9.6 per sample) as those of other patients. All patients classified as C0 are primary patients. The C1 cluster is characterized by the mutations in DST, RELN, ARID1A, and CN loss of RBMX. The CD274 (PD-L1) SVs are also highly noticeable in this cluster. The C2 cluster is represented by the mutations involving the JAK-STAT pathway, including STAT3 and CN gain of CRLF2. The C3 cluster is associated with mutations in epigenetic modifiers such as TET2, KDM6B, and ARID1B as well as the mutations of tumor suppressors including FAT1 and KMT2C. Finally, the C4 cluster is characterized by the CN gain of STK11 and EPOR and mutations in genomic instability including PCNT, PRDM9, TUBGCP6, and NF1. Interestingly, patients from the C4 cluster predominantly have advanced-staged NKTCL with many of them being relapsed/refractory, whereas most patients from C1–C3 clusters have primary NKTCL (Fig. 6A). In accordance to this observation, the C4 cluster is also associated with the worst prognosis and higher PINK and IPI scores (Additional file 3: Fig. S6). Taken together, we found relapsed/refractory NKTCL patients are characterized by high levels of TMB, CNVs, and SVs, as well as higher propensity for chromothripsis and focal amplifications, reflecting their severe genome instability (Fig. 6B).

Fig. 6
figure 6

Identification of clusters of NKTCL with coordinate genomic alterations. A Nonnegative matrix factorization clustering was carried out using somatic SNVs, INDELs, CNVs, and SVs in the 163 NKTCL patients (columns). Samples without candidate alterations were defined as cluster C0. Clusters C1–C4 with their associated representative genetic alterations are visualized. B Sankey-diagram of the clinical and mutational characteristics for NKTCL patients. The eight columns from left to right represent molecular subty** clusters, Ann Arbor stage, sampling status, TMB, CNV, SV, chromothripsis, and focal amplifications respectively, with the total height represents the full 71 WGS samples. The curves with different colors show the correspondence relationship among different characteristics and molecular subty** clusters. C Kaplan–Meier curve of PFS and D OS of all NKTCL patients from different molecular subty** clusters. E Kaplan–Meier curve of PFS and F OS of primary NKTCL patients from different molecular subty** clusters

With this molecular subty** analysis, we mainly want to identify characteristic genomic alterations that helps to classify patients and potentially guide their treatment strategies, which is the ultimate goal of precision medicine. Nevertheless, it is also interesting to test if our molecular subty** system captures the inherent factors that determines patients’ prognosis. First, we found patients from these five clusters (i.e., C0–C4) show clear differences in PFS (P < 0.001, Fig. 6C) and OS (P = 0.005, Fig. 6D). Moreover, by excluding relapsed/refractory patients and performing the survival analysis for the 127 primary patients only, we found our molecular subty** systems is still capable of differentiating the prognostic performance of primary NKTCL patients in terms of both PFS (P = 0.004, Fig. 6E) and OS (P = 0.04, Fig. 6F). These results underscore the value of our molecular subty** system for future clinical practice on NKTCL.

Discussion

In this study, we comprehensively characterized the first full-spectral NKTCL somatic mutational landscape for NKTCL. Not only did we validate the previously reported common NKTCL mutational targets such as STAT3, TP53, and DDX3X [

Availability of data and materials

The newly generated WES data reported in this paper have been deposited in the Genome Sequence Archive with the accession number of HRA004366 (https://ngdc.cncb.ac.cn/gsa-human/browse/HRA004366) [71]. The publicly available WGS/WES data can be retrieved from European Genome-phenome Archive (EGA) repository with accession number of EGAD00001004140 (https://ega-archive.org/datasets/EGAD00001004140) [20] and EGAS00001002398 (https://ega-archive.org/studies/EGAS00001002398) [19] as well as from The National Omics Data Encyclopedia (NODE) with the accession number of OEP000498 (https://www.biosino.org/node/project/detail/OEP000498) [8]. Custom auxiliary scripts used for results visualization are publicly available at Zenodo (https://doi.org/https://doi.org/10.5281/zenodo.10842061) [72].

Abbreviations

CNVs:

Copy number variants

DSBs:

Double strand breaks

EBV:

Epstein-Barr virus

eccDNA:

Extracellular circular DNA

HRD:

Homologous recombination deficiency

INDELs:

Insertion/deletions

MSI:

Microsatellite instability

NHEJ:

Non-homologous DNA end-joining

NKTCL:

Natural killer/T cell lymphoma

NMF:

Non-negative matrix factorization

OS:

Overall survival

PD-1:

Programmed cell death protein 1

PFS:

Progression-free survival

SBS:

Single base substitution

SNVs:

Single nucleotide variants

SVs:

Structural variants

TMB:

Tumor mutation burden

WES:

Whole-exome sequencing

WGS:

Whole-genome sequencing

References

  1. Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021;35(9):2460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yan Z, Yao Z, Wang H, Yao S, Wang X, Gao Y, et al. Plasma EBV-DNA and peripheral blood mononuclear cell EBV-DNA have disparate clinical relevance in patients with extranodal NK/T-cell lymphoma. J Clin Virol. 2022;157:105320.

