Introduction

Renal cell carcinoma (RCC) denotes cancer resulting from the renal epithelium and includes about 90% of kidney cancers [1]. It includes > 10 histological and molecular subtypes, of which clear cell RCC (ccRCC) is the most common, yielding the most tumor-related deaths [2]. Localized RCC could be efficiently managed with surgery, while showing robust resistance to conventional chemotherapy by metastatic RCC [3, 4]. Nevertheless, groundbreaking advances in the treatment of metastatic RCC have been enabled with targeted compounds including axitinib, sunitinib, sorafenib, bevacizumab, everolimus, temsirolimus, cabozantinib, and pazopanib. They inhibit vascular endothelial growth factor (VEGF) and its receptor (VEGFR) or mechanistic target of rapamycin (mTOR) complex, eliciting an inhibitory effect on angiogenesis [5,6,7].

Currently, immunological analyses of RCC have caused important mechanistic and clinical perceptions. Indeed, immune infiltration properties of RCC are of growing interest by the increase of immune checkpoint inhibitor (ICI) therapy in this condition [8]. Notably, among 19 tumor types evaluated by The Cancer Genome Atlas (TCGA), a landmark cancer genomics program, RCC has the uppermost T cell infiltration score [9]. As well, advanced RCC has association with a rise in T helper 2 (Th2) and T regulatory cell (Tregs) infiltration [10]. These findings confer the importance of immunotherapy-based approaches to moderate RCC progress.

Immune checkpoints (ICs) denote specific membrane molecules situated mainly, but not exclusively, on T lymphocytes [11]. They bind responding ligands on antigen-presenting cells (APCs) like dendritic cells (DCs) or tumor cells [12]. Main cell surface inhibitory ICs encompass programmed cell death receptor-1 (PD-1 or CD279), cytotoxic T lymphocyte antigen-4 (CTLA-4), B and T lymphocyte attenuator (BTLA), lymphocyte activation-gene-3 (LAG-3) and T cell membrane protein-3 (TIM-3) [13, 14]. Apart from anti-angiogenic agents, more attention has been paid to immune checkpoint inhibitors (ICIs) such as nivolumab to manage metastatic RCC [15, 16]. Although conventional therapies such as chemotherapy and radiotherapy directly influence the tumor [17, 18], novel treatments such as the diversity of immunotherapies usually affect the microenvironment and the immune system. In fact, immunotherapeutics, such as ICIs, indirectly eliminate tumor cells through modifying the tumor microenvironment (TME) and/or effector immune cells [15, 19]. During the last decade, the ICIs targeting PD-1/PDL-1 interaction have shown promising results for the second-line treatment of metastatic RCC [20]. They establish apparent advantages such as broad applicability across cancer types and durable clinical response. Nonetheless, anti- PD-1/PDL-1 antibodies as a single agent remain ineffective in about 70–75% of RCC patients, especially in cancers with a low mutational burden [21, 22]. Hence, administration of dual ICI treatments or combining the PD1/PD-L1 blockade therapy with angiogenesis inhibitors and chemo-radiotherapy or other therapeutics might bypass RCC resistance to ICI therapy and also modify treatment-related adverse events (TRAEs) [23, 24].

Herein, we deliver an outline respecting the therapeutic capability of PD-1/PDL-L1 blockade therapy as a single agent or with other modalities for advanced RCC patients. Besides, a glimpse of the most applicable predictive biomarkers affecting a patient’s response to PD-1/PDL-L1 blockade therapy will be delivered.

Immunotherapy for RCC

In principle, tumor progression can be regulated by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve various mechanisms that mimic peripheral immune tolerance for deterring tumoricidal attack. Intrinsic mechanisms in cancer cells, including negative regulation of the major histocompatibility complex (MHC) class I and II molecules and/or tumor-associated antigens (TAAs) reduces presentation and resultant targeting by immune effector mechanisms [25, 26]. In addition to the secretion of immunosuppressive biomolecules like interleukin-10 (IL-10) and transforming growth factor-β (TGFβ), cancer cells also release immunosuppressive extracellular vesicles (EVs), in particular, exosomes [27,28,29]. Moreover, overexpressing PD-L1 and Fas ligand and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) are other mechanisms by which tumor cells evade immune attack [

The rationality of targeting the PD-1/PD-L1 axis

Firstly, Ishida et al. discovered the PD-1 inhibitory receptor (CD279) in 1992 [101]. They suggested that PD-1 gene activation contributes to the classical type of programmed cell death [101]. In 1999, Nishimura et al. evinced its role in sustaining the peripheral immune tolerance by researching PD-1-deficient mice models [102]. Based on the literature, activated T cells, NK cells, B cells, macrophages, and DCs express the PD-1 on their surface [103,104,105,106]. The PD-1 expression on naïve T cells is prompted when TCR is activated [107]. This short-term expression is diminished in the absence of TCR signaling while increasing upon chronic activation, such as in chronic viral infections as well as tumors. The connection between PD-1 and its ligand, PD-L1, expressed on the cancer cell surface, barriers TCR signaling and CD28 co-stimulation and ultimately causes down-regulated T cell activity and ensuing tumor evasion [108].

The PD-1/PD-L1 interaction triggers signaling via the cytoplasmic tail of PD-1, resulting in T cell depletion. The PD-1 cytoplasmic tail consists of two tyrosine-based structural motifs, an immunoreceptor tyrosine-based inhibitory motif (ITIM) (V/L/I/XpYXX/L/V) and an immunoreceptor tyrosine-based switch motif (ITSM) (TXpYXXV/I) [109]. As a result of activation by PD-L1, the PD-1 phosphorylation occurs by Src kinases at ITIM and ITSM motifs. ITSM phosphotyrosine underlies the PD-1-mediated suppressive activities by recruiting Src homology region 2 domain-containing phosphatase-2 (SHP-2) [109, 110]. SHP-2 eliminates phosphate groups from neighboring effector proteins, in particular, PI3K and AKT, finally decreasing both cytokine manufacture and T cell growth [109]. Further, the nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR) activation accompanied with the IL-2 and B-cell lymphoma-extra large (Bcl-xL) expression are decreased in activated T cells following PD-1/PD-L1 interaction. These events, in turn, inhibit T cells proliferation, cytotoxicity, and cytokine release, promote the apoptosis of tumor-specific T cells, up-regulate the differentiation of CD4+ T cells into foxp3+ Tregs, and finally potentiates tumor cell's resistance to CTL attack [111, 112]. In the lack of PD-1 signaling, number of long-lived plasma cells was evidently decreased [113]. Improved expression of PD-L1 is usually found in cancers and correlates with metastatic disease stage and undesired prognosis in RCC, gastric cancer, melanoma, breast cancer and etc. [114,115,116]. Iacovelli et al. (2016) demonstrated that PD-L1 was expressed in 24.2% of RCC tumors, and a higher level of PD-L1 expression augmented the risk of death by 81% [117]. Another study on 1,644 patients also signified the association between PD-L1 expression and OS in RCC patients [178, 179].

