Log in

An Essay on the History of Catalytic Hydrogenation of Organic Compounds. From P. Sabatier and V. N. Ipatieff to the Present Days

  • HISTORY OF CATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The essay considers historical aspects of the appearance and development of methods for catalytic hydrogenation of organic compounds, starting from the works by P. Sabatier and V.N. Ipatieff. Particular attention is paid to the results of synthesis and investigation of hydrogenation metal catalysts based on Ni, Pd and Pt since they are significant for practical application. Modern trends and promising lines of investigation in the field of hydrogenation processes and catalysts are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Without diminishing the importance of this study by P. Sabatier, we note, however, that almost at the same time G. Lunge and J. Akunoff obtained cyclohexane by passing benzene vapor in a mixture with hydrogen over platinum or palladium black [20].

  2. As of 2011, the proportion of hydrogenation reactions performed using Pd/C catalysts was 75% [106].

  3. Note also that in 1908 the Russian chemist E.I. Orlov used a coke-supported nickel-palladium catalyst for conversion of synthesis gas to ethylene [110]. In 1914, G. Verona-Rinati used a coke-supported palladium catalyst for hydrogenation of oils, but he did not provide any data on this catalyst [111].

  4. For reference, in 1910 the price of palladium was $54 per troy ounce [112], which was more than 2.5 times higher than the price of gold.

  5. In fact, Lindlar’s approach to the partial poisoning of a palladium catalyst in order to forcibly limit the reaction was not new and resembles, in particular, the procedure proposed in 1921 by K.W. Rosenmund for a Pd/BaSO4 catalyst intentionally poisoned with sulfur-containing compounds to increase selectivity in the hydrogenations of acyl chlorides to aldehydes [130].

REFERENCES

  1. Jackson, S.D., in Hydrogenation: Catalysts and Processes, Jackson, S.D., Ed., Berlin: Walter de Gruyter, 2018.https://doi.org/10.1515/9783110545210-201

    Book  Google Scholar 

  2. Nishimura, S., Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, New York: Wiley, 2001.

    Google Scholar 

  3. Sheldon, R.A. and van Bekkum, H., Fine Chemicals through Heterogeneous Catalysis, Weinheim: Wiley-VCH, 2001.https://doi.org/10.1002/9783527612963

    Book  Google Scholar 

  4. Vilé, G., Albani, D., Almora-Barrios, N., López, N., and Pérez-Ramírez, J., ChemCatChem, 2016, vol. 8, no. 1, pp. 21–33.https://doi.org/10.1002/cctc.201501269

    Article  CAS  Google Scholar 

  5. Kuznetsov, V.I., Razvitie ucheniya o katalize (Development of the Doctrine of Catalysis), Moscow: Nauka, 1964.

  6. Kuznetsov, V.I., Razvitie kataliticheskogo organicheskogo sinteza (Development of Catalytic Organic Synthesis), Moscow: Nauka, 1964.

  7. Debus, H., Ann. Chem. Pharm., 1863, vol. 128, no. 2, pp. 200–215.https://doi.org/10.1002/jlac.18631280211

    Article  Google Scholar 

  8. de Wilde, P., Bull. Acad. R. Belg., 1866, vol. 21, no. 1, pp. 31–32.

    Google Scholar 

  9. de Wilde, P., Bull. Acad. R. Belg., 1874, vol. 37, no. 1, pp. 73–76.

    Google Scholar 

  10. Kolbe, H., J. Prakt. Chem., 1871, vol. 4, no. 9, pp. 418–419.

    Google Scholar 

  11. Saytzeff, M., J. Prakt. Chem., 1873, vol. 6, no. 3, pp. 128–135.https://doi.org/10.1002/prac.18730060111

    Article  Google Scholar 

  12. Ladenburg, A., Lectures on the History of the Development of Chemistry since the Time of Lavoisier, Edinburg: The Alembic Club, 1911.

    Google Scholar 

  13. Mittasch, A., Kurze geschichte der katalyse in Praxis und Theorie, Berlin: Springer, 1939. https://doi.org/10.1007/978-3-642-91974-9

  14. Zaitseva, E.A., in Iz istorii kataliza: sobytiya, lyudi, shkoly (From the History of Catalysis: Events, Personas, and Schools), Kal’ner, V.D, Eds., Moscow: Kalvis, 2005, pp. 33–100.

