Log in

Effectiveness of green coatings as a possible protection barrier against corrosion

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The increasing attention towards chitosan, a versatile polymer known for its eco-friendly nature origin, non-bio accumulative characteristics, biodegradability, and low or non-toxicity, has sparked significant interest in recent years due to its corrosion-resistant properties. This study pursues to assess the efficacy of chitosan derivatives of different molecular weights as protective green corrosion barriers. Two different molecular weight chitosan variants, high and medium molecular weight (HMW and MMW) were used, both in their pure form and crosslinked with Polyethylene Glycol (PEG), and Polyvinylpyrrolidone (PVP). The coatings were prepared using the sol–gel technique. The synthesized chitosan-based green coatings were characterized using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), Atomic Force Microscope (AFM), and contact angle studies. Corrosion resistance protection was evaluated through Weight loss measurements. Contact angles obtained for all samples were 60–80° evidencing the hydrophilic behavior of the coatings. ATR-FTIR coatings spectra presented characteristic peaks of the chitosan functional groups and displayed a relevant correlation between chitosan and the agents crosslinked. The AFM results for roughness (Ra) of the samples before and after the coating process indicated a strong relation between the decrease in the roughness parameter and the enhancement of the barrier protective property. The coating’s weight loss percentages do not show a significant change throughout the experiment, staying within the 0.1–0.9% range. Finally, the results reported here could serve as a reference to synthesizing green coatings for corrosion protection as an alternative to traditional corrosion inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. C. Espartero, Polymeric materials for corrosion protection in geothermal systems (OhioLINK Electronic Theses and Disserations Center, 2015), http://rave.ohiolink.edu/etdc/view?acc_num=case1427901218). Accessed 19 Jan 2023

  2. S.A. Umoren, U.M. Eduok, Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: a review. Carbohydr. Polym. 140, 314–341 (2016). https://doi.org/10.1016/j.carbpol.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  3. F. Gapsari, S. Hidayatullah, P. Hadi Setyarini, K.A. Madurani, H. Hermawan, Egypt. J. Pet. 31, 25–31 (2022). https://doi.org/10.1016/j.ejpe.2022.02.001

    Article  Google Scholar 

  4. A.M. Motlatle, T.G. Mofokeng, M.R. Scriba, V. Ojijo, S.S. Ray, Synth. Met. (2021). https://doi.org/10.1016/j.synthmet.2021.116914

    Article  Google Scholar 

  5. P. Sambyal, G. Ruhi, S.K. Dhawan, B.M.S. Bisht, S.P. Gairola, Prog. Org. Coat. 119, 203–213 (2018). https://doi.org/10.1016/j.porgcoat.2018.02.014

    Article  CAS  Google Scholar 

  6. J. Carneiro, J. Tedim, M. G. S. Ferreira, in Progress in Organic Coatings (Elsevier B.V., 2015), vol. 89, pp. 348–356 https://doi.org/10.1016/j.porgcoat.2015.03.008

  7. Y. Cao, H. Wu, X. Wang, G. Wang, H. Yang, J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2022.119341

    Article  Google Scholar 

  8. S. Peter, N. Lyczko, D. Gopakumar, H.J. Maria, A. Nzihou, S. Thomas, Waste Biomass Valor. 12, 4777–4804 (2021). https://doi.org/10.1007/s12649-020-01244-6

    Article  CAS  Google Scholar 

  9. M. Martinez-Gomez, A. Quinto-Hernandez, N.S. Flores-Garcia, J. Mayén, M. Dominguez-Diaz, H. Martinez, J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, L. Martinez-Gomez, Int. J. Polym. Sci. (2019). https://doi.org/10.1155/2019/3864835

    Article  Google Scholar 

  10. C. Ardean, C.M. Davidescu, N.S. Nemeş, A. Negrea, M. Ciopec, N. Duteanu, P. Negrea, D. Duda-Seiman, V. Musta, Int. J. Mol. Sci. 22, 7449 (2021). https://doi.org/10.3390/ijms22147449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J.A. Oliveira, R.A. de Santana, A.D. Neto, Prog. Org. Coat. (2020). https://doi.org/10.1016/j.porgcoat.2020.105631

    Article  Google Scholar 

  12. Á.F. Szőke, G.S. Szabó, Z. Hórvölgyi, E. Albert, L. Gaina, L.M. Muresan, Carbohydr. Polym. 215, 63–72 (2019). https://doi.org/10.1016/j.carbpol.2019.03.077

