Background

In agricultural production, pesticides are often applied to control pests and diseases in various plants [1, 2]. However, most pesticides do not remain attached to crops and are eventually released into aquatic environments through runoff, spray drift, and other pathways, resulting in extensive residue accumulation [3]. Additionally, pesticides that contaminate surface water usually contain a mixture of substances rather than an individual compound, and many types of crops are generally intermingled in agricultural areas [4]. This results in detrimental effects on ecosystems and threatens environmental organisms [5]. Present regulatory procedures for prioritization and environmental quality standards mainly focus on individual compounds [40]. The activity of Cu/Zn-SOD was significantly decreased in the moderate and high doses of MIT treatment relative to the baseline value, as well as corresponding PHO and DEL treatments. In contrast, significant increases in Mn-sod and Cu/Zn-sod expressions were discovered under the moderate and high doses of MIT treatment. The discrepancy between the mRNA level and enzyme activity of SOD could be explained as follows: (1) the mRNA level only represented a snapshot of antioxidant enzyme activity, and a time lag impact existed between transcription and translation; and (2) post-translation might regulate the enzymatic activity [52,

Availability of data and materials

Not applicable.

Abbreviations

PHO:

Phoxim

DEL:

Deltamethrin

MIT:

Phoxim + deltamethrin

LC50 :

Median lethal concentration

AI:

Additive index

L:

Low dose

M:

Moderate dose

H:

High dose

MDA:

Malonaldehyde

CAT:

Catalase

T-SOD:

Total superoxide dismutase

Cu/Zn-SOD:

Cu,Zn-Superoxide dismutase

T-GSH:

Total glutathione

GSSG:

Oxidized glutathione

POD:

Peroxidase

ROS:

Reactive oxygen species

CYP450:

Cytochrome P450

CarE:

Carboxylesterase

GST:

Glutathione-S-transferase

THs:

Thyroid hormones

VTG:

Vitellogenin

T3:

Triiodothyronine

HPT:

Hypothalamic-pituitary-thyroidal

HPG:

Hypothalamic-pituitary–gonadal

HPA:

Hypothalamic–pituitary–adrenal

IBR:

Integrated biomarker response

References

  1. Moreira RA, Daam MA, Vieira BH, Sanches AL, Reghini MV, da Silva MA, de Freitas EC, Espindola EL, Rocha O (2017) Toxicity of abamectin and difenoconazole mixtures to a Neotropical cladoceran after simulated runoff and spray drift exposure. Aquat Toxicol 185:58–66

    Article  CAS  Google Scholar 

  2. Houndji MAB, Imorou Toko I, Guedegba L, Yacouto E, Agbohessi PT, Mandiki SNM, Scippo ML, Kestemont P (2020) Joint toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on African catfish (Clarias gariepinus) juveniles. J Environ Sci Health B 55(7):669–676

    Article  CAS  Google Scholar 

  3. Shahid N, Liess M, Knillmann S (2019) Environmental stress increases synergistic effects of pesticide mixtures on Daphnia magna. Environ Sci Technol 53(21):12586–12593

    Article  CAS  Google Scholar 

  4. Vu HT, Keough MJ, Long SM, Pettigrove VJ (2017) Toxicological effects of fungicide mixtures on the amphipod Austrochiltonia subtenuis. Environ Toxicol Chem 36(10):2651–2659

    Article  CAS  Google Scholar 

  5. Bhagat J, Singh N, Nishimura N, Shimada Y (2021) A comprehensive review on environmental toxicity of azole compounds to fish. Chemosphere 262:128335

    Article  CAS  Google Scholar 

  6. Cao Z, Huang Y, **ao J, Cao H, Peng Y, Chen Z, Liu F, Wang H, Liao X, Lu H (2020) Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos. Environ Pollut 259:113926

    Article  CAS  Google Scholar 

  7. Wei Y, Meng Y, Huang Y, Liu Z, Zhong K, Ma J, Zhang W, Li Y, Lu H (2021) Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. Chemosphere 263:127860