  15. Zecchina, A. and Califano, S., The Development of Catalysis. A History of Key Processes and Personas in Catalytic Science and Technology, Hoboken: Wiley, 2017. https://doi.org/10.1002/9781119181286

  16. Lloyd, L., Handbook of Industrial Catalysts, New York: Springer Science + Business Media, 2011.https://doi.org/10.1007/978-0-387-49962-8

  17. Sabatier, P. and Senderens, J.-B., C. R. Hebd. Seances Acad. Sci., 1897, vol. 124, no. 24, pp. 1358–1361.

    Google Scholar 

  18. Sabatier, P., Ber. Dtsch. Chem. Ges., 1911, vol. 44, no. 3, pp. 1984–2001.https://doi.org/10.1002/cber.19110440303

    Article  Google Scholar 

  19. Sabatier, P. and Senderens, J.-B., C. R. Hebd. Seances Acad. Sci., 1901, vol. 132, no. 9, pp. 566–568.

  20. Lunge, G. and Akunoff, J., Z. Anorg. Chem., 1900, vol. 24, pp. 191–202.https://doi.org/10.1002/zaac.19000240113

    Article  Google Scholar 

  21. Sabatier, P. and Senderens, J.-B., Ann. Chim. Phys. Ser. 8, 1905, vol. 4, pp. 319–488.

    Google Scholar 

  22. Sabatier, P. and Mailhe, A., Ann. Chim. Phys. Ser. 8, 1909, vol. 16, pp. 70–107.

    CAS  Google Scholar 

  23. Sabatier, P., La catalyse en chimie organique, Paris: Librairie Polytechnique, Ch. Béranger, 1920.

  24. Les prix Nobel en 1912, Hasselberg, K.B., Pettersson, S.O., Mörner, K.A.H., and Santesson, C.G., Eds., Stockholm: P. A. Norstedt & Söner, 1913.

    Google Scholar 

  25. Butlerow, A., Z. Chem. Pharm., 1861, vol. 4, pp. 549‒560.

  26. Ipatieff, V.N., Catalytic Reactions at High Pressures and Temperatures, New York: The Macmillan Company, 1936.

  27. Ipatiew, Wl., Ber. Dtsch. Chem. Ges., 1907, vol. 40, no. 2, pp. 1270‒1281.https://doi.org/10.1002/cber.19070400208

  28. Ipatiew, Wl., Ber. Dtsch. Chem. Ges., 1912, vol. 45, no. 3, pp. 3218‒3226.https://doi.org/10.1002/cber.19120450359

  29. Ipatiew, Wl., Ber. Dtsch. Chem. Ges., 1909, vol. 42, no. 2, pp. 2092‒2096.https://doi.org/10.1002/cber.19090420293

  30. Bredig, G., Anorganische Fermente. Darstellung kolloidaler Metalle auf elektrischem Wege und Untersuchung ihrer katalytischen Eigenschaften, Leipzig: Wilhelm Engelmann, 1901.

    Google Scholar 

  31. Paal, C. and Amberger, C., Ber. Dtsch. Chem. Ges., 1904, vol. 37, no. 1, pp. 124–139. https://doi.org/10.1002/cber.19040370123

    Article  Google Scholar 

  32. Skita, A., Ber. Dtsch. Chem. Ges., 1909, vol. 42, no. 2, pp. 1627–1636. https://doi.org/10.1002/cber.19090420230

    Article  CAS  Google Scholar 

  33. Skita, A., Über katalytische Reduktionen organischer Verbindungen, Stuttgart: Ferdinand Enke, 1912.

    Google Scholar 

  34. Paal, C. and Gerum, J., Ber. Dtsch. Chem. Ges., 1907, vol. 40, no. 2, pp. 2209–2220. https://doi.org/10.1002/cber.190704002140

    Article  CAS  Google Scholar 

  35. Paal, C. and Gerum, J., Ber. Dtsch. Chem. Ges., 1908, vol. 41, no. 2, pp. 2273–2282. https://doi.org/10.1002/cber.190804102132