Combination therapy

In the last years, researchers have sought various approaches to potentiate the efficacy and ameliorate the safety profile of atezolizumab in RCC patients. In this regard, anti-angiogenic drugs, in particular bevacizumab and cabozantinib, have attracted growing attention [6, 180]. A randomized phase 2 IMmotion150 study provides clear evidence that combination therapy with atezolizumab and bevacizumab has superiority over sunitinib in terms of the PFS [181]. Interestingly, biomarker analyses showed that tumor mutation burden (TMB) and neoantigen burden has no association with PFS. It was thus suggested that blocking VEGF by bevacizumab may defeat resistance to atezolizumab [179, 181]. After that, a phase 3 trial IMmotion151 study indicated that atezolizumab 1200 mg plus bevacizumab 15 mg/kg intravenously once every 3 weeks improved PFS more evidently than sunitinib (11.2 months versus 7.7 months) in RCC patients with better safety profile [175]. These results authenticated the clinical activity of atezolizumab plus bevacizumab as a first-line treatment for RCC. Notwithstanding, the final analysis of phase 3 IMmotion151 trial displayed no significant enhancement in OS with atezolizumab plus bevacizumab over sunitinib for previously untreated RCC patients [182, 183]. As a result, FDA has not yet approved this treatment regimen for RCC, while atezolizumab plus bevacizumab has previously been approved for other tumors, such as HCC [174]. Besides, another trial showed that the addition of the PEG-IFNα-2a to atezolizumab might have preliminary clinical activity and acceptable tolerability in advanced RCC patients [184]. As described, IFN-α improves tumor immunogenicity and DC response to the tumor, augments Th1/Th2 ratio, and thus potentiates T cell-mediated cytotoxicity [185, 186]. Although IFN-α plus bevacizumab has been approved for RCC [187, 188], its clinical activity when used plus atezolizumab is being investigated and has not yet strongly been documented. Further, Jung et al. reports (2019) for the first time signified that the addition of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, navoximod, to atezolizumab might improve its efficacy in advanced tumors like RCC [189]. IDO1 triggers immune suppression in T cells by l-tryptophan depletion and kynurenine collections in the TME, suppressing CTL and Th1 cells and promoting Tregs activity [190, 191]. Thus, targeting its activity may be a rational strategy to alleviate tumor progress [192, 193]. Achieved results implied that a combination of navoximod and atezolizumab had acceptable safety, tolerability, and pharmacokinetics for patients with advanced tumors such as RCC [189]. Nonetheless, further information is required to corroborate the benefit of adding navoximod to atezolizumab.

Avelumab

Avelumab (Bavencio®) is an IgG1 mAb directed to PD-L1 that was discovered by Merck KGaA and Pfizer [194]. As a single agent, it has been approved for the metastatic Merkel cell carcinoma (MCC) [195] and also UC [196]. FDA also approved avelumab in combination with axitinib for the first-line treatment of advanced RCC patients [197].

Monotherapy

Study of the safety and efficacy and avelumab monotherapy in patients with advanced RCC verified its clinical activity in a phase 1 trial [198]. Meanwhile, avelumab 10 mg/kg intravenously every 2 weeks led to an ORR of about 16.1%, with median DOR and PFS about 9.9 and months 8.3, respectively [198]. Also, the intervention showed a manageable safety profile [198]. Nonetheless, there was no further proof showing the clinical activity of avelumab as a single agent in phase 2/3 trials. As described, avelumab monotherapy is indicated for UC and MCC based on results from phase 3 JAVELIN Bladder 100 and JAVELIN Merkel 200 study, respectively. It’s acceptable safety profile and capability to stimulate durable responses in otherwise deadly tumors offer the justification for its application in other tumor types and in combination with other therapeutic approaches.

Combination therapy

Recently, a phase 3 JAVELIN Renal 101 study on 886 RCC patients exhibited that the addition of the axitinib to avelumab caused objective responses in patients with advanced RCC [199, 200]. Motzer et al. showed that avelumab 10 mg/kg intravenously every 2 weeks plus axitinib 5 mg orally twice daily had superiority over sunitinib 50 mg orally once daily for 4 weeks in terms of ORR and PFS [199]. The median PFS in PD-L1-positive tumors was 13.8 months in the combination therapy arm compared with 7.2 months in the sunitinib arm [199, 201]. In the same population, ORR was 55.2% versus 25.5% in the combination therapy arm compared with the sunitinib arm. These results suggested this regimen as a first-line treatment for advanced RCC [199, 201]. In May 2019, based on the JAVELIN Renal 101 study results, the FDA approved avelumab in combination with axitinib for the first-line treatment of people with advanced RCC. Study of the possible prognostic factor presented NLR as a prognostic biomarker in advanced RCC patients who underwent avelumab plus axitinib or sunitinib administration [202]. There was an association with baseline NLR and OS, and PFS in advanced RCC patients who received avelumab plus axitinib [202]. Accordingly, patients with below-median NLR experienced extended PFS and OS. Interestingly, median PFS was 13.8 and 11.2 months in RCC patients with below-median NLR and 13.3 and 5.6 months in patients with median-or-higher NLR [202]. These analyses confer the role of NLR in underlying mechanisms affecting clinical outcomes.

A brief overview of clinical trials targeting PD-L1 alone or in combination with other treatments in RCC patients has been delivered in Table 2.

Table 2 Anti-PD-L1 antibody alone or in combination with other treatments in RCC patients

Small molecule compounds inhibiting PD-1/PD-L1 interactions

The restricted success and shortcoming of antibodies have persuaded investigators to examine more efficient approaches for the negative regulation of the PD-1/PD-L1 axis and expand the capacity of cancer immunotherapy. In light of this, substantial efforts are being made to develop low-molecular-weight agents targeting PD-1/PD-L1 interaction [203]. Currently, several companies, including Bristol Myers Squibb (BMS), Arising International Inc, Guangzhou Maxinovel Pharmaceuticals Co, Chemocentryx Inc, Institute of Materia Medica, Incyte Corporation, and Aurigene, have industrialized a variety of small-molecule chemical compounds as well as peptides [204]. Such companies have applied for a series of patents related to inhibitors. These patents offered the structure of PD-1/PD-L1 inhibitors, compound synthesis strategies, and their application as immunomodulators [205]. Further, the patents demonstrate the approved inhibitory impacts of these inhibitors. While some of the evolved small molecule compounds might only deter PD-L1/PD-1 interactions, other inhibitors (e.g., peptides invented by BMS Company) suppress PD-L1 interactions with PD-1 or B7-1 [206]. All inhibitors advanced by Aurigene, such as small molecule chemical compounds and peptides, demonstrated significant inhibitory impact on the PD-1 signaling axis [207]. Notably, most of them demonstrated IC50 values of 1 μM or even 0.018 μM as determined by the PD-1/PD-L1 homogenous time-resolved fluorescence (HTRF) binding assay [204]. Of course, the progress of small molecule compounds inhibiting PD-1/PD-L1 interactions has only just been ongoing. Most of these inhibitors are studied in preclinical studies and are associated with stimulating outcomes [208]. Meanwhile, CA-170, a PD-L1 inhibitor developed by Aurigene and Curis, has arrived phase I clinical trial [209]. Further focus on these novel types of PD-/PD-L1 inhibitors may result in groundbreaking progress in the next future.

Conclusion and future direction

The treatment setting of advanced RCC has progressed in the last years with emerging ICIs accompanied by the advancement development of novel anti-angiogenic drugs and other therapeutics (Tables 3 and 4). This progress brought about the amelioration of prognosis and improvement of OS and PFS in advanced RCC patients. Nevertheless, there is no head-to-head trial proof to compare the efficacy of the several therapeutic modalities available comprising ICIs, TKIs, or a combination of both. Facts from the further prospective investigation are requisite to directly compare the clinical advantage of ICI in the treatment of clear cell RCC and various subtypes of non-clear cell RCC.

Table 3 Completed clinical trials based on monotherapy with anti-PD-1/PD-L1 therapy for renal cell carcinoma (RCC) registered in ClinicalTrials.gov (June 2022)
Table 4 Completed clinical trials based on combination therapy with anti-PD-1/PD-L1 therapy for renal cell carcinoma (RCC) registered in ClinicalTrials.gov (June 2022)

Several reports have tried to predict ICIs’ response exploiting several parameters, including the clinical features, laboratory parameters (e.g., NLR), lactate dehydrogenase (LDH), tumor markers, and genetic landscape [210]. Most of them have caused a poor performance because of the absence of comprehensive evaluation in risk stratification. Recent investigations have exhibited that the anti-tumor response to ICIs is a multifaceted process complicating several factors. Previous reports have evolved various prognostic models for prognostic evaluation in ICIs therapy. For instance, a risk scoring criteria comprising monocyte-to-lymphocyte ratio (MLR), sites of metastasis, and nutritional index–body mass index (BMI) were progressed for various for human tumors, in particular RCC patients, who received ICIs [

Availability of data and materials

Not applicable.

Abbreviations

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed cell death ligand 1

ICIs:

Immune checkpoint inhibitors

RCC:

Renal cell carcinoma

TKI:

Tyrosine kinase inhibitor

VEGF:

Vascular endothelial growth factor

CTLs:

Cytotoxic T-lymphocytes

Tregs:

Regulatory T cells

FDA:

Food and Drug Administration

TME:

Tumor microenvironment

OS:

Overall survival

ORR:

Objective response rate

PFS:

Progression-free survival

References

  1. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):1–19.

