Log in

Reactions of hydroxyl radical (·OH) and oxide radical anion (O·−) with 2-aminopurine in aqueous medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pulse radiolysis has been used to investigate the reaction of hydroxyl radical (·OH) and oxide radical anion (O·−) with 2-aminopurine (2AP), a fluorescent analogue of adenine, in aqueous medium. The second-order rate constant for the reaction of ·OH with 2AP was determined to be 3 × 109 dm3 mol−1s−1 and for the reaction of O·− it was 7.1 × 108 dm3 mol−1s−1. The transient absorption spectrum obtained in the reaction of ·OH at pH 7 has absorption maxima at 370 and 470 nm. The spectrum undergoes a time-dependent transformation at higher time-scale. The intermediate species was found to react with N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The yield of TMPD·+ was calculated in terms of G(TMPD·+) to be 3.3 × 10−7 mol J−1 at pH 7. The ·OH reactions were also carried out at pH 10 and the transient absorption spectra have λ max at 400 and 480 nm. The transient spectra obtained in the reaction of O·− at pH ≈14 have maxima at 400 and 480 nm. The transient intermediate species at pH 7 are assigned to the formation of 2AP-4-OH· (54%), 2AP-5-OH· (7%) and 2AP-8-OH· (39%) based on the spectral evidence and TMPD·+ build-up. Both 2AP-4-OH· and 2AP-5-OH· undergo OH elimination to form a radical cation. At higher pH (pH 10), the dehydration reaction of these OH-adducts leads to a N-centered radical (2AP-N(9)·, 71%). Formation of 2AP-8-OH· (29%) is also proposed at this pH. In the reaction of O·− with 2AP, it is proposed that a similar nitrogen centered 2AP-N(9)· radical is formed by an electron-transfer reaction at N(9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Bertinchamps (Ed.), in: Effect of Ionising Radiation on DNA, p. 153. Springer, Berlin (1978).

    Google Scholar 

  2. C. von Sonntag, Radiat. Phys. Chem. 30, 313 (1987).

    Google Scholar 

  3. C. von Sonntag, Chemical Basis of Radiation Biology, Taylor and Francis, London (1987).

    Google Scholar 

  4. C. J. Burrows and J. G. Muller, Chem. Rev. 98, 1109 (1998).

    Article  CAS  Google Scholar 

  5. S. Fujita and S. Steenken, J. Am. Chem. Soc. 103, 2540 (1981).

    Article  CAS  Google Scholar 

  6. D. K. Hazra and S. Steenken, J. Am. Chem. Soc. 105, 4380 (1983).

    Article  CAS  Google Scholar 

  7. S. Steenken, Chem. Rev. 89, 503 (1989).

    Article  CAS  Google Scholar 

  8. A. J. S. C. Vieira and S. Steenken, J. Am. Chem. Soc. 112, 6986 (1990).

    Article  CAS  Google Scholar 

  9. A. J. S. C. Vieira and S. Steenken, J. Am. Chem. Soc. 109, 7441 (1987).

    Article  CAS  Google Scholar 

  10. A. J. S. C. Vieira and S. Steenken, J. Phys. Chem. 91, 4138 (1987).

    Article  CAS  Google Scholar 

  11. G. Scholes, in: Radiation chemistry of Aqueous Systems, G. Stein (Ed.), p. 259. Interscience, New York, NY (1968).

    Google Scholar 

  12. G. Scholes, in: Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang (Ed.), Vol. 1, p. 521. Academic Press, New York, NY (1976).

    Google Scholar 

  13. S. Steenken, Biol. Chem. 378, 1293 (1997).

    CAS  Google Scholar 

  14. C. Wan, T. Fiebig, O. Schiemann, J. K. Barton and A. H. Zewail, Proc. Natl. Acad. Sci. USA 97, 14052 (2000).

    Google Scholar 

  15. F. D. Lewis, T. Wu, Y. Whang, R. L. Letsinger, S. R. Greenfield and M. R. Wasielewski, Science 277, 673 (1997).

    Article  CAS  Google Scholar 

  16. S. O. Kelley and J. K. Barton, Science 283, 375 (1999).

    Article  CAS  Google Scholar 

  17. C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, J. K. Barton and A. H. Zewail, Proc. Natl. Acad. Sci. USA 96, 6014 (1999).

    Article  CAS  Google Scholar 

  18. V. Sharovich, A. Dourandin, W. Huang, N. P. Luneva and N. E. Geacintov, J. Phys. Chem. B. 103, 10924 (1999).

    Google Scholar 

  19. V. Sharovich, A. Dourandin, W. Huang, N. P. Luneva and N. E. Geacintov, Phys. Chem. Chem. Phys. 2, 4399 (2000).

    Article  Google Scholar 

  20. O. F. A. Larsen, I. H. M. van Stokkum, F. L. de Weerd, M. Vengris, C. T. Aravindakumar, R. van Grondelle, N. E. Geacintov and H. van Amerongen, Phys. Chem. Chem. Phys. 6, 154 (2004).

    Article  CAS  Google Scholar 

  21. S. N. Guha, P. N. Moorthy, K. Kishore, D. B. Naik and K. N. Rao, Proc. Indian Acad. Sci. (Chem. Sci.) 99, 261 (1987).

    CAS  Google Scholar 

  22. R. H. Schuler, A. L. Hartzell and B. Behar, J. Phys. Chem. 85, 192 (1981).

    Article  CAS  Google Scholar 

  23. M. Ioele, C. Chatgilialoglu and Q. G. Mulazzani, J. Phys. Chem. 102, 6259 (1998).

    CAS  Google Scholar 

  24. T. L. Luke, H. Mohan, V. M. Manoj, P. Manoj, J. P. Mittal and C. T. Aravindakumar, Res. Chem. Intermed. 28, 303 (2002).

    Article  CAS  Google Scholar 

  25. M. L. Scholes, M. N. Schuchmann and C. von Sonntag, Int. J. Radiat. Biol. 61, 443 (1992).

    CAS  Google Scholar 

  26. M. S. Vinchurkar, B. S. M. Rao, H. Mohan and J. P. Mittal, Res. Chem. Intermed. 25, 471 (1999).

    CAS  Google Scholar 

  27. E. Hayon and M. Simic, J. Am. Chem. Soc. 95, 1029 (1973).

    Article  CAS  Google Scholar 

  28. A. Hissung and C. von Sonntag, Z. Naturforsch. 33b, 321 (1978).

    CAS  Google Scholar 

  29. P. Neta, Radiat. Res. 49, 1 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Aravindakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoj, P., Mohan, H., Manoj, V.M. et al. Reactions of hydroxyl radical (·OH) and oxide radical anion (O·−) with 2-aminopurine in aqueous medium. Res Chem Intermed 32, 817–826 (2006). https://doi.org/10.1163/156856706778938446

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856706778938446

Keywords

Navigation