    Article  CAS  PubMed  Google Scholar 

  3. Shafiee A, Shamsi S, Kohandel Gargari O, Beiky M, Allahkarami MM, Miyanaji AB, et al. EBV associated T- and NK-cell lymphoproliferative diseases: A comprehensive overview of clinical manifestations and novel therapeutic insights. Rev Med Virol. 2022;32(4):e2328.

    Article  CAS  PubMed  Google Scholar 

  4. Hong H, Li Y, Lim ST, Liang C, Huang H, Yi P, et al. A proposal for a new staging system for extranodal natural killer T-cell lymphoma: a multicenter study from China and Asia Lymphoma Study Group. Leukemia. 2020;34(8):2243–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen SY, Yang Y, Qi SN, Wang Y, Hu C, He X, et al. Validation of nomogram-revised risk index and comparison with other models for extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: indication for prognostication and clinical decision-making. Leukemia. 2021;35(1):130–42.

    Article  PubMed  Google Scholar 

  6. Lim SH, Hong JY, Lim ST, Hong H, Arnoud J, Zhao W, et al. Beyond first-line non-anthracycline-based chemotherapy for extranodal NK/T-cell lymphoma: clinical outcome and current perspectives on salvage therapy for patients after first relapse and progression of disease. Ann Oncol. 2017;28(9):2199–205.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang L, Gu ZH, Yan ZX, Zhao X, **e YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–6.

    Article  CAS  PubMed  Google Scholar 

  8. **ong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, et al. Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell. 2020;37(3):403-419.e406.

    Article  CAS  PubMed  Google Scholar 

  9. Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, Quezada-Fiallos CM, Pérez-Báez WB, Dueñas D, et al. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol. 2020;33(5):781–91.

    Article  CAS  PubMed  Google Scholar 

  10. Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–7.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Li C, Xue W, Zhang M, Li Z. Frequent mutations in natural killer/T cell lymphoma. Cell Physiol Biochem. 2018;49(1):1–16.

    Article  PubMed  Google Scholar 

  12. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14(2):125–38.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li R, Zhu J. Effects of aneuploidy on cell behaviour and function. Nat Rev Mol Cell Biol. 2022;23(4):250–65.

    Article  PubMed  Google Scholar 

  15. Cortés-Ciriano I, Lee JJ, ** R, Jain D, Jung YL, Yang L, et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020;52(3):331–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575(7784):699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, Kim DH, et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature. 2021;591(7848):137–41.

    Article  CAS  PubMed  Google Scholar 

  18. Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet. 2022;23(12):760–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tchurikov NA, Uroshlev LA, Klushevskaya ES, Alembekov IR, Lagarkova MA, Kravatskaya GI, et al. Chromosomal translocations in NK-cell lymphomas originate from inter-chromosomal contacts of active rDNA clusters possessing hot spots of DSBs. Cancers (Basel). 2021;13(15):3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim JQ, Huang D, Tang T, Tan D, Laurensia Y, Peng RJ, et al. Whole-genome sequencing identifies responders to pembrolizumab in relapse/refractory natural-killer/T cell lymphoma. Leukemia. 2020;34(12):3413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jia P, Yang X, Guo L, Liu B, Lin J, Liang H, et al. MSIsensor-pro: Fast, accurate, and matched-normal-sample-free detection of microsatellite instability. Genomics Proteomics Bioinformatics. 2020;18(1):65–71.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics. 2019;20(1):685.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12(4):e1004873.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107(39):16910–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S, Li H, Song M, Tao Z, Wu T, He Z, et al. Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes. PLoS Genet. 2021;17(5):e1009557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–2.