    Article  CAS  PubMed  Google Scholar 

  13. R.G. Sánchez-Duarte, D.I. Sánchez-Machado, J. López-Cervantes, M.A. Correa-Murrieta, Water Sci. Technol. 65, 618–623 (2012). https://doi.org/10.2166/wst.2012.900

    Article  CAS  PubMed  Google Scholar 

  14. Á.F. Szőke, G. Szabó, Z. Simó, Z. Hórvölgyi, E. Albert, A.G. Végh, L. Zimányi, L.M. Muresan, Eur. Polym. J. 118, 205–212 (2019). https://doi.org/10.1016/j.eurpolymj.2019.05.057

    Article  CAS  Google Scholar 

  15. A.A. Aguilar-Ruiz, G.E. Dévora-Isiordia, R.G. Sánchez-Duarte, Y. Villegas-Peralta, V.M. Orozco-Carmona, J. Álvarez-Sánchez, Coatings 13, 1615 (2023). https://doi.org/10.3390/coatings13091615

    Article  CAS  Google Scholar 

  16. S.A. Umoren, A.A. AlAhmary, Z.M. Gasem, M.M. Solomon, Int. J. Biol. Macromol. 117, 1017–1028 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  17. J. F. Solano Romero, Obtención de quitosano a partir del exoesqueleto del camarón (infraorden caridea), (Repositorio Digital UTMACH, 2017), http://repositorio.utmachala.edu.ec/handle/48000/11382. Accessed 21 Jan 2023

  18. I.D. Gunbas, U. Aydemir Sezer, S. Gülce İz, I. Deliloǧlu Gürhan, N. Hasirci, Ind. Eng. Chem. Res. 51, 11946–11954 (2012). https://doi.org/10.1021/ie3015523

    Article  CAS  Google Scholar 

  19. J. J. Ojeda, M. Dittrich, Methods Mol. Biol. 881, 187–211 (2012)

    Article  Google Scholar 

  20. Q.H. Zhang, B.S. Hou, Y.Y. Li, G.Y. Zhu, H.F. Liu, G.A. Zhang, Corros. Sci. (2020). https://doi.org/10.1016/j.corsci.2019.108346

    Article  Google Scholar 

  21. R. Padash, G.S. Sajadi, A.H. Jafari, E. Jamalizadeh, A.S. Rad, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122681

    Article  Google Scholar 

  22. S.M. Alves, W. Albano, A.J. de Oliveira, J. Braz. Soc. Mech. Sci. Eng. 39, 845–856 (2017). https://doi.org/10.1007/s40430-016-0545-3

    Article  CAS  Google Scholar 

  23. S.S. Latthe, P. Sudhagar, A. Devadoss, A.M. Kumar, S. Liu, C. Terashima, K. Nakata, A. Fujishima, J. Mater. Chem. A Mater. 3, 14263–14271 (2015). https://doi.org/10.1039/c5ta02604k

    Article  CAS  Google Scholar 

  24. V. Srivastava, D.S. Chauhan, P.G. Joshi, V. Maruthapandian, A.A. Sorour, M.A. Quraishi, ChemistrySelect 3, 1990–1998 (2018). https://doi.org/10.1002/slct.201701949

    Article  CAS  Google Scholar 

  25. H. Ashassi-Sorkhabi, A. Kazempour, Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: a comprehensive review. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116110

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge project ITSON PROFAPI-2023-031 and the project CONAHCyT Ciencia de Frontera CF-2023-G-1395, and the first author is grateful to CONACyT (785138).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study’s inception and design. AAA-R, RGS-D, and VMO-C were responsible for material preparation, data collection, and analysis. The characterization studies of the samples were carried out by YV-P, GED-I, and JÁ-S, AAA-R initially drafted the manuscript, which was later revised by RGS-D with input from all authors based on earlier versions of the manuscript. The final published version of the manuscript has been reviewed and approved by all authors.

Corresponding author

Correspondence to R. G. Sánchez-Duarte.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Ruiz, A.A., Sánchez-Duarte, R.G., Dévora-Isiordia, G.E. et al. Effectiveness of green coatings as a possible protection barrier against corrosion. MRS Advances 9, 193–198 (2024). https://doi.org/10.1557/s43580-023-00728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00728-6

Navigation