    Article  CAS  Google Scholar 

  36. Fokin, S., Z. Elektrochem., 1906, vol. 12, no. 41, pp. 749‒762.https://doi.org/10.1002/bbpc.19060124102

  37. Fokin, S., Zh. Russ. Fiz.-Khim. O-va, 1907, vol. 39, pp. 607–609.

    Google Scholar 

  38. Fokin, S., Z. Angew. Chem., 1909, vol. 22, pp. 1451–1459, 1492‒1502.https://doi.org/10.1002/ange.19090222905

  39. Willstätter, R. and Mayer, E.W., Ber. Dtsch. Chem. Ges., 1908, vol. 41, no. 1, pp. 1475–1480. https://doi.org/10.1002/cber.190804101268

    Article  Google Scholar 

  40. Willstätter, R. and Mayer, E.W., Ber. Dtsch. Chem. Ges., 1908, vol. 41, no. 2, pp. 2199–2203. https://doi.org/10.1002/cber.190804102119

    Article  Google Scholar 

  41. Willstätter, R. and Hatt, D., Ber. Dtsch. Chem. Ges., 1912, vol. 45, no. 2, pp. 1471–1481. https://doi.org/10.1002/cber.19120450207

    Article  Google Scholar 

  42. Willstätter, R. and Jaquet, D., Ber. Dtsch. Chem. Ges., 1918, vol. 51, no. 1, pp. 767–779. https://doi.org/10.1002/cber.19180510191

    Article  Google Scholar 

  43. Vavon, G., Rev. Gen. Sci. Pures Appl., 1924, vol. 35, nos. 17–18, pp. 505–517.

  44. Vavon, G., Bull. Soc. Chim. Fr., 1927, vol. 41, pp. 1253–1290.

    CAS  Google Scholar 

  45. Meerwein, H., in Die Methoden der organischen Chemie, Houben, J., Ed., Leipzig: Georg Thieme, 1923, vol. 2, pp. 388–475.

    Google Scholar 

  46. Vrabély, V., Magy. Chem. Foly., 1929, vol. 35, pp. 28–32.

    Google Scholar 

  47. Bauer, R. and Wieland, H., Reduktion und Hydrierung organischer Verbindungen, Leipzig: Otto Spamer, 1918. https://doi.org/10.1007/978-3-662-33872-8

  48. Maxted, E.B., Catalytic Hydrogenation and Reduction, Philadelphia: Blakiston’s Son & Co, 1919.

    Google Scholar 

  49. Maxted, E.B., Catalysis and Its Industrial Application, London: J. & A. Churchill, 1933.

    Google Scholar 

  50. Chelintsev, V.V., Kontaktno-kataliticheskie protsessy v oblasti organicheskikh soedinenii i ikh prilozhenie v tekhnike (dostizheniya i uspekhi za poslednie 25 let) (Catalytic Contact Processes in the Field of Organic Compounds and Their Application in Engineering (Advances for the Recent 25 Years)), Leningrad: NKhTI, 1927.

  51. Ellis, C., Hydrogenation of Organic Substances Including Fats and Fuels, New York: D. Van Nostrand, 1930.

    Google Scholar 

  52. Pollitt, A.A., Chem. Age (London), 1920, vol. 3, no. 62, pp. 200–201.

    CAS  Google Scholar 

  53. Mittasch, A. and Theis, E., Von Davy und Döbereiner bis Deacon, ein halbes Jahrhundert Grenzflächenkatalyse, Berlin: Verlag Chemie, 1932.

  54. Winkler, C., Dinglers Polytech. J., 1875, vol. 218, no. 2, pp. 128–139.

    Google Scholar 

  55. Voorhees, V. and Adams, R., J. Am. Chem. Soc., 1922, vol. 44, no. 6, pp. 1397–1405. https://doi.org/10.1021/ja01427a021

    Article  CAS  Google Scholar 

  56. Zelinsky, N. and Kommarewsky, W., Ber. Dtsch. Chem. Ges., 1924, vol. 57, no. 4, pp. 667–669. https://doi.org/10.1002/cber.19240570414