    Article  CAS  PubMed  Google Scholar 

  30. Deshpande V, Luebeck J, Nguyen ND, Bakhtiari M, Turner KM, Schwab R, et al. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun. 2019;10(1):392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luebeck J, Ng AWT, Galipeau PC, Li X, Sanchez CA, Katz-Summercorn AC, et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature. 2023;616(7958):798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lin M, Zhang XL, You R, Liu YP, Cai HM, Liu LZ, et al. Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance. Nat Commun. 2023;14(1):610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014;7:64.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dong G, Liu X, Wang L, Yin W, Bouska A, Gong Q, et al. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia. 2022;36(8):2064–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Issa N, Bjeije H, Wilson ER, Krishnan A, Dunuwille WMB, Parsons TM, et al. KDM6B protects T-ALL cells from NOTCH1-induced oncogenic stress. Leukemia. 2023;37(4):728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Liang L, Li D, Nong L, Zheng Y, Huang S, et al. JAK3/STAT3 oncogenic pathway and PRDM1 expression stratify clinicopathologic features of extranodal NK/T-cell lymphoma, nasal type. Oncol Rep. 2019;41(6):3219–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim SJ, Yoon DH, Jaccard A, Chng WJ, Lim ST, Hong H, et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol. 2016;17(3):389–400.

    Article  CAS  PubMed  Google Scholar 

  43. Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe. 2015;18(6):723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosswog C, Bartenhagen C, Welte A, Kahlert Y, Hemstedt N, Lorenz W, et al. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nat Genet. 2021;53(12):1673–85.

    Article  CAS  PubMed  Google Scholar 

  45. Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alkashgari HR, Ruiz-Jimenez C, Stoian C, Coats JS, Baez I, Chirshev E, et al. TSLP as a potential therapy in the treatment of CRLF2 B cell acute lymphoblastic leukemia. Int J Mol Sci. 2022;24(1):474.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bӧhm JW, Sia KCS, Jones C, Evans K, Mariana A, Pang I, et al. Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia. Leukemia. 2021;35(11):3101–12.

    Article  PubMed  Google Scholar 

  48. Steele CD, Abbasi A, Islam SMA, Bowes AL, Khandekar A, Haase K, et al. Signatures of copy number alterations in human cancer. Nature. 2022;606(7916):984–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell. 2020;183(1):197-210.e132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin. 2020;13(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol. 2022;11(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cowin PA, George J, Fereday S, Loehrer E, Van Loo P, Cullinane C, et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer Res. 2012;72(16):4060–73.

    Article  CAS  PubMed  Google Scholar 

  53. Perron G, Jandaghi P, Moslemi E, Nishimura T, Rajaee M, Alkallas R, et al. Pan-cancer analysis of mRNA stability for decoding tumour post-transcriptional programs. Commun Biol. 2022;5(1):851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rausch T, Jones DT, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148(1–2):59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao XK, **ng P, Song X, Zhao M, Zhao L, Dang Y, et al. Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma. Nat Commun. 2021;12(1):6489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng X, Wan M, Wu J. ecDNA within tumors: a new mechanism that drives tumor heterogeneity and drug resistance. Signal Transduct Target Ther. 2020;5(1):277.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pradat Y, Viot J, Yurchenko AA, Gunbin K, Cerbone L, Deloger M, et al. Integrative pan-cancer genomic and transcriptomic analyses of refractory metastatic cancer. Cancer Discov. 2023;13(5):1116–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42.

    Article  CAS  PubMed  Google Scholar 

  59. Huang H, Tao R, Hao S, Yang Y, Cen H, Zhou H, et al. Sugemalimab monotherapy for patients with relapsed or refractory extranodal natural killer/T-cell lymphoma (GEMSTONE-201): results from a single-arm, multicenter, phase II study. J Clin Oncol. 2023;41(16):3032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodler E, Sharma P, Barlow WE, Gralow JR, Puhalla SL, Anders CK, et al. Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2023;24(2):162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Petty WJ, Paz-Ares L. Emerging strategies for the treatment of small cell lung cancer: a review. JAMA Oncol. 2023;9(3):419–29.

    Article  PubMed  Google Scholar 

  62. Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. 2022;22(6):356–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hussain M, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med. 2020;383(24):2345–57.

    Article  CAS  PubMed  Google Scholar 

  64. Kristeleit R, Lisyanskaya A, Fedenko A, Dvorkin M, de Melo AC, Shparyk Y, et al. Rucaparib versus standard-of-care chemotherapy in patients with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(4):465–78.

    Article  CAS  PubMed  Google Scholar 

  65. Luyendijk M, Blommestein H, Uyl-de Groot C, Siesling S, Jager A. Regulatory approval, reimbursement, and clinical use of cyclin-dependent kinase 4/6 inhibitors in metastatic breast cancer in the Netherlands. JAMA Netw Open. 2023;6(2):e2256170.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yap TA, Bardia A, Dvorkin M, Galsky MD, Beck JT, Wise DR, et al. Avelumab plus talazoparib in patients with advanced solid tumors: the JAVELIN PARP medley nonrandomized controlled trial. JAMA Oncol. 2023;9(1):40–50.