    Article  CAS  Google Scholar 

  8. Bopp SK, Kienzler A, Richarz AN, van der Linden SC, Paini A, Parissis N, Worth AP (2019) Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Crit Rev Toxicol 49(2):174–189

    Article  Google Scholar 

  9. El-Nahhal Y (2018) Toxicity of some aquatic pollutants to fish. Environ Monit Assess 190(8):449

    Article  CAS  Google Scholar 

  10. Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF (2020) Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. Environ Sci Pollut Res 27(10):10185–10204

    Article  CAS  Google Scholar 

  11. Martínez R, Tu W, Eng T, Allaire-Leung M, Piña B, Navarro-Martín L, Mennigen JA (2020) Acute and long-term metabolic consequences of early developmental Bisphenol A exposure in zebrafish (Danio rerio). Chemosphere 256:127080

    Article  CAS  Google Scholar 

  12. Di Paolo C, Groh KJ, Zennegg M, Vermeirssen EL, Murk AJ, Eggen RI, Hollert H, Werner I, Schirmer K (2015) Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae. Aquat Toxicol 69:168–178

    Article  CAS  Google Scholar 

  13. Abe FR, Accoroni KAG, Gravato C, de Oliveira DP (2021) Early life stage assays in zebrafish. Methods Mol Biol 2240:77–92

    Article  CAS  Google Scholar 

  14. Ma X, Li H, **ong J, Mehler WT, You J (2019) Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos. J Agric Food Chem 67(9):2429–2436

    Article  CAS  Google Scholar 

  15. Jia M, Teng M, Tian S, Yan J, Meng Z, Yan S, Li R, Zhou Z, Zhu W (2020) Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio). Environ Pollut 267:115450

    Article  CAS  Google Scholar 

  16. Sun Y, Cao Y, Tong L, Tao F, Wang X, Wu H, Wang M (2020) Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. Chemosphere 251:126418

    Article  CAS  Google Scholar 

  17. Belden JB, Brain RA (2018) Incorporating the joint toxicity of co-applied pesticides into the ecological risk assessment process. Integr Environ Assess Manag 14(1):79–91

    Article  CAS  Google Scholar 

  18. Zhang Y, Xue W, Long R, Yang H, Wei W (2020) Acetochlor affects zebrafish ovarian development by producing estrogen effects and inducing oxidative stress. Environ Sci Pollut Res 27(22):27688–27696

    Article  CAS  Google Scholar 

  19. Strungaru SA, Plavan G, Ciobica A, Nicoara M, Robea MA, Solcan C, Petrovici A (2019) Toxicity and chronic effects of deltamethrin exposure on zebrafish (Danio rerio) as a reference model for freshwater fish community. Ecotoxicol Environ Saf 171:854–862

    Article  CAS  Google Scholar 

  20. Wu Y, Li W, Yuan M, Liu X (2020) The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. Sci Total Environ 701:134870

    Article  CAS  Google Scholar 

  21. Li H, Wang F, Li J, Deng S, Zhang S (2021) Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 264(Pt 2):128556

    Article  CAS  Google Scholar 

  22. ISO (1996) Water quality-determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio hamilton-buchanan (teleostei, cyprinidae)]-part 3: flow-through method. ISO, Geneva (7346-3)

    Google Scholar 

  23. OECD (1992) OECD Guidelines for the testing of chemicals, fish acute toxicity test. OECD, Paris, p 203

    Google Scholar 

  24. OECD (2013) OECD guidelines for the testing of chemicals, fish embryo acute toxicity (FET) test. OECD, Paris, p 236

    Google Scholar 

  25. Shen W, Yang G, Guo Q, Lv L, Liu L, Wang X, Lou B, Wang Q, Wang Y (2021) Combined toxicity assessment of myclobutanil and thiamethoxam to zebrafish embryos employing multi-endpoints. Environ Pollut 269:116116

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  28. Chi H (1997) Computer program for the probit analysis. National Chung Hsing University, Taichung