    Article  Google Scholar 

  57. US Patent 1628190, 1927.

  58. USSR Inventor’s Certificate no. 23523, 1931.

  59. Adkins, H. and Connor, R., J. Am. Chem. Soc., 1931, vol. 53, no. 3, pp. 1091–1095. https://doi.org/10.1021/ja01354a041

    Article  CAS  Google Scholar 

  60. AT Patent 168606, 1951.

  61. Urushibara, Y., Bull. Chem. Soc. Jpn., 1952, vol. 25, no. 4, p. 280. https://doi.org/10.1246/bcsj.25.280

    Article  CAS  Google Scholar 

  62. Nishimura, S., Bull. Chem. Soc. Jpn., 1960, vol. 33, no. 4, pp. 566–567. https://doi.org/10.1246/bcsj.33.566

    Article  CAS  Google Scholar 

  63. GB Patent 30282, 1910.

  64. Adkins, H., Reactions of Hydrogen with Organic Compounds over Copper–Chromium Oxide and Nickel Catalysts, Madison: The University of Wisconsin Press, 1937.

    Google Scholar 

  65. Van Eijk van Voorthuijsen, J.J.B. and Franzen, P., Recl. Trav. Chim. Pays-Bas, 1951, vol. 70, no. 9, pp. 793–812. https://doi.org/10.1002/recl.19510700906

    Article  Google Scholar 

  66. Schuit, G.C.A. and van Reijen, L.L., Adv. Catal., 1958, vol. 10, pp. 242–317. https://doi.org/10.1016/S0360-0564(08)60409-5

    Article  CAS  Google Scholar 

  67. Coenen, J.W.E. and Wells, P.B., Stud. Surf. Sci. Catal., 1983, vol. 16, pp. 801–814. https://doi.org/10.1016/S0167-2991(09)60069-0

    Article  Google Scholar 

  68. Stiles, A.B., in Applied Industrial Catalysis, Leach, B.E., Ed., New York: Academic Press, 1983, vol. 2, pp. 109–136.

    Google Scholar 

  69. Rase, H.F., Handbook of Commercial Catalysts: Heterogeneous Catalysts, Boca Raton, FL: CRC Press, 2000.https://doi.org/10.1201/b21367

    Book  Google Scholar 

  70. Thomas A., Matthäus B., and Fiebig H.-J., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2015. https://doi.org/10.1002/14356007.a10_173.pub2.

  71. DE Patent 141029, 1902.

  72. GB Patent 1515, 1903.

  73. Normann, W., Fette Seifen, 1938, vol. 45, no. 1, pp. 73–76. https://doi.org/10.1002/lipi.19380450119

    Article  CAS  Google Scholar 

  74. Klyuchevich, A.S., Iz istorii material’noi kul’tury i narodnogo khozyaistva Rossii. Moyushchie sredstva, pererabotka zhirov s drevneishikh vremen po 1917 god (From the History of the Marerial Culture and National Economy of Russia. Detergents and Fat Processing since Ancient Times to 1917), Kazan: Izd. Kazan. Univ., 1971.

  75. Franz, Kunststoffe, 1920, vol. 10, no. 20, pp. 185–187.

  76. Schroeter, G., Umschau, 1921, vol. 25, no. 17, pp. 213–215.

    Google Scholar 

  77. Schrauth, W., Z. Dtsch. Öl-Fett-Ind., 1921, vol. 41, no. 9, pp. 129–132.

  78. Von Gwinner, H., Drug Chem. Mark., 1925, vol. 16, no. 11, p. 795.

    Google Scholar 

  79. GB Patent 2306, 1914.

  80. Ipatiew, Wl., Ber. Dtsch. Chem. Ges., 1912, vol. 45, no. 3, pp. 3205‒3218.https://doi.org/10.1002/cber.19120450358

  81. Dzis’ko, V.A., Karnaukhov, A.P., and Tarasova, D.V., Fiziko-khimicheskie osnovy sinteza okisnykh katalizatorov (Physicochemical Principles for the Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.

