Log in

The Role of Autophagy and Macrophage Polarization in the Process of Chronic Inflammation and Regeneration

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Many serious illnesses, including diabetes, obesity, osteoporosis, and neurodegenerative diseases, are caused by chronic inflammation that develops in fat tissue, bones, or the brain. This inflammation occurs due to a shift in macrophage (microglia) polarization toward a proinflammatory M1 phenotype. It has now been proven that macrophage polarization is determined by the intracellular level of autophagy in the macrophage. By modulating autophagy, it is possible to cause a switch in macrophage activity towards M1 or M2. Summarizing the material accumulated in the literature, we believe that activation of autophagy reprograms the macrophage towards M2, replacing its protein content and receptor apparatus, and activate a another type of metabolism. The term “reprogramming” is most appropriate for this process, since it is followed by a change in the functional activity of the macrophage, namely a switch from cytotoxic proinflammatory activity to anti-inflammatory (regenerative) activity. Modulation of autophagy may be an approach to the treatment of cancer, neurodegenerative disorders, osteoporosis, diabetes and other serious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Agrawal, I. and Jha, S., Mitochondrial dysfunction and Alzheimer’s disease: role of microglia, Front. Aging Neurosci., 2020, vol. 12, p. 252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed, B., Sultana, R., and Greene, M.W., Adipose tissue and insulin resistance in obese, Biomed. Pharmacother., 2021, vol. 137, p. 111315. https://doi.org/10.1016/j.biopha.2021.111315

    Article  CAS  PubMed  Google Scholar 

  3. Aoki, S., Shimizu, K., and Ito, K., Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation, Biochem. Biophys. Res. Commun., 2020, vol. 527, p. 874.

    Article  CAS  PubMed  Google Scholar 

  4. Azam, S., Haque, M.E., Kim, I.S., and Choi, D.K., Microglial turnover in ageing-related neurodegeneration: therapeutic avenue to intervene in disease progression, Cells, 2021, vol. 10, p. 150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blagosklonny, M.V., Progeria, rapamycin and normal aging: recent breakthrough, Aging, 2011, vol. 3, p. 685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blagosklonny, M.V., Does rapamycin slow down time?, Oncotarget, 2018, vol. 9, p. 30210. https://doi.org/10.18632/oncotarget.25788

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao, L. and He, C., Polarization of macrophages and microglia in inflammatory demyelination, Neurosci. Bull., 2013, vol. 29, p. 189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carroll, B. and Dunlop, E.A., The lysosome: a crucial hub for AMPK and mTORC1 signalling, Biochem. J., 2017, vol. 474, p. 1453.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W., Chen, Y., Liu, Y., and Wang, X.J., Autophagy in muscle regeneration: potential therapies for myopathies, Cachexia Sarcopenia Muscle, 2022, vol. 13, p. 1673.

    Article  CAS  Google Scholar 

  10. Cheng, J., Liao, Y., Dong, Y., Hu, H., Yang, N., Kong, X., Li, S., Li, X., Guo, J., Qin, L., Yu, J., Ma, C., Li, J., Li, M., Tang, B., and Yuan, Z., Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice, Autophagy, 2020, vol. 16, pp. 2193–2205. https://doi.org/10.1080/15548627.2020.1719723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chylikova, J., Dvorackova, J., Tauber, Z., and Kamarad, V., M1/M2 macrophage polarization in human obese adipose tissue, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 2018, vol. 162, p. 79.

    Article  PubMed  Google Scholar 

  12. Cui, X., Morales, R.T., Qian, W., Wang, H., Gagner, J.P., Dolgalev, I., Placantonakis, D., Zagzag, D., Cimmino, L., Snuderl, M., Lam, R.H.W., and Chen, W., Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis, Biomaterials, 2018, vol. 161, p. 164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies, L.C., Jenkins, S.J., Allen, J.E., and Taylor, P.R., Tissue-resident macrophages, Nat. Immunol., 2013, vol. 14, p. 986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fenn, A.M., Henry, C.J., Huang, Y., Dugan, A., and Godbout, J.P., Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice, Brain Behav. Immunol., 2012, vol. 26, p. 7667.