    Article  Google Scholar 

  2. Turco F, Tucci M, Di Stefano RF, Samuelly A, Bungaro M, Audisio M, Pisano C, et al. Renal cell carcinoma (RCC): fatter is better? A review on the role of obesity in RCC. Endocr Relat Cancer. 2021;28(7):R207–16.

    Article  Google Scholar 

  3. Fottner A, Szalantzy M, Wirthmann L, Stähler M, Baur-Melnyk A, Jansson V, Dürr HR. Bone metastases from renal cell carcinoma: patient survival after surgical treatment. BMC Musculoskelet Disord. 2010;11(1):1–6.

    Article  Google Scholar 

  4. Jackson RJ, Gokaslan ZL, Arvinloh S-C. Metastatic renal cell carcinoma of the spine: surgical treatment and results. J Neurosurg Spine. 2001;94(1):18–24.

    Article  CAS  Google Scholar 

  5. Fogli S, Porta C, Del Re M, Crucitta S, Gianfilippo G, Danesi R, Rini BI, et al. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: a comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs. Cancer Treat Rev. 2020;84: 101966.

    Article  CAS  Google Scholar 

  6. Brighi N, Farolfi A, Conteduca V, Gurioli G, Gargiulo S, Gallà V, Schepisi G, et al. The interplay between inflammation, anti-angiogenic agents, and immune checkpoint inhibitors: perspectives for renal cell cancer treatment. Cancers. 2019;11(12):1935.

    Article  CAS  Google Scholar 

  7. Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, et al. Microphysiological model of renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials. 2022;283: 121454.

    Article  Google Scholar 

  8. Massari F, Rizzo A, Mollica V, Rosellini M, Marchetti A, Ardizzoni A, Santoni M. Immune-based combinations for the treatment of metastatic renal cell carcinoma: a meta-analysis of randomised clinical trials. Eur J Cancer. 2021;154:120–7.

    Article  CAS  Google Scholar 

  9. Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17(1):231.

    Article  Google Scholar 

  10. Geissler K, Fornara P, Lautenschläger C, Holzhausen HJ, Seliger B, Riemann D. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology. 2015;4(1): e985082.

    Article  Google Scholar 

  11. Toor SM, Nair VS, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. Seminars Cancer Biol. 2020;65:1.

    Article  CAS  Google Scholar 

  12. Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E. Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients. Front Immunol. 2019;10:2936.

    Article  CAS  Google Scholar 

  13. Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 2022;22(1):2.

    Article  CAS  Google Scholar 

  14. Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal. 2022;20(1):44.

    Article  CAS  Google Scholar 

  15. Atkins M, Clark J, Quinn D. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann Oncol. 2017;28(7):1484–94.

    Article  CAS  Google Scholar 

  16. Albiges L, Powles T, Staehler M, Bensalah K, Giles RH, Hora M, Kuczyk MA, et al. Updated European Association of Urology guidelines on renal cell carcinoma: immune checkpoint inhibition is the new backbone in first-line treatment of metastatic clear-cell renal cell carcinoma. Eur Urol. 2019;76(2):151–6.

    Article  Google Scholar 

  17. Brinkmann O, Bruns F, Prott F, Hertle L. Possible synergy of radiotherapy and chemo-immunotherapy in metastatic renal cell carcinoma (RCC). Anticancer Res. 1999;19(2C):1583–7.

    CAS  Google Scholar 

  18. De Riese W, Goldenberg K, Allhoff E, Stief C, Schlick R, Liedke S, Jonas U. Metastatic renal cell carcinoma (RCC): spontaneous regression, long-term survival and late recurrence. Int Urol Nephrol. 1991;23(1):13–25.

    Article  Google Scholar 

  19. Braun DA, Ishii Y, Walsh AM, Van Allen EM, Wu CJ, Shukla SA, Choueiri TK. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma. JAMA Oncol. 2019;5(11):1631–3.

    Article  Google Scholar 

  20. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.

    Article  CAS  Google Scholar 

  21. Incorvaia L, Madonia G, Corsini LR, Cucinella A, Brando C, Gagliardo C, Santoni M, et al. Challenges and advances for the treatment of renal cancer patients with brain metastases: from immunological background to upcoming clinical evidence on immune-checkpoint inhibitors. Crit Rev Oncol Hematol. 2021;163: 103390.

    Article  Google Scholar 

  22. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  Google Scholar 

  23. Kuusk T, Albiges L, Escudier B, Grivas N, Haanen J, Powles T, Bex A. Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis. 2017;20(2):205–15.

    Article  CAS  Google Scholar 

  24. Hamilton G. Avelumab: search for combinations of immune checkpoint inhibition with chemotherapy. Expert Opin Biol Ther. 2021;21(3):311–22.

    Article  CAS  Google Scholar 

  25. Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, von Eagelinq F. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia. 2006;8(11):933–8.

    Article  CAS  Google Scholar 

  26. Atkins D, Ferrone S, Schmahl GE, Störkel S, Seliger B. Down-regulation of HLA class I antigen processing molecules: an immune escape mechanism of renal cell carcinoma? J Urol. 2004;171(2):885–9.

    Article  CAS  Google Scholar 

  27. Fu Q, Xu L, Wang Y, Jiang Q, Liu Z, Zhang J, Zhou Q, et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur Urol. 2019;75(5):752–63.

    Article  CAS  Google Scholar 

  28. Kwaśniak K, Czarnik-Kwaśniak J, Maziarz A, Aebisher D, Zielińska K, Karczmarek-Borowska B, Tabarkiewicz J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Central-Eur J Immunol. 2019;44(2):190.

    Article  Google Scholar 

  29. Salazar-Onfray F, López MN, Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev. 2007;18(1–2):171–82.

    Article  CAS  Google Scholar 

  30. Dong P, **ong Y, Yue J, Hanley SJ, Watari H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol. 2018;8:386.

    Article  Google Scholar 

  31. Ryan AE, Shanahan F, O’Connell J, Houston AM. Addressing the “Fas counterattack” controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Can Res. 2005;65(21):9817–23.

    Article  CAS  Google Scholar 

  32. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12(1):1–4.

    Article  Google Scholar 

  33. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  Google Scholar 

  34. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U. Natural T cell immunity against cancer. Clin Cancer Res. 2003;9(12):4296–303.

    CAS  Google Scholar 

  35. Liu X, Hogg GD, DeNardo DG. Rethinking immune checkpoint blockade: ‘Beyond the T cell.’ J Immuno Ther Cancer. 2021;9(1):e001460.

    Article  Google Scholar 

  36. Tsai H-F, Hsu P-N. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J Biomed Sci. 2017;24(1):1–8.

    Article  Google Scholar 

  37. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.

    Article  Google Scholar 

  38. Kong X. Discovery of new immune checkpoints: family grows up. Regulation of Cancer Immune Checkpoints. 2020:61–82.

  39. Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev. 2009;229(1):41–66.

    Article  CAS  Google Scholar 

  40. Liu Y, Chen P, Wang H, Wu S, Zhao S, He Y, Zhou C, et al. The landscape of immune checkpoints expression in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10(2):1029–38.

    Article  CAS  Google Scholar 

  41. Zhang T, Austin RG, Park SE, Runyambo D, Boominathan R, Rao C, Bronson E, et al. Expression of immune checkpoints (ICs) on circulating tumor cells (CTCs) in men with metastatic prostate cancer (mPC). American Society of Clinical Oncology; 2018.

  42. Filippone A, Lanza M, Mannino D, Raciti G, Colarossi C, Sciacca D, Cuzzocrea S, et al. PD1/PD-L1 immune checkpoint as a potential target for preventing brain tumor progression. Cancer Immunol Immunother. 2022. https://doi.org/10.1007/s00262-021-03130-z.

    Article  Google Scholar 

  43. Lee DY, Im E, Yoon D, Lee Y-S, Kim G-S, Kim D, Kim S-H, editors. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+ Tregs related molecules, clinical implications and combinational potential with phytochemicals. Seminars in Cancer Biology; 2020: Elsevier.

