Background

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, accounting for about 70% of anovulatory infertility [1]. Among the strategies for the treatment of infertile PCOS women, frozen embryo transfer (FET) may achieve a higher live birth rate and reduce the risk of ovarian hyperstimulation syndrome (OHSS) compared with fresh embryo transfer [2]. Hence, the application of FET has been recommended as a relatively effective and safer treatment method for this group of infertility patients [3].

Multiple endometrial preparation (EP) cycle protocols have been designed to provide an optimal endometrial environment for embryo implantation in a FET program [4]. However, there is limited consensus on the best means of EP in terms of the reproductive outcomes in women with PCOS [5]. Since PCOS is associated with ovulation dysfunction and irregular menstrual cycles, the most appropriate and frequently used cycle protocol is the artificial cycle FET (AC-FET) [6]. In AC-FET, the endometrium is artificially prepared through consecutive administration of exogenous estrogen and progesterone with or without gonadotropin-releasing hormone agonist (GnRH-a) pretreatment to simulate the natural endocrine environment of the endometrium [7].

GnRH-a is a gonadotropin-releasing hormone (GnRH) analogue with high affinity for pituitary GnRH receptors. After administration, GnRH-a binds to pituitary GnRH receptors and transiently inhibits the hypothalamic–pituitary–gonadal axis, inducing a hypo-estrogenic state [8]. Lower estrogen levels after down-regulation could prevent spontaneous ovulation and prolong the opening period of the “implantation window” to a certain extent [9, 10]. This might be beneficial to the pregnancy outcomes for women undergoing FET.

In assisted reproductive technology (ART), GnRH-a pretreatment combined with AC-FET was found to improve the live birth rate in patients with endometriosis and adenomyosis [11, 30]. However, further studies are needed to validate these findings and clarify the underlying mechanisms.

Strengths and limitations

To the best of our knowledge, this is the largest population study in this field to assess pregnancy-related outcomes following AC-FET with or without GnRH-a pretreatment in women with PCOS. Unlike previous studies that mainly focused on live birth, our study also provided more complete information on the effectiveness and safety of GnRH-a pretreatment by analyzing the neonatal outcomes in PCOS women. Additionally, our study included extensive control for potential confounding differences between GnRH-a and the routine AC-FET groups via PSM and multivariate logistic regression models, thus creating two similar cohorts.

We acknowledge that in this study, we did not obtain information about pregnancy complications, such as gestational hypertension, preeclampsia, and gestational diabetes, which are potential risk factors for adverse neonatal outcomes [39, 40]. This may have a confounding effect on the results. Another limitation is that the neonatal data were obtained through telephone follow-up,which might have led to some information bias.

Conclusions

Our study demonstrated that in women with PCOS who underwent AC-FET, GnRH-a pretreatment was significantly associated with an increase in LBR and a reduced risk of neonatal PTB. However, the incidence of newborns being SGA was also significantly increased at the same time. Therefore, before applying the GnRH-a pretreatment regimen in PCOS women, it seems necessary to take some measures to reduce the risk of neonatal SGA events. Further studies are needed to verify our findings and clarify the underlying mechanisms.