    Article  Google Scholar 

  15. Florencio-Silva, R., Sasso, G.R., Simões, M.J., Simões, R.S., Baracat, M.C., Sasso-Cerri, E., and Cerri, P.S., Osteoporosis and autophagy: what is the relationship?, Rev. Assoc. Med. Bras., 2017, vol. 63, p. 173.

    Article  PubMed  Google Scholar 

  16. Fujisaka, S., Usui, I., Nawaz, A., Takikawa, A., Kado, T., Igarashi, Y., and Tobe, K., M2 macrophages in metabolism, Diabetol. Int., 2016, vol. 7, p. 342.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghosh, A.K., Mau, T., O’Brien, M., Garg, S., and Yung, R., Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue, Aging (Albany NY), 2016, vol. 8, p. 2525.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Glick, D., Barth, S., and Macleod, K., Autophagy: cellular and molecular mechanisms, J. Pathol., 2010, vol. 221, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green, D.R. and Llambi, F., Cell death signaling, Cold Spring Harb. Perspect. Biol., 2015 vol. 7, p. a006080. https://doi.org/10.1101/cshperspect.a006080

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guo, Y., Lin, C., Xu, P., Wu, S., Fu, X., **a, W., and Yao, M., AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes, Sci. Rep., 2016, vol. 6, p. 36416. https://doi.org/10.1038/srep36416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, Y., Feng, Y., Cui, X., Wang, Q., and Pan, X., Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice, Cancer Immunol. Immunother., 2019, vol. 68, p. 1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han, X., Sun, S., Sun, Y., Song, Q., Zhu, J., Song, N., Chen, M., Sun, T., **a, M., Ding, J., Lu, M., Yao, H., and Hu, G., Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease, Autophagy, 2019, vol. 15, p. 1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hesketh, M., Sahin, K.B., West, Z.E, and Murray, R.Z., Macrophage phenotypes regulate scar formation and chronic wound healing, Int. J. Mol. Sci., 2017, vol. 18, p. 1545. https://doi.org/10.3390/ijms18071545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jha, M.K. and Lee, W.H., Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders, Suk. K. Biochem. Pharmacol., 2016, vol. 103, p. 1.

    Article  CAS  PubMed  Google Scholar 

  25. **, M.M., Wang, F., Qi, D., Liu, W.W., Gu, C., Mao, C.J., Yang, Y.P., Zhao, Z., Hu, L.F., and Liu, C.F., A critical role of autophagy in regulating microglia polarization in neurodegeneration, Front. Aging Neurosci., 2018, vol. 10, p. 378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J., 2000, vol. 19, p. 5720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kametaka, S., Okano, T., Ohsumi, M., and Ohsumi, Y., Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae, J. Biol. Chem., 1998, vol. 273, p. 22284.

    Article  CAS  PubMed  Google Scholar 

  28. Kang, Y.H., Cho, M.H., Kim, J.Y., Kwon, M.S., Peak, J.J., Kang, S.W., Yoon, S.Y., and Song, Y., Impaired macrophage autophagy induces systemic insulin resistance in obesity, Oncotarget, 2016, vol. 7, p. 35577.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kapetanovic, R., Bokil, N.J., and Sweet, M.J., Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: a ticking time bomb in ageing, Ageing Res. Rev., Part A, 2015, vol. 24, p. 40.

    CAS  Google Scholar 

  30. Kapoor, N., Niu, J., Saad, Y., Kumar, S., Sirakova, T., Becerra, E., Li, X., and Kolattukudy, P.E., Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP, J. Immunol., 2015, vol. 194, p. 6011.

    Article  CAS  PubMed  Google Scholar 

  31. Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T., and Ohsumi, Y., Organization of the pre-autophagosomal structure responsible for autophagosome formation, Mol. Biol. Cell, 2008, vol. 19, p. 2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawano, A., Ariyoshi, W., Yoshioka, Y., Hikiji, H., Nishihara, T., and Okinaga, T., Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy, J. Cell Biochem., 2019, vol. 120, pp. 12604–12617.

    Article  CAS  PubMed  Google Scholar 

  33. Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abild-gaard, M.H., Abudu, Y.P., Acevedo-Arozena, A., Adamopoulos, I.E., Adeli, K., Adolph, T.E., Adornetto, A., Aflaki, E., et al., Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy, 4th ed., Autophagy, vol. 17, p. 1.

