Log in

Kinetic Characteristics of Urotropine Gasification in Nitrogen and Carbon Dioxide Flows

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Based on the data of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the kinetic characteristics of the thermal decomposition of urotropine in flows of N2 and CO2 are determined. The sample heating rates are 20, 60, and 90 K/min. The values of the kinetic rate constants of the decomposition of urotropine are determined by the Kissinger method. During gasification in nitrogen, the activation energy of the thermal decomposition of urotropine increases from 106 to 139 kJ/mol under conditions of an increase in the degree of conversion of the substance. The preexponential value also increases from 0.35 × 109 up to 145 × 109 s–1. The decomposition of urotropine proceeds by an exothermic reaction with a heat of 368, 339, and 275 kJ/kg for heating rates of 20, 60, and 90 K/min, respectively. During gasification in carbon dioxide, the activation energy of the thermal decomposition of urotropine first increases from 110 to 132 kJ/mol as the degree of conversion increases, and then decreases to 120 kJ/mol. The heat of decomposition of urotropine in a flow of CO2 is 382, 327, and 303 kJ/kg for heating rates of 20, 60, and 90 K/min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. H. Stepankova, M. Swiatkowski, R. Kruszynski, et al., Int. J. Nanomed. 16, 4431 (2021). https://doi.org/10.2147/IJN.S304902

    Article  Google Scholar 

  2. K. W. Tseng, Y. P. Hsiao, C. P. Jen, et al., Sensors 20, 2455 (2020). https://doi.org/10.3390/s20092455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. I. A. Vitkalova, A. S. Torlova, and E. S. Pikalov, Nauch. Oboz. Tekh. Nauki, No. 2, 15 (2017).

    Google Scholar 

  4. A. O. Tret’yakov, Khim. Prom-st. 82 (11), 551 (2005).

    Google Scholar 

  5. S. A. Sapchenko, M. O. Barsukova, T. V. Nokhrina, et al., Russ. Chem. Bull. 69 (3), 461 (2020). https://doi.org/10.1007/s11172-020-2785-8

  6. V. V. Vorob’ev, Agrarnaya Rossiya, No. 2, 2 (2010).

    Google Scholar 

  7. Q. **e, L. Zhang, X. Yu, et al., Propell. Explos. Pyrotech. 45 (12), 1859 (2020). https://doi.org/10.1002/prep.202000087

    Article  CAS  Google Scholar 

  8. H. Turhan, T. Atalar, N. Erdem, et al., Propell. Explos. Pyrotech. 38 (5), 651 (2013). https://doi.org/10.1002/prep.201200162

    Article  CAS  Google Scholar 

  9. M. V. Salganskaya, A. Yu. Zaichenko, D. N. Podlesniy, et al., Acta Astronaut. 204, 682–685 (2023).https://doi.org/10.1016/j.actaastro.2022.08.039

  10. V. N. Avrashkov, E. S. Metelkina, and D. V. Meshcheryakov, Combust. Explos. Shock Waves. 46 (4), 400 (2010). https://doi.org/10.1007/s10573-010-0054-0

  11. R. K. Seleznev, Fiz.-Khim. Kinetika Gaz. Din. 15 (3), 4 (2014).

    Google Scholar 

  12. E. A. Salgansky and N. A. Lutsenko, Russ. J. Phys. Chem. B 16 (2), 278 (2022). https://doi.org/10.1134/S1990793122020117

  13. M. V. Belobrovina and N. S. Senyushkin, Aktual’n. Probl. Aviats. Kosmonavt. 1 (9), 47 (2013).

    Google Scholar 

  14. E. A. Salgansky and N. A. Lutsenko, Aerosp. Sci. Technol. 109, 106420 (2021). https://doi.org/10.1016/j.ast.2020.106420

    Article  Google Scholar 

  15. S. M. Frolov and V. S. Ivanov, Russ. J. Phys. Chem. B 15 (2), 318 (2021). https://doi.org/10.1134/S1990793121020184

  16. V. N. Mikhalkin, S. I. Sumskoy, A. M. Tereza, et al., Russ. J. Phys. Chem. B. 16 (3), 318 (2022). https://doi.org/ 10.31857/S0207401X2208009X

