Log in

Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Reaction kinetics for two sterically hindered secondary amines with singlet oxygen have been studied in detail. A water soluble porphyrin sensitizer, 5,10,15,20-tetrakis-(4-sulfunatophenyl)-21,23H-porphyrin (TPPS), was irradiated in oxygenated aqueous solutions containing either 2,2,6,6-tetramethylpiperidin-4-one (TMPD) or 4-[N,N,N-trimethyl-ammonium]-2,2,6,6-tetramethylpiperidinyl chloride (N-TMPCl). The resulting sensitization reaction produced singlet oxygen in high yield, ultimately leading to the formation of the corresponding nitroxide free radicals (R2NO) which were detected using steady-state electron paramagnetic resonance (EPR) spectroscopy. Careful actinometry and EPR calibration curves, coupled with a detailed kinetic analysis, led to a simple and compact expression relating the nitroxide quantum yield Φ, R2NO (from the doubly-integrated EPR signal intensity) to the initial amine concentration [R2NH]i. With all other parameters held constant, a plot of Φ, R2NO, vs. [R2NH]i gave a straight line with a slope proportional to the rate constant for nitroxide formation, k, R2NO. This establishment of a rigorous quantitative relationship between the EPR signal and the rate constant provides a mechanism for quantifying singlet oxygen production as a function of its topology in heterogeneous media. Implications for in vivo assessment of singlet oxygen topology are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lin, R. Trouillon, G. Safina, A. G. Ewing, Anal. Chem., 2011, 83, 4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. R. Allison, H. C. Mota, C. H. Sibata, Photodiagn. Photodyn. Ther., 2004, 1, 263.

    Article  CAS  Google Scholar 

  3. D. Kessel, Photodiagn. Photodyn. Ther., 2004, 1, 3.

    Article  CAS  Google Scholar 

  4. A. P. Castano, T. N. Demidova, M. R. Hamblin, Photodiagn. Photodyn. Ther., 2004, 1, 279.

    Article  CAS  Google Scholar 

  5. R. W. Redmond, I. E. Kochevar, Photochem. Photobiol., 2006, 82, 1178.

    Article  CAS  PubMed  Google Scholar 

  6. P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181.

    Article  CAS  PubMed  Google Scholar 

  7. H. Wu, Q. Song, G. Ran, X. Lu, B. Xu, Trends Anal. Chem., 2011, 30, 133.

    Article  CAS  Google Scholar 

  8. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, John Wiley & Sons, Inc., Hoboken, NJ, 2007, vol. 2.

  9. K. Nakamura, K. Ishiyama, H. Ikai, T. Kanno, Y. Niwano, M. Kohno, J. Clin. Biochem. Nutr., 2011, 47, 87.

    Article  CAS  Google Scholar 

  10. A large number of qualitative studies exist and, while many are supplied here, an exhaustive survey is beyond the scope of this paper.

  11. S. Kawanishi, S. Inoue, S. Sano, H. Aiba, J. Biol. Chem., 1986, 261, 6090.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Iwamoto, H. Yoshika, Y. Yanagihara, I. Mifuchi, Chem. Pharm. Bull., 1985, 33, 5529.

    Article  CAS  Google Scholar 

  13. A. Vogler, H. Kunkely, J. Am. Chem. Soc., 1981, 103, 6222.

    Article  CAS  Google Scholar 

  14. C. Hadjur, A. Jeunet, P. Jardon, J. Photochem. Photobiol., B, 1994, 26, 67.

    Article  CAS  Google Scholar 

  15. D. R. Cooper, N. M. Dimitrijevic, J. L. Nadeau, Nanoscale, 2010, 2, 114.

    Article  CAS  PubMed  Google Scholar 

  16. K. Ishiyama, K. Nakamura, H. Ikai, T. Kanno, M. Kohno, K. Sasaki, Y. Niwano, PLoS One, 2012, 7, e37871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Martins, L. Almeida, J. Laran**ha, Photochem. Photobiol., 2004, 80, 267.