  82. Puxley, D.C., Kitchener, I.J., Komodromos, C., and Parkyns, N.D., Stud. Surf. Sci. Catal., 1983, vol. 16, pp. 237–271. https://doi.org/10.1016/S0167-2991(09)60025-2

    Article  CAS  Google Scholar 

  83. Lok, M., in Synthesis of Solid Catalysts, de Jong, K.P., Ed., Weinheim: Wiley-VCH, 2009, pp. 135–151. https://doi.org/10.1002/9783527626854.ch7

  84. Weber, S., Abel, K.L., Zimmermann, R.T., Huang, X., Bremer, J., Rihko-Struckmann, L.K., Batey, D., Cipiccia, S., Titus, J., Poppitz, D., Kübel, C., Sundmacher, K., Gläser, R., and Sheppard, T.L., Catalysts, 2020, vol. 10, no. 12. https://doi.org/10.3390/catal10121471

  85. He, L., Ren, Y., Yue, B., Tsang, S.C.E., and He, H., Processes, 2021, vol. 9, no. 4. https://doi.org/10.3390/pr9040706

  86. Navalikhina, M.D. and Krylov, O.V., Russ. Chem. Rev., 1998, vol. 67, no. 7, pp. 587–616. https://doi.org/10.1070/RC1998v067n07ABEH000413

    Article  Google Scholar 

  87. US Patent 1563587, 1925.

  88. Bag, A., Egupov, T., and Volokitin, D., Prom-st’ Org. Khim., 1936, vol. 2, nos. 15–16, pp. 141–144.

  89. Lieber, E. and Morritz, F.L., Adv. Catal., 1953, vol. 5, pp. 417–455. https://doi.org/10.1016/S0360-0564(08)60647-1

    Article  CAS  Google Scholar 

  90. Bogoslovskii, B.M. and Kazakova, Z.S., Skeletnye katalizatory, ikh svoistva i primenenie v organicheskoi khimii (Skeletal Catalysts and Their Properties and Application in Organic Chemistry), Moscow: Goskhimizdat, 1957.

  91. Gil’debrand, E.I. and Fasman, A.B., Skeletnye katalizatory v organicheskoi khimii (Skeletal Catalysts in Organic Chemistry), Alma-Ata: Nauka, 1982.

  92. Butovskii, M.E. and Burovik, D.A., Kataliticheskie protsessy s uchastiem molekulyarnogo vodoroda v khimiko-farmatsevticheskoi i vitaminnoi promyshlennosti (Catalytic Processes with Participation of Molecular Hydrogen in Chemical Pharmaceutical and Vitamin Production Industry), Rubtsovsk: Rubtsovsk. Ind. Inst., 2004.

  93. Schmidt, S.R., in Hydrogenation: Catalysts and Processes, Jackson, S.D., Ed., Berlin: Walter de Gruyter, 2018, pp. 19–42. https://doi.org/10.1515/9783110545210-002

  94. Campbell, M.L., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2012. https://doi.org/10.1002/14356007.a08_209.pub2

  95. Klabunde, J., Bischoff, C., and Papa, A.J., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2018. https://doi.org/10.1002/14356007.a22_173.pub3

  96. Urushibara, Y., Ann. N. Y. Acad. Sci., 1967, vol. 145, no. 1, pp. 52–57. https://doi.org/10.1111/j.1749-6632.1967.tb52998.x

    Article  CAS  Google Scholar 

  97. Hata, K., Motoyama, I., and Sakai, K., Org. Prep. Proced. Int., 1972, vol. 4, no. 4, pp. 179–209. https://doi.org/10.1080/00304947209355544

    Article  CAS  Google Scholar 

  98. Hata, K., New Hydrogenating Catalysts: Urushibara Catalysts, New York: Wiley, 1972.

    Google Scholar 

  99. Loew, O., Ber. Dtsch. Chem. Ges., 1890, vol. 23, no. 1, pp. 289–290. https://doi.org/10.1002/cber.18900230149

    Article  Google Scholar 

  100. Willstätter, R. and Waldschmidt-Leitz, E., Ber. Dtsch. Chem. Ges., 1921, vol. 54, no. 1, pp. 113–138. https://doi.org/10.1002/cber.19210540112

    Article  Google Scholar 

  101. Zelinskii, N.D., Izbrannye trudy (Selected Papers), Moscow: Nauka, 1968.

  102. Sokol’skii, D.V., Hydrogenation in Solution, Jerusalem: Israel Program for Scientific Translations, 1964.

  103. Omarkulov, T.O. and Sokol’skii, D.V., Gidrirovanie pod davleniem vodoroda (Hydrogenation under Hydrogen Pressure), Alma-Ata: Nauka, 1986.