    Article  PubMed  Google Scholar 

  67. Kwon M, Kim G, Kim R, Kim KT, Kim ST, Smith S, et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J Immunother Cancer. 2022;10(7):e005041.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stimson L, Wood V, Khan O, Fotheringham S, La Thangue NB. HDAC inhibitor-based therapies and haematological malignancy. Ann Oncol. 2009;20(8):1293–302.

    Article  CAS  PubMed  Google Scholar 

  69. Takamura T, Horinaka M, Yasuda S, Toriyama S, Aono Y, Sowa Y, et al. FGFR inhibitor BGJ398 and HDAC inhibitor OBP-801 synergistically inhibit cell growth and induce apoptosis in bladder cancer cells. Oncol Rep. 2018;39(2):627–32.

    CAS  PubMed  Google Scholar 

  70. Wan G, Feng Z, Zhang Q, Li X, Ran K, Feng H, et al. Design and synthesis of fibroblast growth factor receptor (FGFR) and histone deacetylase (HDAC) dual inhibitors for the treatment of cancer. J Med Chem. 2022;65(24):16541–69.

    Article  CAS  PubMed  Google Scholar 

  71. Chen Z, Huang H, Hong H, Huang H, Weng H, Yu L et al. Full-spectral genome analysis of natural killer/T cell lymphoma highlights impacts of genome instability in driving its progression. HRA004366, Genome Sequence Archive. 2023. https://ngdc.cncb.ac.cn/gsa-human/browse/HRA004366.

  72. Chen Z. Full-spectral genome analysis of natural killer/T cell lymphoma highlights impacts of genome instability in driving its progression(v1.0.0). Zenodo. 2024. https://doi.org/10.5281/zenodo.10842062.

Download references

Acknowledgements

We are grateful to all patients who enrolled in this study and donate their clinical samples. We are also very grateful to researchers who shared WGS and WES data generated in their previous studies. We thank the two anonymous reviewers for their insightful critics and valuable suggestions, which helped us to markedly improve the robustness and depth of this study and the associated manuscript.

Funding

This work is supported by Guangdong Science and Technology Department (2017B020227002 to T.L.), the Regional Innovation and Cooperation Project of Sichuan Province (2021YFQ0037 to T.L.), National Natural Science Foundation of China (32070592 to J.-X.Y., 82270198 to Huangming Hong), Guangdong Pearl River Talents Program (2019QN01Y183 to J.-X.Y.), Guangdong Basic and Applied Basic Research Foundation (2022A1515010717 to J.-X.Y.), and Young Talents Program of Sun Yat-sen University Cancer Center (YTP-SYSUCC-0042 to J.-X. Y.).

Author information

Authors and Affiliations

Authors

Contributions

Tongyu Lin and Jia-**ng Yue designed and supervised the study. Zegeng Chen and He Huang performed the genomic data collection, curation, and analysis. Huangming Hong, Huageng Huang, Huawei Weng, Yuyi Yao, Jian **ao, and Le Yu helped with genomic data collection and curation. Zhao Wang and **aojie Fang managed the clinical data and helped with the survival analyses. Zegeng Chen, He Huang, Jia-**ng Yue, and Tongyu Lin wrote the manuscript. All authors contributed to the data interpretation and discussion. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jia-**ng Yue or Tongyu Lin.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Review Board of the Sun Yat-sen University Cancer Center (issue number: B2021-271–01) and participating hospitals. All patients provided written informed consent. This study complies with the ethical standards of the Helsinki Declaration.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1. 

Supplementary materials and methods.

Additional file 2: Table S1.

Summary of the sequencing coverage of the 163 NKTCL tumor samples. Table S2. Distribution of clinical features across different patient cohorts (n = 163). Table S3. Prognostic factors for overall survival (OS) by univariate and multivariate analysis. Table S4. The clinical feature summary for the 163 NKTCL patients. Table S5. Cancer-related genes interrupted by structural variant (SV) breakpoints in NKTCL patients with WGS data.

Additional file 3: Fig. S1.

Kaplan–Meier survival curves of overall survival in patients with NKTCL. Fig. S2. Characterization of somatic mutations, tumor mutation burden, and MSI status in NKTCL. Fig. S3. Mutational landscape of NKTCL. Fig. S4. The landscape of copy number variation in NKTCL. Fig. S5. The Copy number (CN) signatures identified for NKTCL patients. Fig. S6. Sankey-diagram of the molecular subtypes and clinical prognostic models for NKTCL patients.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Huang, H., Hong, H. et al. Full-spectral genome analysis of natural killer/T cell lymphoma highlights impacts of genome instability in driving its progression. Genome Med 16, 48 (2024). https://doi.org/10.1186/s13073-024-01324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13073-024-01324-5

Keywords