    Article  CAS  PubMed  Google Scholar 

  18. S. Kataoka, H. Yasui, M. Hiromura, H. Sakurai, Life Sci., 2005, 77, 2814.

    Article  CAS  PubMed  Google Scholar 

  19. L. R. C. Barclay, M.-C. Basque, M. R. Vinqvist, Can. J. Chem., 2003, 81, 457.

    Article  CAS  Google Scholar 

  20. R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien, M. Inoue, Free Radicals Biol. Med., 1999, 27, 294.

    Article  CAS  Google Scholar 

  21. N. Motohashi, I. Mori, J. Chromatogr., 1989, 465, 417.

    Article  CAS  Google Scholar 

  22. L. Gao, J. Fei, J. Zhao, H. Li, J. Li, ACS Nano, 2012, 6, 8030.

    Article  CAS  PubMed  Google Scholar 

  23. J. I. Kim, J. H. Lee, D. S. Choi, B. M. Won, M. Y. Jung, J. Park, J. Food Sci. C, 2009, 74, 362.

    Article  CAS  Google Scholar 

  24. Y. Lion, M. Delmelle, A. van der Vorst, Nature, 1976, 263, 442.

    Article  CAS  PubMed  Google Scholar 

  25. V. B. Ivanov, V. Y. Shlyapintokh, O. M. Khvpstach, A. B. Shapiro, E. G. Rozantsev, J. Photochem., 1975, 4, 313.

    Article  CAS  Google Scholar 

  26. J. Moan, E. Wold, Nature, 1979, 279, 450.

    Article  CAS  PubMed  Google Scholar 

  27. J. Moan, B. Høvik, E. Wold, Photochem. Photobiol., 1979, 30, 623.

    Article  CAS  Google Scholar 

  28. J. Moan, Acta Chem. Scand. Ser. B, 1980, 34, 519.

    Article  Google Scholar 

  29. Y. Lion, E. Gandin, A. van de Vorst, Photochem. Photobiol., 1980, 31, 305.

    Article  CAS  Google Scholar 

  30. K. Reszka, C. F. Chignell, Photochem. Photobiol., 1983, 38, 281.

    Article  CAS  PubMed  Google Scholar 

  31. A. E. Alegria, C. M. Krishna, R. K. Elespuru, P. Riesz, Photochem. Photobiol., 1989, 49, 257.

    Article  CAS  PubMed  Google Scholar 

  32. T. Ando, T. Yoshikawa, T. Tanigawa, M. Kohno, N. Yoshida, M. Kondo, Life Sci., 1997, 61, 1953.

    Article  CAS  PubMed  Google Scholar 

  33. A. Rigo, E. Argese, R. Stevanato, E. F. Orsega, P. Viglino, Inorg. Chim. Acta, 1977, 24, L71.

    Article  CAS  Google Scholar 

  34. T. Kondo, P. Riesz, Radiat. Res., 1991, 127, 11.

    Article  CAS  PubMed  Google Scholar 

  35. S. Dzwigaj, H. Pezerat, Free Radical Res., 1995, 23, 103.

    Article  CAS  Google Scholar 

  36. N. Miyoshi, V. Mišíc, M. Fukuda, P. Riesz, Radiat. Res., 1995, 143, 194.

    Article  CAS  PubMed  Google Scholar 

  37. L.-Y. Zang, Z. Zhang, H. P. Misra, Photochem. Photobiol., 1990, 52, 677.

    Article  CAS  PubMed  Google Scholar 

  38. L. P. F. Aggarwal, I. E. Borissevitch, Spectrochim. Acta, Part A, 2006, 63, 227.

    Article  CAS  Google Scholar 

  39. G. S. Nahor, J. Rabani, F. Grieser, J. Phys. Chem., 1981, 85, 697.

    Article  CAS  Google Scholar 

  40. K. Kalyanasundaram, M. Neumann-Spallart, J. Phys. Chem., 1982, 86, 5163.

    Article  CAS  Google Scholar 

  41. I. E. Borrisevitch, T. Tominaga, C. C. Schmitt, J. Photochem. Photobiol., A, 1998, 114, 201.

    Article  Google Scholar 

  42. K. Lang, P. Kubát, J. Mosinger, D. M. Wagnerová, J. Photochem. Photobiol., A, 1998, 119, 47.

    Article  CAS  Google Scholar 

  43. G. Gryn’ova, K. U. Ingold, M. L. Coote, J. Am. Chem. Soc., 2012, 134, 12979.

    Article  PubMed  CAS  Google Scholar 

  44. H. Ohmori, C. Ueda, K. Yamagata, M. Masui, J. Chem. Soc., Perkin Trans. 2, 1987, 1065.

    Google Scholar 

  45. E. S. Kagan, I. Y. Zhukova, V. V. Yanilkin, V. I. Morozov, N. V. Nastapova, V. P. Kashparova, I. I. Kashparov, Russ. J. Electrochem., 2011, 47, 1199.