  104. Zakumbaeva, G.D., Vzaimodeistvie organicheskikh soedinenii s poverkhnost’yu metallov VIII gruppy (Interactions of Organic Compounds with the Surface of Group VIII Metals), Alma-Ata: Nauka, 1978.

  105. Sokol’skii, D.V., in Mekhanizm kataliza. Chast’ 1 (Catalysis Mechanism. Part 1), Boreskov, G.K. and Andrushkevich, T.V, Eds., Novosibirsk: Nauka, 1984, pp. 87–101.

  106. Oosthuizen, R.S. and Nyamori, V.O., Platinum Met. Rev., 2011, vol. 55, no. 3, pp. 154–169. https://doi.org/10.1595/147106711X577274

    Article  CAS  Google Scholar 

  107. Thiele, E., Über vollständig hydrierte Fette. Über Phenyl-1-äthanol-1-amin-2 und verwandte Verbindungen, Göttingen: Druck der Univ. Buchdruckerei von E. A. Huth, 1914.

    Google Scholar 

  108. Mannich, C. and Thiele, E., Arch. Pharm., 1915, vol. 253, pp. 181–195. https://doi.org/10.1002/ardp.19152530115

    Article  CAS  Google Scholar 

  109. Mannich, C. and Thiele, E., Ber. Dtsch. Pharm. Ges., 1916, vol. 26, no. 2, pp. 36–48.

    CAS  Google Scholar 

  110. Orlow, G., Ber. Dtsch. Chem. Ges., 1909, vol. 42, no. 1, pp. 893‒895.https://doi.org/10.1002/cber.190904201144

  111. Verona-Rinati, G., Ann. Chim. Appl., 1914, vol. 2, nos. 3–4, pp. 99–105.

  112. Lindgren, W., Min. Sci., 1912, vol. 65, no. 1667, p. 26.

  113. Liu, X. and Astruc, D., Adv. Synth. Catal., 2018, vol. 360, no. 18, pp. 3426–3459. https://doi.org/10.1002/adsc.201800343

    Article  CAS  Google Scholar 

  114. Van Vaerenbergh, B., Lauwaert, J., Vermeir, P., De Clercq, J., and Thybaut, J.W., Adv. Catal., 2019, vol. 65, pp. 1–120. https://doi.org/10.1016/bs.acat.2019.10.001

    Article  CAS  Google Scholar 

  115. Serp, P. and Machado, B., Nanostructured Carbon Materials for Catalysis, Cambridge: The Royal Society of Chemistry, 2015.https://doi.org/10.1039/9781782622567

    Book  Google Scholar 

  116. Gerber, I.C. and Serp, P., Chem. Rev., 2020, vol. 120, no. 2, pp. 1250–1349. https://doi.org/10.1021/acs.chemrev.9b00209

    Article  CAS  PubMed  Google Scholar 

  117. Sabalitschka, Th. and Moses, W., Ber. Dtsch. Chem. Ges., 1927, vol. 60, no. 3, pp. 786–804. https://doi.org/10.1002/cber.19270600333

    Article  Google Scholar 

  118. Lisitsyn, A.S., Parmon, V.N., Duplyakin, V.K., and Likholobov, V.A., Ross. Khim. Zh., 2006, vol. 50, no. 4, pp. 140–153.

    Google Scholar 

  119. Toebes, M.L., van Dillen, J.A., and de Jong, K.P., J. Mol. Catal. A: Chem., 2001, vol. 173, nos. 1–2, pp. 75–98. https://doi.org/10.1016/S1381-1169(01)00146-7

  120. Lin, S.D., Hsu, Y.-H., Jen, P.-H., and Lee, J.-F., J. Mol. Catal. A: Chem., 2005, vol. 238, nos. 1–2, pp. 88–95. https://doi.org/10.1016/j.molcata.2005.05.004