  44. Gao X, McDermott DF. Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther. 2018;18(9):947–57.

    Article  CAS  Google Scholar 

  45. Motzer RJ, Tannir NM, McDermott DF, Frontera OA, Melichar B, Choueiri TK, Plimack ER, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    Article  CAS  Google Scholar 

  46. Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol. 2020;8:402.

    Article  Google Scholar 

  47. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.

    Article  CAS  Google Scholar 

  48. West W. Continuous infusion recombinant interleukin-2 (rIL-2) in adoptive cellular therapy of renal carcinoma and other malignancies. Cancer Treat Rev. 1989;16:83–9.

    Article  Google Scholar 

  49. Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648–59.

    Article  CAS  Google Scholar 

  50. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.

    Article  CAS  Google Scholar 

  51. Mortara L, Balza E, Bruno A, Poggi A, Orecchia P, Carnemolla B. Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 2018;9:2905.

    Article  CAS  Google Scholar 

  52. Alva A, Daniels GA, Wong MKK, Kaufman HL, Morse MA, McDermott DF, Clark JI, et al. Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma. Cancer Immunol Immunother. 2016;65(12):1533–44.

    Article  CAS  Google Scholar 

  53. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–96.

    Article  CAS  Google Scholar 

  54. Achkar T, Arjunan A, Wang H, Saul M, Davar D, Appleman LJ, Friedland D, et al. High-dose interleukin 2 in patients with metastatic renal cell carcinoma with sarcomatoid features. PLoS ONE. 2017;12(12): e0190084.

    Article  Google Scholar 

  55. Huland E, Heinzer H, Huland H, Yung R. Overview of interleukin-2 inhalation therapy. Cancer J Sci Am. 2000;6:S104–12.

    Google Scholar 

  56. Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, Mahmoud MM, et al. Prospects of IL-2 in cancer immunotherapy. BioMed Res Int. 2018;2018:9056173.

    Article  Google Scholar 

  57. Cerbone L, Cattrini C, Vallome G, Latocca MM, Boccardo F, Zanardi E. Combination therapy in metastatic renal cell carcinoma: back to the future? Semin Oncol. 2020;47(6):361–6.

    Article  CAS  Google Scholar 

  58. Passalacqua R, Caminiti C, Buti S, Porta C, Camisa R, Braglia L, Tomasello G, et al. Adjuvant low-dose interleukin-2 (IL-2) plus interferon-α (IFN-α) in operable renal cell carcinoma (RCC): a phase III, randomized, multicentre trial of the Italian Oncology Group for Clinical Research (GOIRC). J Immunother. 2014;37(9):440–7.

    Article  CAS  Google Scholar 

  59. Westermann J, Reich G, Kopp J, Haus U, Dörken B, Pezzutto A. Granulocyte/macrophage-colony-stimulating-factor plus interleukin-2 plus interferon alpha in the treatment of metastatic renal cell carcinoma: a pilot study. Cancer Immunol Immunother. 2001;49(11):613–20.

    Article  CAS  Google Scholar 

  60. Smith IJ, Kurt RA, Baher AG, Denman S, Justice L, Doran T, Gilbert M, et al. Immune effects of escalating doses of granulocyte-macrophage colony-stimulating factor added to a fixed, low-dose, inpatient interleukin-2 regimen: a randomized phase I trial in patients with metastatic melanoma and renal cell carcinoma. J Immunother. 2003;26(2):130–8.

    Article  CAS  Google Scholar 

  61. Hannan R, Mohamad O, Diaz de Leon A, Manna S, Pop LM, Zhang Z, Mannala S, et al. Outcome and immune correlates of a Phase II trial of high-dose interleukin-2 and stereotactic ablative radiotherapy for metastatic renal cell carcinoma. Clin Cancer Res. 2021;27(24):6716–25.

    Article  Google Scholar 

  62. Göhring B, Riemann D, Rebmann U, Heynemann H, Schabel J, Langner J. Prognostic value of the immunomonitoring of patients with renal cell carcinoma under therapy with IL-2/IFN-alpha-2 in combination with 5-FU. Urol Res. 1996;24(5):297–303.

    Article  Google Scholar 

  63. Vergati M, Intrivici C, Huen N-Y, Schlom J, Tsang KY. Strategies for cancer vaccine development. J Biomed Biotechnol. 2010;2010:596432.

    Article  Google Scholar 

  64. Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater. 2021;33(7):2007293.

    Article  CAS  Google Scholar 

  65. Qin H, Zhao R, Qin Y, Zhu J, Chen L, Di C, Han X, et al. Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv Mater. 2021;33(20):2006007.

    Article  CAS  Google Scholar 

  66. Tanyi JL, Chiang CL-L, Chiffelle J, Thierry A-C, Baumgartener P, Huber F, Goepfert C, et al. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Caccines. 2021;6(1):1–14.

    Google Scholar 

  67. Wang T, Wang D, Yu H, Feng B, Zhou F, Zhang H, Zhou L, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun. 2018;9(1):1–12.

    Google Scholar 

  68. Goldman B, DeFrancesco L. The cancer vaccine roller coaster. Nat Biotechnol. 2009;27(2):129–39.

    Article  CAS  Google Scholar 

  69. Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P. Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy. 2011;31(8):813–28.

    Article  Google Scholar 

  70. Pal SK, Hu A, Figlin RA. A new age for vaccine therapy in renal cell carcinoma. Cancer J. 2013;19(4):365–70.

    Article  CAS  Google Scholar 

  71. Jian Y, Yang K, Sun X, Zhao J, Huang K, Aldanakh A, Xu Z, et al. Current advance of immune evasion mechanisms and emerging immunotherapies in renal cell carcinoma. Front Immunol. 2021;12:502.

    Article  Google Scholar 

  72. Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, Master VA, et al. Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3(1):1–13.

    Article  Google Scholar 

  73. Figlin R, Nicolette C, Tannir N, Tykodi S, Chen D, Master V, Lane B, et al. Interim analysis of the phase 3 ADAPT trial evaluating rocapuldencel-T (AGS-003), an individualized immunotherapy for the treatment of newly-diagnosed patients with metastatic renal cell carcinoma (mRCC). Ann Oncol. 2017;28: v404.

    Article  Google Scholar 

  74. Figlin R, Sternberg C, Wood CG. Novel agents and approaches for advanced renal cell carcinoma. J Urol. 2012;188(3):707–15.

    Article  CAS  Google Scholar 

  75. Kirner A, Mayer-Mokler A, Reinhardt C. IMA901: a multi-peptide cancer vaccine for treatment of renal cell cancer. Hum Vaccin Immunother. 2014;10(11):3179–89.

    Article  Google Scholar 

  76. Rausch S, Kruck S, Stenzl A, Bedke J. IMA901 for metastatic renal cell carcinoma in the context of new approaches to immunotherapy. Future Oncol. 2014;10(6):937–48.

    Article  CAS  Google Scholar 

  77. Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, Weikert S, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(11):1599–611.

    Article  CAS  Google Scholar 

  78. Birkhäuser FD, Koya RC, Neufeld C, Rampersaud EN, Lu X, Micewicz ED, Chodon T, et al. Dendritic cell-based immunotherapy in prevention and treatment of renal cell carcinoma: efficacy, safety, and activity of Ad-GM·CAIX in immunocompetent mouse models. J Immunother. 2013;36(2):102–11.

    Article  Google Scholar 

  79. Faiena I, Comin-Anduix B, Berent-Maoz B, Bot A, Zomorodian N, Sachdeva A, Said J, et al. A Phase I, open-label, dose-escalation, and cohort expansion study to evaluate the safety and immune response to autologous dendritic cells transduced with AdGMCA9 (DC-AdGMCAIX) in patients with metastatic renal cell carcinoma. J Immunother. 2020;43(9):273–82.

    Article  CAS  Google Scholar 

  80. Baek S, Kim CS, Kim SB, Kim YM, Kwon SW, Kim Y, Kim H, et al. Combination therapy of renal cell carcinoma or breast cancer patients with dendritic cell vaccine and IL-2: results from a phase I/II trial. J Transl Med. 2011;9:178.

