Log in

Correlations between the Chitosan Solution Viscosity and the Anticorrosive Protection Efficiency of Indigo Carmine-impregnated Chitosan Coatings on Zinc

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The addition of polyanions can greatly reduce the permeability of native chitosan coatings through ionic crosslinking, improving their stability and anticorrosive properties. Three different solutions made from high viscosity chitosan are used to produce coatings with a varying thickness on zinc. The native chitosan films are then ionically crosslinked with indigo carmine by dip** the coated samples in 10–3 M aqueous indigo carmine solution. The electrochemical properties of the coatings are studied by potentiodynamic polarization and electrochemical impedance spectroscopy methods. The surface morphology and elemental composition of the coated samples before and after corrosion are also investigated using SEM-EDS. As expected, the viscosity of the chitosan solutions, and, consequently, the thickness of the coatings can greatly influence their anticorrosive properties. The application of too thin or too thick films results in incomplete coating or swelling gradients with negative effects such as cracks appearing. Adequate thickness of high viscosity chitosan coatings results in inhibition efficiencies (~90%) similar to those resulting from medium viscosity chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Jawaid, M., Thariq, M., and Saba, N., Eds., Woodhead Publ., 2019.

    Google Scholar 

  2. Pozzo, L.Y., Conceição, T.F., Spinelli, A., Scharnagl, N., and Pires, A.T.N., Carbohydr. Polym., 2018, vol. 181, p. 71.

    Article  Google Scholar 

  3. Pang, X. and Zhitomirsky, I., Surf. Coat. Technol., 2008, vol. 202, p. 3815.

    Article  CAS  Google Scholar 

  4. Feng, L. and Iroh, J.O., J. Appl. Polym. Sci., 2018, vol. 135, p. 45861.

    Article  Google Scholar 

  5. Orzali, L., Corsi, B., Forni, C., and Riccioni, L., in Biological Activities and Application of Marine Polysaccharides, IntechOpen, 2017. https://doi.org/10.5772/66840

  6. Medimagh, R., Aloui, H., Jemli, H., Chaabane, H., Belkahla, F., and Khwaldia, K., Polym. Sci., Ser. A, 2016, vol. 58, no. 3, p. 409.

    Article  CAS  Google Scholar 

  7. Wang, H., Qian, J., and Ding, F., J. Agric. Food Chem., 2018, vol. 66, no. 2, p. 395.

    Article  CAS  Google Scholar 

  8. Kangama, A., Zeng, D., Tian, X., and Fang, J., J. Chem., 2018, vol. 2018, article ID 2768474.

    Article  Google Scholar 

  9. Arakkal, A., Aazem, I., Honey, G., Vengellur, A., Bhat, S.G., and Sailaja, S.G.C., J. Appl. Polym. Sci., 2020, vol. 138, p. 49608.

    Article  Google Scholar 

  10. Carneiro, J., Tedim, J., and Ferreira, M.G.S., Prog. Org. Coat., 2015, vol. 89, p. 348.

    Article  CAS  Google Scholar 

  11. Ahmed, R.A., Farghali, R.A., and Fekry, A.M., Int. J. Electrochem. Sci., 2012, vol. 7, no. 8, p. 7270.

    CAS  Google Scholar 

  12. Szőke, Á.F., Szabó, G.S., Hórvölgyi, Z., Albert, E., Gaina, L., and Muresan, L.M., Carbohydr. Polym., 2019, vol. 215, p. 63.

    Article  Google Scholar 

  13. Das, S. and Subuddhi, U., Polym. Sci., Ser. A, 2016, vol. 58, no. 2, p. 154.

    Article  CAS  Google Scholar 

  14. Dabóczi, M., Albert, E., Agócs, E., Kabai-Faix, M., and Hórvölgyi, Z., Carbohydr. Polym., 2016, vol. 136, p. 137.

    Article  Google Scholar 

  15. Heakal, F.E.T. and Bakry, A.M., Int. J. Electrochem. Sci., 2018, vol. 13, p. 7724.

    Article  CAS  Google Scholar 

  16. Smitha, B., Sridhar, S., and Khan, A.A., Eur. Polym. J., 2005, vol. 41, no. 8, p. 1859.

    Article  CAS  Google Scholar 

  17. Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., and Gurny, R., Eur. J. Pharm. Biopharm., 2004, vol. 57, p. 19.

    Article  CAS  Google Scholar 

  18. Chattopadhyay, D.P. and Inamdar, M.S., Int. J. Polym. Sci., 2010, vol. 2010, article ID 939536.

    Article  Google Scholar 

  19. Szőke, Á.F., Szabó, G., Simó, Z., Hórvölgyi, Z., Albert, E., Végh, A.G., Zimányi, L., and Muresan, L.M., Eur. Polym. J., 2019, vol. 118, p. 205.

    Article  Google Scholar 

  20. dos Anjos, F.S.C., Vieira, E.F.S., and Cestari, A.R., J. Colloid Interface Sci., 2002, vol. 253, p. 243.

    Article  CAS  Google Scholar 

  21. Szőke, Á.F., Szabó, G., Hórvölgyi, Z., Albert, E., Végh, A.G., Zimányi, L., and Muresan, L.M., Int. J. Biol. Macromol., 2020, vol. 142, p. 423.

    Article  Google Scholar 

  22. Dynamics of Curved Fronts, Pelcé, P., Ed., Academic Press, 1988.

    Google Scholar 

  23. Elhefian, E.A., Elgannodi, E., Mainal, A., and Yahaya, A.H., Turk. J. Chem., 2010, vol. 34, no. 47, p. 47.

    CAS  Google Scholar 

  24. Stern, M. and Geary, A.L., J. Electrochem. Soc., 1957, vol. 104, no. 1, p. 56.

    Article  CAS  Google Scholar 

  25. McCafferty, E., Introduction to Corrosion Science, Springer, 2010.

    Book  Google Scholar 

  26. Chifu, E., Tomoaia-Cotisel, M., Albu, I., Mocanu, A., Salajan, M.-I., Racz, Cs., and Pop, D.-V., Experimental Methods in Chemistry and Biophysics of Colloids and Interfaces, Presa Univ. Clujeana, 2004.

  27. Volentiru, E., Nyári, M., Szabó, G., Hórvölgyi, Z., and Mureșan, L.M., Period. Polytech., Chem. Eng., 2014, vol. 58, p. 61.

    Article  Google Scholar 

  28. Rohindra, D.R. and Nand, A.V.J.R., South Pac. J. Nat. Appl. Sci., 2004, vol. 22, p. 32.

    Article  Google Scholar 

  29. Oliveira, G.K.F., Tormin, T.F., de O. Montes, R.H., Richter, E.M., and Muñoz, R.A.A., Electroanalysis, 2016, vol. 28, p. 2143.

    Article  CAS  Google Scholar 

  30. da Silva, A.K.N., Rodrigues, B.D., da Silva, L.H.M., and da Rodrigues, A.M.C., Food Sci. Technol., 2018, vol. 38, no. 3, p. 454.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the financial support provided by the Romanian Ministry of National Education and Dr. Lucian Barbu Tudoran for his help in the EDS and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Muresan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szőke, Á.F., Szabó, G., Katona, G. et al. Correlations between the Chitosan Solution Viscosity and the Anticorrosive Protection Efficiency of Indigo Carmine-impregnated Chitosan Coatings on Zinc. Prot Met Phys Chem Surf 58, 574–584 (2022). https://doi.org/10.1134/S2070205122030224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030224

Keywords:

Navigation