  17. B. P. Yur’ev and V. A. Dudko, Russ. J. Phys. Chem. B. 16 (1), 31 (2022). https://doi.org/10.1134/S1990793122010171

  18. A. M. Tereza, S. P. Medvedev, and V. N. Smirnov, Acta Astronaut. 181, 612 (2021). https://doi.org/10.1016/j.actaastro.2020.09.048

    Article  CAS  Google Scholar 

  19. V. M. Gol’dberg, S. M. Lomakin, A. V. Todinova, et al., Russ. Chem. Bull. 59 (4), 806 (2010). https://doi.org/10.1007/s11172-010-0165-5

  20. M. Sieradzka, A. Mlonka-Medrala, and A. Magdziarz, Fuel 330, 125566 (2022). https://doi.org/10.1016/j.fuel.2022.125566

    Article  CAS  Google Scholar 

  21. A. V. Zhuikov and D. O. Glushkov, Solid Fuel Chem. 56 (5), 353 (2022). https://doi.org/10.31857/S0023117722050115

  22. G. M. Nazin, V. V. Dubikhin, A. I. Kazakov, et al., Russ. J. Phys. Chem. B. 16 (1), 72 (2022). https://doi.org/10.1134/S1990793122010122

  23. H. Shen, H. Qiao, and H. Zhang, Chem. Eng. J. 450, 137905 (2022). https://doi.org/10.1016/j.cej.2022.137905

    Article  CAS  Google Scholar 

  24. C. F. Ramirez-Gutierrez, I. A. Lujan-Cabrera, L. D. Valencia-Molina, et al., Mater. Today Commun. 33, 104188 (2022). https://doi.org/10.1016/j.mtcomm.2022.104188

    Article  CAS  Google Scholar 

  25. M. V. Salganskaya, S. V. Glazov, E. A. Salganskii, et al., Russ. J. Phys. Chem. B 2, 71–76 (2008). https://doi.org/10.1134/S1990793108010119

  26. O. S. Rabinovich, A. I. Malinouski, V. M. Kislov, et al., Combust. Theor. Model 20 (5), 877 (2016). https://doi.org/10.1080/13647830.2016.1190034

    Article  CAS  Google Scholar 

  27. K. Miura and T. Maki, Energy Fuels 12 (5), 864 (1998). https://doi.org/10.1021/ef970212q

    Article  CAS  Google Scholar 

  28. J. Zhang, Z. Wang, R. Zhao, et al., Energies 13, 3313 (2020). https://doi.org/10.3390/en13133313

    Article  CAS  Google Scholar 

  29. J. Zhang, T. Chen, J. Wu, et al., Roy. Soc. Chem. Adv. 4, 17513 (2014). https://doi.org/10.1039/c4ra01445f

    Article  CAS  Google Scholar 

  30. S. Vyazovkin, Molecules 25, 2813 (2020). https://doi.org/10.3390/molecules25122813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. G. Rao, W. Feng, J. Zhang, et al., J. Therm. Anal. Calorim. 135 (4), 2447 (2019). https://doi.org/10.1007/s10973-018-7359-8

    Article  CAS  Google Scholar 

  32. H. L. Peng, L. P. Chen, G. B. Lu, et al., Hanneng Cailiao/Chin. J. Energ. Mater. 24 (5), 497 (2016). https://doi.org/10.11943/j.issn.1006-9941.2016.05.012

    Article  CAS  Google Scholar 

  33. E. A. Salganskii, V. P. Fursov, S. V. Glazov, et al., Combust. Explos. Shock Waves. 39 (1), 37 (2003). https://doi.org/10.1023/A:1022193117840

Download references

Funding

The study was carried out on the topic of a state assignment (registration number АААА-А19-119100800130-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Salgansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgansky, E.A., Glushkov, D.O. & Salganskaya, M.V. Kinetic Characteristics of Urotropine Gasification in Nitrogen and Carbon Dioxide Flows. Russ. J. Phys. Chem. B 17, 414–418 (2023). https://doi.org/10.1134/S1990793123020148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123020148

Keywords:

Navigation