  121. Tengco, J.M.M., Lugo-José, Y.K., Monnier, J.R., and Regalbuto, J.R., Catal. Today, 2015, vol. 246, pp. 9–14. https://doi.org/10.1016/j.cattod.2014.07.006

    Article  CAS  Google Scholar 

  122. Zhang, B. and Su, D.S., ChemCatChem, 2015, vol. 7, no. 22, pp. 3639–3645. https://doi.org/10.1002/cctc.201500666

    Article  CAS  Google Scholar 

  123. Musser, M.T., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2012. https://doi.org/10.1002/14356007.a08_217.pub2

  124. Kahl, T., Schröder, K.-W., Lawrence, F.R., Marshall, W.J., Höke, H., and Jäckh, R., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2012. https://doi.org/10.1002/14356007.a02_303.pub2

  125. Tinge, J., Groothaert, M., op het Veld, H., Ritz, J., Fuchs, H., Kieczka, H., and Moran, W.C. in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2018. https://doi.org/10.1002/14356007.a05_031.pub3

  126. Vardanyan, R. and Hruby, V., Synthesis of Best-Seller Drugs, Amsterdam: Elsevier, 2016.https://doi.org/10.1016/C2012-0-07004-4

    Book  Google Scholar 

  127. Surburg, H. and Panten, J., Common Fragrance and Flavor Materials. Preparation, Properties and Uses, Weinheim: Wiley-VCH, 2016.https://doi.org/10.1002/9783527693153

    Book  Google Scholar 

  128. Lindlar, H., Helv. Chim. Acta, 1952, vol. 35, no. 2, pp. 446–450. https://doi.org/10.1002/hlca.19520350205

    Article  CAS  Google Scholar 

  129. Lindlar, H. and Dubuis, R., Org. Synth., 1966, vol. 46, pp. 89–92. https://doi.org/10.15227/orgsyn.046.0089

    Article  CAS  Google Scholar 

  130. Rosenmund, K.W. and Zetzsche, F., Ber. Dtsch. Chem. Ges., 1921, vol. 54, no. 3, pp. 425–437. https://doi.org/10.1002/cber.19210540310

    Article  Google Scholar 

  131. Schlögl, R., Noack, K., Zbinden, H., and Reller, A., Helv. Chim. Acta, 1987, vol. 70, no. 3, pp. 627–679. https://doi.org/10.1002/hlca.19870700317

    Article  Google Scholar 

  132. Stachurski, J. and Thomas, J.M., Catal. Lett., 1988, vol. 1, nos. 1–3, pp. 67–72. https://doi.org/10.1007/BF00765356

  133. García-Mota, M., Gómez-Díaz, J., Novell-Leruth, G., Vargas-Fuentes, C., Bellarosa, L., Bridier, B., Pérez-Ramírez, J., and López, N., Theor. Chem. Acc., 2011, vol. 128, nos. 4–6, pp. 663–673. https://doi.org/10.1007/s00214-010-0800-0

  134. Bonrath, W., Medlock, J., and Müller, M.-A., in Catalytic Reduction in Organic Synthesis 1, de Vries, J.G., Ed., Stuttgart: Georg Thieme, 2018, pp. 195–228. https://doi.org/10.1055/sos-SD-226-00098

  135. Roessler, F., Chimia, 1996, vol. 50, no. 3, pp. 106–109.

    Article  CAS  Google Scholar 

  136. Bonrath, W., Medlock, J., Schütz, J., Wüstenberg, B., and Netscher, T., in Hydrogenation, Karamé, I., Ed., Rijeka: InTech, 2012, pp. 69–90. https://doi.org/10.5772/48751

  137. Hunt, L.B., Platinum Met. Rev., 1962, vol. 6, no. 4, pp. 150–152.

    Google Scholar 

  138. Wöhler, L., Ber. Dtsch. Chem. Ges., 1903, vol. 36, no. 3, pp. 3475–3502. https://doi.org/10.1002/cber.190303603137

    Article  Google Scholar 

  139. Adams, R. and Shriner, R.L., J. Am. Chem. Soc., 1923, vol. 45, no. 9, pp. 2171–2179. https://doi.org/10.1021/ja01662a022

    Article  CAS  Google Scholar 

  140. Adams, R., Voorhees, V., and Shriner, R.L., Org. Synth., 1928, vol. 8, pp. 92–99. https://doi.org/10.15227/orgsyn.008.0092