  34. Kuo, W.T., Chang, J.M., Chen, C.C., Tsao, N., and Chang, C.P., Autophagy drives plasticity and functional polarization of tumor-associated macrophages, IUBMB Life, 2022, vol. 74, p. 157.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J.W., Park, S., Takahashi, Y., and Wang, H.G., The association of AMPK with ULK1 regulates autophagy, PLoS One, 2010, vol. 5, p. e15394.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, D.E., Bareja, A., Bartlett, D.B., and White, J.P., Autophagy as a therapeutic target to enhance aged muscle regeneration, Cells, 2019, vol. 8, p. 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, K., Zhao, E., Ilyas, G., Lalazar, G., Lin, Y., Haseeb, M., Tanaka, K.E., and Czaja, M.J., Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization, Autophagy, 2015, vol. 11, p. 271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, R., Cui, J., Sun, Y., Xu, W., Wang, Z., Wu, M., Dong, H., Yang, C., Hong, S., Yin, S., and Wang, H., Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via ATG5 repression during aging, Cell Death Discovery, 2021, vol. 7, p. 397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu, B., Huang, L., Cao, J., Li, L., Wu, W., Chen, X., and Ding, C., Adipose tissue macrophages in aging-associated adipose tissue function, J. Physiol. Sci., 2021, vol. 71, p. 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K.J., Coppes, R.P., Engedal, N., Mari, M., and Reggiori, F., Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy, 2018, vol. 14, p. 1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mazher, M., Moqidem, Y.A., Zidan, M., Sayed, A.A., and Abdellatif, A., Autophagic reprogramming of bone marrow-derived macrophages, Immunol. Res., 2023, vol. 71, p. 229.

    Article  CAS  PubMed  Google Scholar 

  42. Metchnikoff, E., Lecons sur la Pathologie Comparee de L’Inflammation, Masson: Paris, 1892.

    Google Scholar 

  43. Miron, V.E., Boyd, A., Zhao, J.W., Yuen, T.J., Ruckh, J.M., Shadrach, J.L., van Wijngaarden, P., Wagers, A.J., Williams, A., Franklin, R.J.M., and Ffrench-Constant, C., M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination, Nat. Neurosci., 2013, vol. 16, p. 1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moehle, M.S. and West, A.B., M1 and M2 immune activation in Parkinson’s disease: foe and ally?, Neuroscience, 2015, vol. 302, p. 59.

    Article  CAS  PubMed  Google Scholar 

  45. Montaseri, A., Giampietri, C., Rossi, M., Riccioli, A., Del Fattore, A., and Filippini, A., The role of autophagy in osteoclast differentiation and bone resorption function, Biomolecules, 2020, vol. 10, p. 1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nawaz, A. and Tobe, K., M2-like macrophages serve as a niche for adipocyte progenitors in adipose tissue, J. Diabetes Invest., 2019, vol. 10, p. 1394.

    Article  CAS  Google Scholar 

  47. Nikodemova, M., Small, A.L., Kimyon, R.S., and Watters, J.J., Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age, Physiol. Genomics, 2016, vol. 48, p. 336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nayak, D., Roth, T.L., and McGavern, D.B., Microglia development and function, Annu. Rev. Immunol., 2014, vol. 32, p. 367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orihuela, R., McPherson, C.A., and Harry, G.J., Microglial M1/M2 polarization and metabolic states, Br. J. Pharmacol., 2016, vol. 73, p. 649.

    Article  Google Scholar 

  50. Peled, M. and Fisher, E.A., Dynamic aspects of macrophage polarization during atherosclerosis progression and regression, Front. Immunol., 2014, vol. 5, p. 579.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Perandini, L.A., Chimin, P., Lutkemeyer, D.D.S, and Câmara, N.O.S., Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?, FEBS J., 2018, vol. 285, p. 1973.

    Article  CAS  PubMed  Google Scholar 

  52. Pomilio, C., Gorojod, R.M., Riudavets, M., Vinuesa, A., Presa, J., Gregosa, A., Bentivegna, M., Alaimo, A., Alcon, S.P., Sevlever, G., Kotler, M.L., Beauquis, J., and Saravia, F., Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients, Geroscience, 2020, vol. 42, p. 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rojas, J., Salazar, J., Martínez, M.S., Palmar, J., Bautista, J., Chávez-Castillo, M., Gómez, A., and Bermúdez, V., Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis, Hindawi Publ. Corporation Scientifica, 2015, p. 851252. https://doi.org/10.1155/2015/851252

  54. Schlundt, C., Fischer, H., Bucher, C.H., Rendenbach, C., Duda, G.N., and Schmidt-Bleek, K., The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time, Acta Biomater., 2021, vol. 133, p. 46.