    Google Scholar 

  29. Marking LL (1985) Toxicity of chemical mixtures. In: Rand GM, Petroceli SR (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, Washington DC, pp 164–176

    Google Scholar 

  30. Su LS, Yang GL, Wu SG, Pi TX, Wang Q (2016) The single and joint toxicity of tiazophos and cyhalothrin to earthworm. Asian J Ecotoxicol 11:294–301

    Google Scholar 

  31. Rawlings JM, Belanger SE, Connors KA, Carr GJ (2019) Fish embryo tests and acute fish toxicity tests are interchangeable in the application of the threshold approach. Environ Toxicol Chem 38(3):671–681

    Article  CAS  Google Scholar 

  32. Yang C, Lim W, Song G (2020) Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol 234:108758

    Article  CAS  Google Scholar 

  33. Liu ZY, Wang ZZ, Lv GT, Shao GE, Bao JM (2010) Acute toxicity of three organophosphorus pesticides to juveniles Acanthopagrus schlegel. J Zhejiang Ocean Univ (Nat Sci) 29(1):20–24

    Google Scholar 

  34. Meng SL, Qu JH, Fan LM, Qiu LP, Chen JC, Xu P (2014) Joint toxicity of pesticides methomyl and phoxim to Tilapia (Oreochromis niloticus). J Agro-Environ Sci 33(2):257–263

    CAS  Google Scholar 

  35. Guan FL, **ong LF, Fang HS (2020) Acute toxicity of phoxim and mebendazole on Paramisgurnus dabryanus. Ecological Sci 39(6):25–29

    Google Scholar 

  36. Singh S, Kumar V, Kanwar R, Wani AB, Gill JPK, Garg VK, Singh J, Ramamurthy PC (2021) Toxicity and detoxification of monocrotophos from ecosystem using different approaches: a review. Chemosphere 275:130051

    Article  CAS  Google Scholar 

  37. Hu Y, Hu J, Li W, Gao Y, Tian Y (2021) Changes of embryonic development, locomotor activity, and metabolomics in zebrafish co-exposed to chlorpyrifos and deltamethrin. J Appl Toxicol 41(9):1345–1356

    Article  CAS  Google Scholar 

  38. Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TLT, van Leerdam JA, Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA (2019) The role of analytical chemistry in exposure science: focus on the aquatic environment. Chemosphere 222:564–583

    Article  CAS  Google Scholar 

  39. Rodea-Palomares I, González-Pleiter M, Martín-Betancor K, Rosal R, Fernández-Piñas F (2015) Additivity and interactions in ecotoxicity of pollutant mixtures: Some patterns, conclusions, and open questions. Toxics 3(4):342–369

    Article  CAS  Google Scholar 

  40. Nunes MEM, Müller TE, Murussi C, do Amaral AMB, Gomes JLC, Marins AT, Leitemperger J, Rodrigues CCR, Fiuza TL, Costa MD, Severo ES, Rosemberg DB, Loro VL (2018) Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish—A comparative study. Comp Biochem Physiol C Toxicol Pharmacol 206–207:48–53

    Article  CAS  Google Scholar 

  41. Tao MT, Bian ZQ, Zhang J, Wang T, Shen HY (2020) Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa. Environ Sci Process Impacts 22(10):2095–2103

    Article  CAS  Google Scholar 

  42. Chagas TQ, Freitas ÍN, Montalvão MF, Nobrega RH, Machado MRF, Charlie-Silva I, Araújo APDC, Guimarães ATB, Alvarez TGDS, Malafaia G (2021) Multiple endpoints of polylactic acid biomicroplastic toxicity in adult zebrafish (Danio rerio). Chemosphere 277:130279

    Article  CAS  Google Scholar 

  43. Li S, Jiang Y, Sun Q, Coffin S, Chen L, Qiao K, Gui W, Zhu G (2020) Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio). Chemosphere 241:125129

    Article  CAS  Google Scholar 

  44. Cong B, Liu C, Wang L, Chai Y (2020) The impact on anti-oxidant enzyme activity and related gene expression following adult Zebrafish (Danio rerio) exposure to dimethyl phthalate. Animals 10(4):717