    Article  CAS  Google Scholar 

  141. John, D.H.O., J. Soc. Chem. Ind., London, Trans. Commun., 1944, vol. 63, no. 8, p. 256. https://doi.org/10.1002/jctb.5000630801

    Article  CAS  Google Scholar 

  142. Cahen, D. and Ibers, J.A., J. Catal., 1973, vol. 31, no. 3, pp. 369–371. https://doi.org/10.1016/0021-9517(73)90306-0

    Article  CAS  Google Scholar 

  143. Nishimura, S., Onoda, T., and Nakamura, A., Bull. Chem. Soc. Jpn., 1960, vol. 33, no. 10, pp. 1356–1359. https://doi.org/10.1246/bcsj.33.1356

    Article  CAS  Google Scholar 

  144. Nishimura, S., Bull. Chem. Soc. Jpn., 1961, vol. 34, no. 1, pp. 32–36. https://doi.org/10.1246/bcsj.34.32

    Article  CAS  Google Scholar 

  145. Nishimura, S., Bull. Chem. Soc. Jpn., 1961, vol. 34, no. 10, pp. 1544–1545. https://doi.org/10.1246/bcsj.34.1544

    Article  CAS  Google Scholar 

  146. Balasubramanian, M., in Pyridines: From Lab to Production, Scriven, E.F.V., Ed., Oxford: Academic Press, 2013, pp. 413–458. https://doi.org/10.1016/B978-0-12-385235-9.00005-9

  147. Augustine, R.L., Catal. Lett., 2016, vol. 146, no. 12, pp. 2393–2416. https://doi.org/10.1007/s10562-016-1865-8

    Article  CAS  Google Scholar 

  148. Augustine, R.L., Catalytic Hydrogenation: Techniques and Applications in Organic Synthesis, New York: Marcel Dekker, 1965.

    Google Scholar 

  149. Freifelder, M., Catalytic Hydrogenation in Organic Synthesis: Procedures and Commentary, New York: Wiley, 1978.

    Google Scholar 

  150. Hudlický, M., Reductions in Organic Chemistry, Chichester: Ellis Horwood, 1984.https://doi.org/10.1016/C2012-0-01647-X

    Book  Google Scholar 

  151. Rylander, P., Catalytic Hydrogenation in Organic Synthesis, San Diego, TX: Academic Press, 1979. https://doi.org/10.1016/C2012-0-01647-X

    Google Scholar 

  152. Rylander, P.N., Hydrogenation Methods, London: Academic Press, 1985.

    Google Scholar 

  153. Ellert, O.G., Tsodikov, M.V., Nikolaev, S.A., and Novotortsev, V.M., Russ. Chem. Rev., 2014, vol. 83, no. 8, pp. 718–732. https://doi.org/10.1070/RC2014v083n08ABEH004432

    Article  CAS  Google Scholar 

  154. Nowicka, E. and Sankar, M., J. Zhejiang Univ., Sci., A, 2018, vol. 19, no. 1, pp. 5–20. https://doi.org/10.1631/jzus.A1700257

    Article  CAS  Google Scholar 

  155. Iqbal, M., Kaneti, Y.V., Kim, J., Yuliarto, B., Kang, Y.-M., Bando, Y., Sugahara, Y., and Yamauchi, Y., Small, 2019, vol. 15, no. 6, 1804378. https://doi.org/10.1002/smll.201804378

  156. Mitchell, S., Qin, R., Zheng, N., and Pérez-Ramírez, J., Nat. Nanotechnol., 2021, vol. 16, no. 2, pp. 129–139. https://doi.org/10.1038/s41565-020-00799-8

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to librarian E. G. Karnaukhova for her help in searching some hard-to-find sources.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011490008-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. M. Mironenko or A. V. Lavrenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironenko, R.M., Lavrenov, A.V. An Essay on the History of Catalytic Hydrogenation of Organic Compounds. From P. Sabatier and V. N. Ipatieff to the Present Days. Catal. Ind. 14, 131–144 (2022). https://doi.org/10.1134/S2070050422010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422010056

Keywords:

Navigation