    Article  CAS  PubMed  Google Scholar 

  55. Serý, O., Povová, J., Míšek, I., Pešák, L., and Janout, V., Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review, Folia Neuropathol., 2013, vol. 51, p. 1.

    Article  PubMed  Google Scholar 

  56. Singh, L.P., Yumnamcha, T., and Swornalata Devi, T., Mitophagic flux deregulation, lysosomal destabilization and NLRP3 inflammasome activation in diabetic retinopathy: potentials of gene therapy targeting TXNIP and the redox system, Ophthalmol. Res. Rep., 2018, vol. 3, p. ORRT-126.

  57. Stone, A.E.L., Green, R., Wilkins, C., Hemann, E.A., and Gale, M., RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection, J. Nat. Commun., 2019, vol. 10, p. 3649.

    Article  Google Scholar 

  58. Su, T.T., Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different, Open Biol., 2018, vol. 8, p. 180157. https://doi.org/10.1098/rsob.180157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H., and Ohsumi, Y., Fine map** of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae, J. Cell Sci, 2013, vol. 126, p. 2534.

    CAS  PubMed  Google Scholar 

  60. Urwanisch, L., Luciano, M., and Horejs-Hoeck, J., The NLRP3 inflammasome and its role in the pathogenicity of leukemia, Int. J. Mol. Sci., 2021, vol. 22, p. 1271. https://doi.org/10.3390/ijms22031271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Eijk, M. and Aerts, J.M.F.G., The unique phenotype of lipid-laden macrophages, Int. J. Mol. Sci., 2021, vol. 22, p. 4039. https://doi.org/10.3390/ijms22084039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xue, Y., Nie, D., Wang, L.J., Qiu, H.C., Ma, L., Dong, M.X., Tu, W.J., and Zhao, J., Microglial polarization: novel therapeutic strategy against ischemic stroke, Aging Dis., 2021, vol. 12, p. 466.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yamate, J., Izawa, T., and Kuwamura, M.J., Macrophage pathology in hepatotoxicity, Toxicol. Pathol., 2023, vol. 36, p. 51. https://doi.org/10.1293/tox.2022-0112

    Article  CAS  Google Scholar 

  64. Yang, L., **ao, L., Gao, W., Huang, X., Wei, F., Zhang, Q., and **ao, Y., Macrophages at low-inflammatory status improved osteogenesis via autophagy regulation, Tissue Eng., Part A, 2021, p. 021.

  65. Yao, K. and Zhao, Y.F., Aging modulates microglia phenotypes in neuroinflammation of MPTP-PD mice, Exp. Gerontol., 2018, vol. 111, p. 86.

    Article  CAS  PubMed  Google Scholar 

  66. Yuan, Y., Li, L., Zhu, L., Liu, F., Tang, X., Liao, G., Liu, J., Cheng, J., Chen, Y., and Lu, Y., Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy, Stem Cells, 2020, vol. 38, p. 639.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Q. and Sioud, M., Tumor-associated macrophage subsets: sha** polarization and targeting, Int. J. Mol. Sci., 2023, vol. 24, p. 7493. https://doi.org/10.3390/ijms24087493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zubova, S.G., Suvorova, I.I., and Karpenko, M.N., Macrophage and microglia polarization: focus on autophagy-dependent reprogramming, Front. Biosci. (Schol Ed.), 2022, vol. 14, p. 3. https://doi.org/10.31083/j.fbs1401003

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-25-20229, https://rscf.ru/project/22-25-20229/) and the St. Petersburg Science Foundation in accordance with agreement dated April 13, 2022, no. 05/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Zubova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubova, S.G., Morshneva, A.V. The Role of Autophagy and Macrophage Polarization in the Process of Chronic Inflammation and Regeneration. Cell Tiss. Biol. 18, 244–256 (2024). https://doi.org/10.1134/S1990519X24700184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X24700184

Keywords:

Navigation