    Article  CAS  Google Scholar 

  46. N. Sutin, C. Creutz, Pure Appl. Chem., 1980, 52, 2717.

    Article  CAS  Google Scholar 

  47. D. Mauzerall, J. Am. Chem. Soc., 1960, 82, 1832.

    Article  CAS  Google Scholar 

  48. R. A. Marcus, Annu. Rev. Phys. Chem., 1964, 15, 155.

    Article  CAS  Google Scholar 

  49. S. Prashanthi, P. H. Kumar, L. Wang, A. K. Perepogu, P. R. Bangal, J. Fluoresc., 2010, 20, 571.

    Article  CAS  PubMed  Google Scholar 

  50. T. Vidóczy, P. Baranyai, Helv. Chim. Acta, 2001, 84, 2640.

    Article  Google Scholar 

  51. C. G. Martínez, S. Jockusch, M. Ruzzi, E. Sartori, A. Moscatelli, N. J. Turro, A. L. Buchachenko, J. Phys. Chem. A, 2005, 109, 10216.

    Article  PubMed  CAS  Google Scholar 

  52. N. N. Kruk, J. Appl. Spectrosc., 2008, 75, 174.

    Article  CAS  Google Scholar 

  53. M. Scholz, R. Dědic, T. Breirenbach, J. Hála, Photochem. Photobiol. Sci., 2013, 12, 1873.

    Article  CAS  PubMed  Google Scholar 

  54. J. D. Spikes, Photochem. Photobiol., 1992, 55, 797.

    Article  CAS  Google Scholar 

  55. R. W. Redmond, J. N. Gamelin, Photochem. Photobiol., 1999, 70, 391.

    Article  CAS  Google Scholar 

  56. A. A. Krasnovsky, J. Photochem. Photobiol., A, 2008, 196, 210.

    Article  CAS  Google Scholar 

  57. R. S. Davidson, K. R. Trethewey, J. Chem. Soc., Perkin Trans. 2, 1977, 169.

    Google Scholar 

  58. R. S. Davidson, K. R. Trethewey, J. Chem. Soc., Perkin Trans. 2, 1977, 173.

    Google Scholar 

  59. R. S. Davidson, K. R. Trethewey, J. Chem. Soc., Perkin Trans. 2, 1977, 178.

    Google Scholar 

  60. E. L. Clennan, L. J. Noe, T. Wen, E. Szneler, J. Org. Chem., 1989, 54, 3581.

    Article  CAS  Google Scholar 

  61. I. Saito, T. Matsuura, M. Inoue, J. Am. Chem. Soc., 1983, 105, 3200.

    Article  CAS  Google Scholar 

  62. C. Schweitzer, R. Schmidt, Chem. Rev., 2003, 103, 1685.

    CAS  Google Scholar 

  63. D. F. Zigler, R. D. Schmidt, L. E. Jarocha, E. C. Ding, I. Kirilyuk, R. B. A. Sykes, S. Miller, V. M. Dipasquale, R. Khatmullin, N. V. Lebedeva and M. D. E. Forbes, Nat. Chem., submitted.

  64. J. I. Olmstead, J. Chem. Educ., 1984, 61, 1098.

    Article  Google Scholar 

  65. R. C. Johnson, J. Chem. Educ., 1970, 47, 702.

    Article  CAS  Google Scholar 

  66. N. Jayaraj, M. Porel, M. F. Ottaviani, M. V. S. N. Maddipatla, A. Modelli, J. P. Da Silva, B. R. Bhogala, B. Captain, S. Jockusch, N. J. Turro, V. Ramamurthy, Langmuir, 2009, 25, 13820.

    Article  CAS  PubMed  Google Scholar 

  67. C. L. Kwan, S. Atik, L. A. Singer, J. Am. Chem. Soc., 1978, 100, 4783.

    Article  CAS  Google Scholar 

  68. C. G. Hatchard, C. A. Parker, Proc. R. Soc. London, Ser. A, 1956, 235, 518.

    Article  CAS  Google Scholar 

  69. J. N. Demas, W. D. Bowman, E. F. Zalewski, R. A. Valapoldi, J. Phys. Chem., 1981, 85, 2766.

    Article  CAS  Google Scholar 

  70. H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem., 2004, 76, 2105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm D. E. Forbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zigler, D.F., Ding, E.C., Jarocha, L.E. et al. Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology. Photochem Photobiol Sci 13, 1804–1811 (2014). https://doi.org/10.1039/c4pp00318g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00318g

Navigation