    Article  CAS  Google Scholar 

  81. Amato RJ, Shetty A, Lu Y, Ellis PR, Mohlere V, Carnahan N, Low PS. A Phase I/Ib study of folate immune (EC90 vaccine administered with GPI-0100 adjuvant followed by EC17) with interferon-α and interleukin-2 in patients with renal cell carcinoma. J Immunother. 2014;37(4):237–44.

    Article  CAS  Google Scholar 

  82. Capitini CM, Fry TJ, Mackall CL. Cytokines as adjuvants for vaccine and cellular therapies for cancer. Am J Immunol. 2009;5(3):65–83.

    Article  CAS  Google Scholar 

  83. Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: adoptive cell transfer immunotherapy. Oncoimmunology. 2012;1(3):306–15.

    Article  Google Scholar 

  84. Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, et al. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov. 2013;3(4):418–29.

    Article  CAS  Google Scholar 

  85. Roncati L, Palmieri B. Adoptive cell transfer (ACT) of autologous tumor-infiltrating lymphocytes (TILs) to treat malignant melanoma: the dawn of a chimeric antigen receptor T (CAR-T) cell therapy from autologous donor. Int J Dermatol. 2020;59(7):763–9.

    Article  CAS  Google Scholar 

  86. Daher M, Rezvani K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov. 2021;11(1):45–58.

    Article  CAS  Google Scholar 

  87. Bachiller M, Perez-Amill L, Battram AM, Carné SC, Najjar A, Verhoeyen E, Juan M, et al. NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. J Immunother Cancer. 2021;9(8):e002866.

    Article  Google Scholar 

  88. Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, Easson A, et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS ONE. 2010;5(11): e13940.

    Article  Google Scholar 

  89. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    Article  CAS  Google Scholar 

  90. Lorentzen C, Straten P. CD 19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015;82(4):307–19.

    Article  CAS  Google Scholar 

  91. Bear AS, Fraietta JA, Narayan VK, O’Hara M, Haas NB. Adoptive cellular therapy for solid tumors. Am Soc Clin Oncol Educ Book. 2021;41:57–65.

    Article  Google Scholar 

  92. Andersen R, Westergaard MCW, Kjeldsen JW, Müller A, Pedersen NW, Hadrup SR, Met Ö, et al. T-cell responses in the microenvironment of primary renal cell carcinoma—implications for adoptive cell therapy. Cancer Immunol Res. 2018;6(2):222–35.

    Article  CAS  Google Scholar 

  93. Figlin RA, Thompson JA, Bukowski RM, Vogelzang NJ, Novick AC, Lange P, Steinberg GD, et al. Multicenter, randomized, phase III trial of CD8+ tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol. 1999;17(8):2521.

    Article  CAS  Google Scholar 

  94. Lamers CH, Klaver Y, Gratama JW, Sleijfer S, Debets R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans. 2016;44(3):951–9.

    Article  CAS  Google Scholar 

  95. Lamers CH, Sleijfer S, Van Steenbergen S, Van Elzakker P, Van Krimpen B, Groot C, Vulto A, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.

    Article  CAS  Google Scholar 

  96. Panowski SH, Srinivasan S, Tan N, Tacheva-Grigorova SK, Smith B, Mak YS, Ning H, et al. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. Cancer Res. 2022:OF1-OF15.

  97. Mori J, Adachi K, Sakoda Y, Sasaki T, Goto S, Matsumoto H, Nagashima Y, et al. Anti-tumor efficacy of human anti-c-met CAR-T cells against papillary renal cell carcinoma in an orthotopic model. Cancer Sci. 2021;112(4):1417.

    Article  CAS  Google Scholar 

  98. Escudier B. Emerging immunotherapies for renal cell carcinoma. Ann Oncol. 2012;23:viii35–40.

    Article  Google Scholar 

  99. Moreira M, Pobel C, Epaillard N, Simonaggio A, Oudard S, Vano Y-A. Resistance to cancer immunotherapy in metastatic renal cell carcinoma. Cancer Drug Resist. 2020;3(3):454–71.

    CAS  Google Scholar 

  100. Bai D, Feng H, Yang J, Yin A, Qian A, Sugiyama H. Landscape of immune cell infiltration in clear cell renal cell carcinoma to aid immunotherapy. Cancer Sci. 2021;112(6):2126.

    Article  CAS  Google Scholar 

  101. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo j. 1992;11(11):3887–95.

    Article  CAS  Google Scholar 

  102. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.

    Article  CAS  Google Scholar 

  103. Fan P, Li X, Feng Y, Cai H, Dong D, Peng Y, Yao X, et al. PD-1 expression status on CD8+ tumour infiltrating lymphocytes associates with survival in cervical cancer. Front Oncol. 2021;11:2077.

    Article  Google Scholar 

  104. Davis Z, Felices M, Lenvik T, Badal S, Walker JT, Hinderlie P, Riley JL, et al. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Adv. 2021;5(4):1069–80.

    Article  CAS  Google Scholar 

  105. Judge SJ, Dunai C, Aguilar EG, Vick SC, Sturgill IR, Khuat LT, Stoffel KM, et al. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J Clin Investig. 2020;130(6):3051–68.

    Article  CAS  Google Scholar 

  106. Lim TS, Chew V, Sieow JL, Goh S, Yeong JP-S, Soon AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology. 2016;5(3):e1085146.

    Article  Google Scholar 

  107. Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ, Hoogsteden HC, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36(9):2472–82.

    Article  CAS  Google Scholar 

  108. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727.

    CAS  Google Scholar 

  109. Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar H-I, Wang Q, Council A, Berg A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol. 2020;3(1):1–13.

    Article  Google Scholar 

  110. Veluswamy P, Wacker M, Scherner M, Wippermann J. Delicate role of PD-L1/PD-1 axis in blood vessel inflammatory diseases: current insight and future significance. Int J Mol Sci. 2020;21(21):8159.

    Article  CAS  Google Scholar 

  111. Cretella D, Digiacomo G, Giovannetti E, Cavazzoni A. PTEN alterations as a potential mechanism for tumor cell escape from PD-1/PD-L1 inhibition. Cancers. 2019;11(9):1318.

    Article  CAS  Google Scholar 

  112. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1(8):1223–5.

    Article  Google Scholar 

  113. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535–42.

    Article  CAS  Google Scholar 

  114. Hudson K, Cross N, Jordan-Mahy N, Leyland R. The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: implications for immunotherapy treatment. Front Immunol. 2020;11:2362.

    Article  Google Scholar 

  115. Chiu Y-M, Tsai C-L, Kao J-T, Hsieh C-T, Shieh D-C, Lee Y-J, Tsay GJ, et al. PD-1 and PD-L1 up-regulation promotes T-cell apoptosis in gastric adenocarcinoma. Anticancer Res. 2018;38(4):2069–78.

    CAS  Google Scholar 

  116. Zheng H, Ning Y, Zhan Y, Liu S, Wen Q, Fan S. New insights into the important roles of tumor cell-intrinsic PD-1. Int J Biol Sci. 2021;17(10):2537.

    Article  CAS  Google Scholar 

  117. Iacovelli R, Nolè F, Verri E, Renne G, Paglino C, Santoni M, Cossu Rocca M, et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol. 2016;11(2):143–8.

    Article  Google Scholar 

  118. Shen M, Chen G, **e Q, Li X, Xu H, Wang H, Zhao S. Association between PD-L1 expression and the prognosis and clinicopathologic features of renal cell carcinoma: a systematic review and meta-analysis. Urol Int. 2020;104(7–8):533–41.

    Article  CAS  Google Scholar 

  119. Kumar A, Chamoto K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int Immunol. 2021;33(1):17–26.

    Article  CAS  Google Scholar 

  120. Sun L, Zhang L, Yu J, Zhang Y, Pang X, Ma C, Shen M, et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–13.

    CAS  Google Scholar 

  121. Ancevski Hunter K, Socinski MA, Villaruz LC. PD-L1 testing in guiding patient selection for PD-1/PD-L1 inhibitor therapy in lung cancer. Mol Diagn Ther. 2018;22(1):1–10.

    Article  CAS  Google Scholar 

  122. Gunturi A, McDermott DF. Nivolumab for the treatment of cancer. Expert Opin Investig Drugs. 2015;24(2):253–60.

    Article  CAS  Google Scholar 

  123. Mazza C, Escudier B, Albiges L. Nivolumab in renal cell carcinoma: latest evidence and clinical potential. Ther Adv Med Oncol. 2017;9(3):171–81.