    Article  Google Scholar 

  45. Yan S, Wang J, Zhu L, Chen A, Wang J (2015) Toxic effects of nitenpyram on anti-oxidant enzyme system and DNA in zebrafish (Danio rerio) livers. Ecotoxicol Environ Saf 122:54–60

    Article  CAS  Google Scholar 

  46. Perumal S, Gopal Samy MV, Subramanian D (2021) Developmental toxicity, anti-oxidant, and marker enzyme assessment of swertiamarin in zebrafish (Danio rerio). J Biochem Mol Toxicol 35(9):22843

    Article  CAS  Google Scholar 

  47. Song Z, Zhang Y, Zhang H, Rajendran RS, Wang R, Hsiao CD, Li J, **a Q, Liu K (2020) Isoliquiritigenin triggers developmental toxicity and oxidative stress-mediated apoptosis in zebrafish embryos/larvae via Nrf2-HO1/JNK-ERK/mitochondrion pathway. Chemosphere 246:125727

    Article  CAS  Google Scholar 

  48. Park S, Lee JY, Park H, Song G, Lim W (2020) Bifenthrin induces developmental immunotoxicity and vascular malformation during zebrafish embryogenesis. Comp Biochem Physiol C Toxicol Pharmacol 228:108671

    Article  CAS  Google Scholar 

  49. Han Y, Song S, Wu H, Zhang J, Ma E (2017) Anti-oxidant enzymes and their role in phoxim and carbaryl stress in Caenorhabditis elegans. Pestic Biochem Physiol 138:43–50

    Article  CAS  Google Scholar 

  50. Loerracher AK, Braunbeck T (2020) Inducibility of cytochrome P450-mediated 7-methoxycoumarin-O-demethylase activity in zebrafish (Danio rerio) embryos. Aquat Toxicol 225:105540

    Article  CAS  Google Scholar 

  51. Manikandan P, Nagini S (2018) Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 19(1):38–54

    Article  CAS  Google Scholar 

  52. Gaaied S, Oliveira M, Le Bihanic F, Cachot J, Banni M (2019) Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere 224:289–297

    Article  CAS  Google Scholar 

  53. Wu H, Gao C, Guo Y, Zhang Y, Zhang J, Ma E (2014) Acute toxicity and sublethal effects of fipronil on detoxification enzymes in juvenile zebrafish (Danio rerio). Pestic Biochem Physiol 115:9–14

    Article  CAS  Google Scholar 

  54. Zhao W, Hu N, Ding D, Long D, Li S, Li G, Zhang H (2019) Developmental toxicity and apoptosis in zebrafish embryos induced by low-dose γ-ray irradiation. Environ Sci Pollut Res 26(4):3869–3881

    Article  CAS  Google Scholar 

  55. Shan B, Pan H, Najafov A, Yuan J (2018) Necroptosis in development and diseases. Genes Dev 32(5–6):327–340

    Article  CAS  Google Scholar 

  56. Hossain MM, Huang H, Yuan Y, Wan T, Jiang C, Dai Z, **ong S, Cao M, Tu S (2021) Silicone stressed response of crayfish (Procambarus clarkii) in anti-oxidant enzyme activity and related gene expression. Environ Pollut 274:115836

    Article  CAS  Google Scholar 

  57. Xu C, Li X, ** M, Sun X, Niu L, Lin C, Liu W (2018) Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. Environ Sci Pollut Res 25(13):12992–13003

    Article  CAS  Google Scholar 

  58. Liang X, Wang F, Li K, Nie X, Fang H (2020) Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): developmental toxicity, oxidative stress and immunotoxicity. Fish Shellfish Immunol 96:262–269

    Article  CAS  Google Scholar 

  59. Campos-Sánchez JC, Esteban MÁ (2021) Review of inflammation in fish and value of the zebrafish model. J Fish Dis 44(2):123–139