    Article  CAS  Google Scholar 

  124. Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, Oyervides Juárez VM, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384(9):829–41.

    Article  CAS  Google Scholar 

  125. Tannir NM, Signoretti S, Choueiri TK, McDermott DF, Motzer RJ, Flaifel A, Pignon J-C, et al. Efficacy and safety of nivolumab plus ipilimumab versus sunitinib in first-line treatment of patients with advanced sarcomatoid renal cell carcinoma. Clin Cancer Res. 2021;27(1):78–86.

    Article  CAS  Google Scholar 

  126. Weight C. Nivolumab versus everolimus in advanced renal cell carcinoma. 50 Studies Every Urologist Should Know. 2021:123.

  127. Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. CheckMate 025 randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017;72(6):962–71.

    Article  CAS  Google Scholar 

  128. Escudier B, Motzer RJ, Sharma P, Wagstaff J, Plimack ER, Hammers HJ, Donskov F, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72(3):368–76.

    Article  CAS  Google Scholar 

  129. Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer. 2020;126(18):4156–67.

    Article  CAS  Google Scholar 

  130. Mollica V, Rizzo A, Tassinari E, Giunchi F, Schiavina R, Fiorentino M, Brunocilla E, et al. Prognostic and predictive factors to nivolumab in patients with metastatic renal cell carcinoma: a single center study. Anticancer Drugs. 2021;32(1):74–81.

    Article  CAS  Google Scholar 

  131. McFarlane JJ, Kochenderfer MD, Olsen MR, Bauer TM, Molina A, Hauke RJ, Reeves JA, et al. Safety and efficacy of nivolumab in patients with advanced clear cell renal cell carcinoma: results from the phase IIIb/IV CheckMate 374 study. Clin Genitourinary Cancer. 2020;18(6):469–76.

    Article  Google Scholar 

  132. Suzuki K, Terakawa T, Furukawa J, Harada K, Hinata N, Nakano Y, Fujisawa M. Clinical outcomes of second-line treatment following prior targeted therapy in patients with metastatic renal cell carcinoma: a comparison of axitinib and nivolumab. Int J Clin Oncol. 2020;25(9):1678–86.

    Article  CAS  Google Scholar 

  133. Albiges L, Tannir NM, Burotto M, McDermott D, Plimack ER, Barthélémy P, Porta C, et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO open. 2020;5(6): e001079.

    Article  Google Scholar 

  134. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017;35(34):3851.

    Article  CAS  Google Scholar 

  135. Choueiri TK, Apolo AB, Powles T, Escudier B, Aren OR, Shah A, Kessler ER, et al. A phase 3, randomized, open-label study of nivolumab combined with cabozantinib vs sunitinib in patients with previously untreated advanced or metastatic renal cell carcinoma (RCC; CheckMate 9ER). Am Soc Clin Oncol. 2018.

  136. Kfoury M, Oing C. ESMO20 YO for YO: highlights on metastatic renal cell carcinoma—the CheckMate-9ER trial. ESMO Open. 2021;6(1):100025.

    Article  CAS  Google Scholar 

  137. Khalil N, Sarkis J, Abi Tayeh G. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 in renal cell carcinoma: lessons from CheckMate 9ER and IMmotion 151. SAGE Publications Sage UK: London, England; 2021. p. 266–7.

  138. Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF, Carducci M, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer. 2018;6(1):1–12.

    Article  Google Scholar 

  139. Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, et al. A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 2021;39(4):1019–27.

    Article  CAS  Google Scholar 

  140. Diab A, Tannir NM, Bentebibel S-E, Hwu P, Papadimitrakopoulou V, Haymaker C, Kluger HM, et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 2020;10(8):1158–73.

    Article  CAS  Google Scholar 

  141. Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704–12.

    Article  CAS  Google Scholar 

  142. Meza LA, Dizman N, Bergerot PG, Dorff TB, Lyou Y, Frankel PH, Mira V, et al. First results of a randomized phase IB study comparing nivolumab/ipilimumab with or without CBM-588 in patients with metastatic renal cell carcinoma. J Clin Oncol. 2021;39:4513.

    Article  Google Scholar 

  143. Sharma M, Khong H, Fa’ak F, Bentebibel S-E, Janssen LM, Chesson BC, Creasy CA, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):1–11.

    Article  Google Scholar 

  144. Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM. Pembrolizumab. J Immunother Cancer. 2015;3(1):1–13.

    Article  Google Scholar 

  145. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.

    Article  CAS  Google Scholar 

  146. Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, Grünwald V, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–300.

    Article  CAS  Google Scholar 

  147. Choueiri TK, Quinn DI, Zhang T, Gurney H, Doshi GK, Cobb PW, Parnis F, et al. KEYNOTE-564: A phase 3, randomized, double blind, trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma. American Society of Clinical Oncology; 2018.

  148. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, Hajek J, et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for patients with renal cell carcinoma: Randomized, double-blind, phase III KEYNOTE-564 study. Am Soc Clin Oncol. 2021.

  149. Quinn DI, Zhang T, Gurney H, Doshi GK, Cobb PW, Parnis F, Lee J-L, et al. Phase 3, randomized, double-blind trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma (RCC): KEYNOTE-564. Am Soc Clin Oncol; 2018.

  150. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, Hajek J, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385(8):683–94.

    Article  CAS  Google Scholar 

  151. McDermott DF, Lee JL, Bjarnason GA, Larkin JM, Gafanov RA, Kochenderfer MD, Jensen NV, et al. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J Clin Oncol. 2021;39(9):1020–8.

    Article  CAS  Google Scholar 

  152. McDermott DF, Lee J-L, Ziobro M, Suárez Rodríguez C, Langiewicz P, Matveev VB. Open-label, single-arm, phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced non–clear cell renal cell carcinoma. Am Soc Clin Oncol. 2021;39:1039.

    Google Scholar 

  153. Grünwald V, Powles T, Choueiri TK, Hutson TE, Porta C, Eto M, Sternberg CN, et al. Lenvatinib plus everolimus or pembrolizumab versus sunitinib in advanced renal cell carcinoma: study design and rationale. Future Oncol. 2019;15(9):929–41.

    Article  Google Scholar 

  154. Chau V, Bilusic M. Pembrolizumab in combination with axitinib as first-line treatment for patients with renal cell carcinoma (RCC): evidence to date. Cancer Manag Res. 2020;12:7321.

    Article  CAS  Google Scholar 

  155. Powles T, Plimack ER, Soulières D, Waddell T, Stus V, Gafanov R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–73.

    Article  CAS  Google Scholar 

  156. Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, Vaishampayan U, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19(3):405–15.

    Article  CAS  Google Scholar 

  157. Zhu J, Zhang T, Wan N, Liang Z, Li J, Chen X, Liang W, et al. Cost–effectiveness of pembrolizumab plus axitinib as first-line therapy for advanced renal cell carcinoma. Immunotherapy. 2020;12(17):1237–46.

    Article  CAS  Google Scholar 

  158. Colombo N, Lorusso D, Herráez AC, Santin A, Colomba E, Miller D, Fujiwara K, et al. 726MO Outcomes by histology and prior therapy with lenvatinib plus pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer (Study 309/KEYNOTE-775). Ann Oncol. 2021;32:S729–30.

    Article  Google Scholar 

  159. Chowdhury S, Infante JR, Hawkins R, Voss MH, Perini R, Arkenau T, Voskoboynik M, et al. A Phase I/II Study to Assess the safety and efficacy of pazopanib and pembrolizumab combination therapy in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2021;19(5):434–46.

    Article  Google Scholar 

  160. Naing A, Wong DJ, Infante JR, Korn WM, Aljumaily R, Papadopoulos KP, Autio KA, et al. Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 2019;20(11):1544–55.

    Article  CAS  Google Scholar 

  161. Atkins MB, Hodi FS, Thompson JA, McDermott DF, Hwu WJ, Lawrence DP, Dawson NA, et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15.

    Article  CAS  Google Scholar 

  162. Hoy SM. Sintilimab: first global approval. Drugs. 2019;79(3):341–6.

    Article  CAS  Google Scholar 

  163. Ansell SM. Sintilimab: another effective immune checkpoint inhibitor in classical Hodgkin lymphoma. Lancet Haematol. 2019;6(1):e2–3.

    Article  Google Scholar 

  164. Yan Z, Yao S, Liu Y, Zhang J, Li P, Wang H, Chu J, et al. Durable response to sintilimab and chidamide in a patient with pegaspargase-and immunotherapy-resistant NK/T-cell lymphoma: Case report and literature review. Front Oncol. 2020;10:2779.

    Article  Google Scholar 

  165. DU Y. Efficacy of axitinib plus sintilimab in intermediate-and high-risk advanced renal cell carcinoma. Chin J Clin Oncol. 2020:513–6.

  166. Lu X, Gu W, Shi G, Ye D. Pazopanib together with 6–8 cycles of sintilimab followed by single use of pazopanib in the second-line treatment of advanced renal cell carcinoma. Transl Androl Urol. 2021;10(5):2078.

    Article  Google Scholar 

  167. Méndez-Vidal MJ, Molina Á, Anido U, Chirivella I, Etxaniz O, Fernández-Parra E, Guix M, et al. Pazopanib: evidence review and clinical practice in the management of advanced renal cell carcinoma. BMC Pharmacol Toxicol. 2018;19(1):77.

    Article  Google Scholar 

  168. Huang N, Zhao C, Hu X, Zhang C, **ong F, Huang W, Da L, et al. Safety and efficacy of sintilimab combination therapy for the treatment of 48 patients with advanced malignant tumors. Transl Cancer Res. 2022;11(1):252.

    Article  CAS  Google Scholar 

  169. Markham A. Atezolizumab: first global approval. Drugs. 2016;76(12):1227–32.

    Article  CAS  Google Scholar 

  170. Powles T, Durán I, Van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, Oudard S, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.

    Article  CAS  Google Scholar 

  171. Santini FC, Rudin CM. Atezolizumab for the treatment of non-small cell lung cancer. Expert Rev Clin Pharmacol. 2017;10(9):935–45.

    Article  CAS  Google Scholar 

  172. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, Gadgeel SM, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  Google Scholar 

  173. Adams S, Diéras V, Barrios C, Winer E, Schneeweiss A, Iwata H, Loi S, et al. Patient-reported outcomes from the phase III IMpassion130 trial of atezolizumab plus nab-paclitaxel in metastatic triple-negative breast cancer. Ann Oncol. 2020;31(5):582–9.

    Article  CAS  Google Scholar 

  174. Kelley RK, Oliver J, Hazra S, Benzaghou F, Yau T, Cheng A-L, Rimassa L. Cabozantinib in combination with atezolizumab versus sorafenib in treatment-naive advanced hepatocellular carcinoma: COSMIC-312 Phase III study design. Future Oncol. 2020;16(21):1525–36.

    Article  CAS  Google Scholar 

  175. Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, Bracarda S, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet. 2019;393(10189):2404–15.

    Article  Google Scholar 

  176. Rini B, Huseni M, Atkins M, McDermott D, Powles T, Escudier B, Banchereau R, et al. Molecular correlates differentiate response to atezolizumab (atezo)+ bevacizumab (bev) vs sunitinib (sun): results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma (mRCC). Ann Oncol. 2018;29:viii724–5.

    Article  Google Scholar 

  177. McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016;34(8):833–42.

    Article  CAS  Google Scholar 

  178. Uzzo R, Bex A, Rini BI, Albiges L, Suarez C, Donaldson F, Asakawa T, et al. A phase III study of atezolizumab (atezo) vs placebo as adjuvant therapy in renal cell carcinoma (RCC) patients (pts) at high risk of recurrence following resection (IMmotion010). Am Soc Clin Oncol; 2017.

  179. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24(6):749–57.

    Article  CAS  Google Scholar 

  180. Pal SK, Albiges L, Suarez Rodriguez C, Liu B, Doss J, Khurana S, Scheffold C, et al. CONTACT-03: Randomized, open-label phase III study of atezolizumab plus cabozantinib versus cabozantinib monotherapy following progression on/after immune checkpoint inhibitor (ICI) treatment in patients with advanced/metastatic renal cell carcinoma. Am Soc Clin Oncol; 2021.

  181. Atkins MB, McDermott DF, Powles T, Motzer RJ, Rini BI, Fong L, Joseph RW, et al. IMmotion150: A phase II trial in untreated metastatic renal cell carcinoma (mRCC) patients (pts) of atezolizumab (atezo) and bevacizumab (bev) vs and following atezo or sunitinib (sun). Am Soc Clin Oncol. 2017;35:4505.

    Article  Google Scholar 

  182. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Alekseev BY, Lee J-L, et al. Final overall survival and molecular analysis in immotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously untreated metastatic renal cell carcinoma. JAMA Oncol. 2022;8(2):275–80.

    Article  Google Scholar 

  183. Atkins MB, Rini BI, Motzer RJ, Powles T, McDermott DF, Suarez C, Bracarda S, et al. Patient-reported outcomes from the phase III Randomized IMmotion151 Trial: Atezolizumab+ Bevacizumab versus sunitinib in treatment-naive metastatic renal cell carcinoma. Clin Cancer Res. 2020;26(11):2506–14.

    Article  Google Scholar 

  184. Blank CU, Wong DJ, Ho TH, Bauer TM, Lee CB, Bene-Tchaleu F, Zhu J, et al. Phase Ib study of atezolizumab plus interferon-α with or without bevacizumab in patients with metastatic renal cell carcinoma and other solid tumors. Curr Oncol. 2021;28(6):5466–79.

    Article  Google Scholar 

  185. Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89(6–7):884–93.

    Article  CAS  Google Scholar 

  186. Kadowaki N, Antonenko S, Lau JY-N, Liu Y-J. Natural interferon α/β–producing cells link innate and adaptive immunity. J Exp Med. 2000;192(2):219–26.

    Article  CAS  Google Scholar 

  187. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, Atkins JN, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137.

    Article  CAS  Google Scholar 

  188. McDermott DF, George DJ. Bevacizumab as a treatment option in advanced renal cell carcinoma: an analysis and interpretation of clinical trial data. Cancer Treat Rev. 2010;36(3):216–23.

    Article  CAS  Google Scholar 

  189. Jung KH, LoRusso P, Burris H, Gordon M, Bang Y-J, Hellmann MD, Cervantes A, et al. Phase I study of the indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors. Clin Cancer Res. 2019;25(11):3220–8.

    Article  CAS  Google Scholar 

  190. Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11(1):1–12.

    Article  Google Scholar 

  191. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Győrffy B, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23(21):6650–60.

    Article  CAS  Google Scholar 

  192. Li F, Zhang R, Li S, Liu J. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol. 2017;47:70–7.

    Article  CAS  Google Scholar 

  193. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21(24):5427–33.

    Article  CAS  Google Scholar 

  194. Kim ES. Avelumab: first global approval. Drugs. 2017;77(8):929–37.

    Article  Google Scholar 

  195. Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after≥ 1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018;6(1):1–7.

    Article  Google Scholar 

  196. Powles T, Sridhar SS, Loriot Y, Bellmunt J, Mu XJ, Ching KA, Pu J, et al. Avelumab maintenance in advanced urothelial carcinoma: biomarker analysis of the phase 3 JAVELIN Bladder 100 trial. Nat Med. 2021;27(12):2200–11.

    Article  CAS  Google Scholar 

  197. Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P, Powles T, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018;19(4):451–60.

    Article  CAS  Google Scholar 

  198. Vaishampayan U, Schöffski P, Ravaud A, Borel C, Peguero J, Chaves J, Morris JC, et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: phase Ib results from the JAVELIN Solid Tumor trial. J Immunother Cancer. 2019;7(1):1–9.

    Article  Google Scholar 

  199. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, Venugopal B, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.

    Article  CAS  Google Scholar 

  200. Choueiri T, Larkin J, Pal S, Motzer R, Rini B, Venugopal B, Alekseev B, et al. Efficacy and correlative analyses of avelumab plus axitinib versus sunitinib in sarcomatoid renal cell carcinoma: post hoc analysis of a randomized clinical trial. ESMO open. 2021;6(3): 100101.