    Article  Google Scholar 

  60. Aksakal FI, Ciltas A (2019) Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 223:78–87

    Article  CAS  Google Scholar 

  61. Zhu B, Han J, Lei L, Hua J, Zuo Y, Zhou B (2021) Effects of SiO2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae. Ecotoxicol Environ Saf 209:111845

    Article  CAS  Google Scholar 

  62. Lu J, Wu Q, Yang Q, Li G, Wang R, Liu Y, Duan C, Duan S, He X, Huang Z, Peng X, Yan W, Jiang J (2021) Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 239:108894

    Article  CAS  Google Scholar 

  63. Chen J, Zheng L, Tian L, Wang N, Lei L, Wang Y, Dong Q, Huang C, Yang D (2018) Chronic PFOS exposure disrupts thyroid structure and function in zebrafish. Bull Environ Contam Toxicol 101(1):75–79

    Article  CAS  Google Scholar 

  64. Sun D, Chen Q, Zhu B, Zhao H, Duan S (2021) Multigenerational reproduction and developmental toxicity, and HPG axis gene expression study on environmentally-relevant concentrations of nonylphenol in zebrafish. Sci Total Environ 764:144259

    Article  CAS  Google Scholar 

  65. Luo Y, Chen H, Li D, Zhan M, Hou L, Dong W, Luo Y, **e L (2020) The effects of norethindrone on the ontogeny of gene expression along the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes in zebrafish (Danio rerio). Sci Total Environ 747:141554

    Article  CAS  Google Scholar 

  66. Guo D, Liu W, Yao T, Ma M, Wang Q, Qiu J, Qian Y (2021) Combined endocrine disruptive toxicity of malathion and cypermethrin to gene transcription and hormones of the HPG axis of male zebrafish (Danio rerio). Chemosphere 267:128864

    Article  CAS  Google Scholar 

  67. Kim DJ, Seok SH, Baek MW, Lee HY, Na YR, Park SH, Lee HK, Dutta NK, Kawakami K, Park JH (2009) Benomyl induction of brain aromatase and toxic effects in the zebrafish embryo. J Appl Toxicol 29(4):289–294

    Article  CAS  Google Scholar 

  68. Ilyushina NA, Egorova OV, Masaltsev GV, Averianova NS, Revazova YA, Rakitskii VN, Goumenou M, Vardavas A, Stivaktakis P, Tsatsakis A (2020) Genotoxicity of mixture of imidacloprid, imazalil and tebuconazole. Toxicol Rep 7:1090–1094

    Article  CAS  Google Scholar 

  69. Fu Y, Wang Q, Zhang L, Ling S, Jia H, Wu Y (2021) Dissipation, occurrence, and risk assessment of 12 pesticides in Dendrobium officinale Kimura et Migo. Ecotoxicol Environ Saf 222:112487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of Shuai Zhang and Yao Zhao (Zhejiang Academy of Agricultural Sciences).

Funding

The research was supported by Shanghai Agriculture Applied Technology Development Program, China (Grant No. 2021, NO. 3-2) and State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products (Grant No. 2021DG700024-KF202106).

Author information

Authors and Affiliations

Authors

Contributions

LL: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing-original draft, writing—review and editing. ZG: investigation, data curation. lm: investigation, data curation, writing—review and editing. XL: writing—review and editing, administration, funding acquisition. QW: investigation, resources. WS: conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing-original draft, corresponding. YW: conceptualization, methodology, writing—review and editing, project administration, funding acquisition, corresponding. All author discussed the results and commented on the articles. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weifeng Shen or Yanhua Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1

: Table S1 Detailed information about the biochemical parameters tested. Table S2 Gene primer sequences in real time quantitative PCR reaction.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, L., Gao, Z., Mao, L. et al. Insights into the combined toxic impacts of phoxim and deltamethrin on the embryo-larval stage of zebrafish (Danio rerio). Environ Sci Eur 34, 90 (2022). https://doi.org/10.1186/s12302-022-00672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12302-022-00672-6

Keywords