    Article  CAS  Google Scholar 

  201. Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, Mu XJ, et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med. 2020;26(11):1733–41.

    Article  CAS  Google Scholar 

  202. Bilen MA, Rini BI, Voss MH, Larkin J, Haanen JB, Albiges L, Pagliaro LC, et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the Phase 3 JAVELIN Renal 101 Trial. Clin Cancer Res. 2021;28:738.

    Article  Google Scholar 

  203. Guzik K, Tomala M, Muszak D, Konieczny M, Hec A, Błaszkiewicz U, Pustuła M, et al. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Molecules. 2019;24(11):2071.

    Article  CAS  Google Scholar 

  204. Guo L, Wei R, Lin Y, Kwok HF. Clinical and recent patents applications of PD-1/PD-L1 targeting immunotherapy in cancer treatment-current progress, strategy, and future perspective. Front Immunol. 2020;11:1508.

    Article  CAS  Google Scholar 

  205. Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017;8(42):72167.

    Article  Google Scholar 

  206. Zhan M-M, Hu X-Q, Liu X-X, Ruan B-F, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today. 2016;21(6):1027–36.

    Article  CAS  Google Scholar 

  207. Ganesan A, Ahmed M, Okoye I, Arutyunova E, Babu D, Turnbull WL, Kundu JK, et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep. 2019;9(1):1–19.

    Article  Google Scholar 

  208. Awadasseid A, Wu Y, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci. 2021;282: 119813.

    Article  CAS  Google Scholar 

  209. Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M, Stec M, et al. CA-170–a potent small-molecule PD-L1 inhibitor or not? Molecules. 2019;24(15):2804.

    Article  Google Scholar 

  210. Li C, Shi M, Lin X, Zhang Y, Yu S, Zhou C, Yang N, et al. Novel risk scoring system for immune checkpoint inhibitors treatment in non-small cell lung cancer. Transl Lung Cancer Res. 2021;10(2):776–89.

    Article  CAS  Google Scholar 

  211. Albiges L, Hakimi AA, **e W, McKay RR, Simantov R, Lin X, Lee JL, et al. Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J Clin Oncol. 2016;34(30):3655–63.

    Article  CAS  Google Scholar 

  212. Cella D, Grünwald V, Escudier B, Hammers HJ, George S, Nathan P, Grimm M-O, et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. 2019;20(2):297–310.

    Article  CAS  Google Scholar 

  213. Cella D, Motzer RJ, Suarez C, Blum SI, Ejzykowicz F, Hamilton M, Wallace JF, et al. Patient-reported outcomes with first-line nivolumab plus cabozantinib versus sunitinib in patients with advanced renal cell carcinoma treated in CheckMate 9ER: an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23:292.

    Article  CAS  Google Scholar 

  214. Courcier J, Dalban C, Laguerre B, Ladoire S, Barthélémy P, Oudard S, Joly F, et al. Primary renal tumour response in patients treated with nivolumab for metastatic renal cell carcinoma: results from the GETUG-AFU 26 NIVOREN trial. Eur Urol. 2021;80(3):325–9.

    Article  CAS  Google Scholar 

  215. Weiss SA, Djureinovic D, Jessel S, Krykbaeva I, Zhang L, Jilaveanu L, Ralabate A, et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to anti-PD-1/PD-L1. Clin Cancer Res. 2021;27(17):4757–67.

    Article  CAS  Google Scholar 

  216. Ficial M, Jegede OA, Sant’Angelo M, Hou Y, Flaifel A, Pignon JC, Braun DA, et al. Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin Cancer Res. 2021;27(5):1371–80.

    Article  CAS  Google Scholar 

  217. McFarlane JJ, Kochenderfer MD, Olsen MR, Bauer TM, Molina A, Hauke RJ, Reeves JA, et al. Safety and efficacy of nivolumab in patients with advanced clear cell renal cell carcinoma: results from the phase IIIb/IV CheckMate 374 Study. Clin Genitourin Cancer. 2020;18(6):469-76.e4.

    Article  Google Scholar 

  218. Flippot R, Dalban C, Laguerre B, Borchiellini D, Gravis G, Négrier S, Chevreau C, et al. Safety and efficacy of nivolumab in brain metastases from renal cell carcinoma: results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. J Clin Oncol. 2019;37(23):2008–16.

    Article  CAS  Google Scholar 

  219. Tannir NM, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. J Immunother Cancer. 2022;10(4):e004419.

    Article  Google Scholar 

  220. Masini C, Iotti C, De Giorgi U, Bellia RS, Buti S, Salaroli F, Zampiva I, et al. Nivolumab in combination with stereotactic body radiotherapy in pretreated patients with metastatic renal cell carcinoma. Results of the phase II NIVES study. Eur Urol. 2022;81(3):274–82.

    Article  CAS  Google Scholar 

  221. Lee CH, Shah AY, Rasco D, Rao A, Taylor MH, Di Simone C, Hsieh JJ, et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol. 2021;22(7):946–58.

    Article  CAS  Google Scholar 

  222. Dudek AZ, Liu LC, Gupta S, Logan TF, Singer EA, Joshi M, Zakharia YN, et al. Phase Ib/II clinical trial of pembrolizumab with bevacizumab for metastatic renal cell carcinoma: BTCRC-GU14-003. J Clin Oncol. 2020;38(11):1138.

    Article  CAS  Google Scholar 

  223. Martini J-F, Plimack ER, Choueiri TK, McDermott DF, Puzanov I, Fishman MN, Cho DC, et al. Angiogenic and immune-related biomarkers and outcomes following axitinib/pembrolizumab treatment in patients with advanced renal cell carcinoma. Clin Cancer Res. 2020;26(21):5598–608.

    Article  CAS  Google Scholar 

  224. Siva S, Bressel M, Wood ST, Shaw MG, Loi S, Sandhu SK, Tran B, et al. Stereotactic radiotherapy and short-course pembrolizumab for oligometastatic renal cell carcinoma—the RAPPORT trial. Eur Urol. 2022;81(4):364–72.

    Article  CAS  Google Scholar 

  225. Tang B, Yan X, Sheng X, Si L, Cui C, Kong Y, Mao L, et al. Safety and clinical activity with an anti-PD-1 antibody JS001 in advanced melanoma or urologic cancer patients. J Hematol Oncol. 2019;12(1):7.

    Article  Google Scholar 

  226. Pal SK, McGregor B, Suárez C, Tsao CK, Kelly W, Vaishampayan U, Pagliaro L, et al. Cabozantinib in combination with atezolizumab for advanced renal cell carcinoma: results from the COSMIC-021 Study. J Clin Oncol. 2021;39(33):3725–36.

    Article  CAS  Google Scholar 

  227. Powles T, Atkins MB, Escudier B, Motzer RJ, Rini BI, Fong L, Joseph RW, et al. Efficacy and safety of atezolizumab plus bevacizumab following disease progression on atezolizumab or sunitinib monotherapy in patients with metastatic renal cell carcinoma in IMmotion150: a randomized phase 2 clinical trial. Eur Urol. 2021;79(5):665–73.

    Article  CAS  Google Scholar 

  228. Jung KH, LoRusso P, Burris H, Gordon M, Bang YJ, Hellmann MD, Cervantes A, et al. Phase I Study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered with PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors. Clin Cancer Res. 2019;25(11):3220–8.

    Article  CAS  Google Scholar 

  229. Choueiri TK, Motzer RJ, Rini BI, Haanen J, Campbell MT, Venugopal B, Kollmannsberger C, et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann Oncol. 2020;31(8):1030–9.

    Article  CAS  Google Scholar 

  230. Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, George S, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):40–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funders.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and the main idea of the work. MJ, SS, HJ, MSK, and AM drafted the main text, figures, and tables. SI supervised the work and provided comments and additional scientific information. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Saba Ilkhani or Romina Esbati.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangir, M., Yazdani, O., Kahrizi, M.S. et al. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy. Cancer Cell Int 22, 401 (2022). https://doi.org/10.1186/s12935-022-02816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12935-022-02816-3

Keywords