Log in

Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Table 2.
Fig. 2.

Similar content being viewed by others

Abbreviations

2-DG:

2-deoxyglucose

2-HG:

2-hydroxyglutarate

ARG1:

arginase 1

ACLY:

ATP citrate lyase

AMPK:

AMP-activated protein kinase

CPT:

carnitine palmitoyltransferase

DMF:

dimethyl fumarate

ETC:

electron transport chain

FA:

fatty acid

HIF-1α:

hypoxia-inducible factor 1-alpha

IDH:

isocitrate dehydrogenase

iNOS:

inducible nitric oxide synthase

LDHA:

lactate dehydrogenase

LPS:

lipopolysaccharide

mTOR:

mammalian target of rapamycin

OXPHOS:

oxidative phosphorylation

PGE2 :

prostaglandin E2

PKM2:

pyruvate kinase M2

PPP:

pentose phosphate pathway

ROS:

reactive oxygen species

SDH:

succinate dehydrogenase

References

  1. Warburg, O. (1956) On the origin of cancer cells, Science, 123, 309-314, https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg, O., Wind, F., and Negelein, E. (1927) The metabolism of tumors in the body, J. Gen. Physiol., 8, 519-530, https://doi.org/10.1085/jgp.8.6.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lercher, A., Baazim, H., and Bergthaler, A. (2020) Systemic immunometabolism: challenges and opportunities, Immunity, 53, 496-509, https://doi.org/10.1016/j.immuni.2020.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Febbraio, M. A., Hiscock, N., Sacchetti, M., Fischer, C. P., and Pedersen, B. K. (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction, Diabetes, 53, 1643-1648, https://doi.org/10.2337/diabetes.53.7.1643.

    Article  CAS  PubMed  Google Scholar 

  5. Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science, 259, 87-91, https://doi.org/10.1126/science.7678183.

    Article  CAS  PubMed  Google Scholar 

  6. Wieman, H. L., Wofford, J. A., and Rathmell, J. C. (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking, Mol. Biol. Cell., 18, 1437-1446, https://doi.org/10.1091/mbc.e06-07-0593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pearce, E. L., Walsh, M. C., Cejas, P. J., Harms, G. M., Shen, H., Wang, L. S., Jones, R. G., and Choi, Y. (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism, Nature, 460, 103-107, https://doi.org/10.1038/nature08097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, A., Luan, H. H., and Medzhitov, R. (2019) An evolutionary perspective on immunometabolism, Science, 363, eaar3932, https://doi.org/10.1126/science.aar3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon, S., Crocker, P. R., Morris, L., Lee, S. H., Perry, V. H., and Hume, D. A. (1986) Localization and function of tissue macrophages, Ciba Found Symp., 118, 54-67, https://doi.org/10.1002/9780470720998.ch5.

    Article  CAS  PubMed  Google Scholar 

  10. Okabe, Y., and Medzhitov, R. (2016) Tissue biology perspective on macrophages, Nat. Immunol., 17, 9-17, https://doi.org/10.1038/ni.3320.

    Article  CAS  PubMed  Google Scholar 

  11. Wynn, T. A., Chawla, A., and Pollard, J. W. (2013) Macrophage biology in development, homeostasis and disease, Nature, 496, 445-455, https://doi.org/10.1038/nature12034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon, S., Pluddemann, A., and Martinez Estrada, F. (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions, Immunol. Rev., 262, 36-55, https://doi.org/10.1111/imr.12223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore, K. J., and Tabas, I. (2011) Macrophages in the pathogenesis of atherosclerosis, Cell, 145, 341-355, https://doi.org/10.1016/j.cell.2011.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chawla, A., Nguyen, K. D., and Goh, Y. P. (2011) Macrophage-mediated inflammation in metabolic disease, Nat. Rev. Immunol., 11, 738-749, https://doi.org/10.1038/nri3071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olefsky, J. M., and Glass, C. K. (2010) Macrophages, inflammation, and insulin resistance, Annu. Rev. Physiol., 72, 219-246, https://doi.org/10.1146/annurev-physiol-021909-135846.

    Article  CAS  PubMed  Google Scholar 

  16. Wynn, T. A., and Barron, L. (2010) Macrophages: master regulators of inflammation and fibrosis, Semin. Liver Dis., 30, 245-257, https://doi.org/10.1055/s-0030-1255354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noy, R., and Pollard, J. W. (2014) Tumor-associated macrophages: from mechanisms to therapy, Immunity, 41, 49-61, https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ginhoux, F., and Jung, S. (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis, Nat. Rev. Immunol., 14, 392-404, https://doi.org/10.1038/nri3671.

    Article  CAS  PubMed  Google Scholar 

  19. Epelman, S., Lavine, K. J., and Randolph, G. J. (2014) Origin and functions of tissue macrophages, Immunity, 41, 21-35, https://doi.org/10.1016/j.immuni.2014.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varol, C., Mildner, A., and Jung, S. (2015) Macrophages: development and tissue specialization, Annu. Rev. Immunol., 33, 643-675, https://doi.org/10.1146/annurev-immunol-032414-112220.

    Article  CAS  PubMed  Google Scholar 

  21. Hussell, T., and Bell, T. J. (2014) Alveolar macrophages: plasticity in a tissue-specific context, Nat. Rev. Immunol., 14, 81-93, https://doi.org/10.1038/nri3600.

    Article  CAS  PubMed  Google Scholar 

  22. Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T., and Castegna, A. (2019) The metabolic signature of macrophage responses, Front. Immunol., 10, 1462, https://doi.org/10.3389/fimmu.2019.01462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sica, A., and Mantovani, A. (2012) Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest., 122, 787-795, https://doi.org/10.1172/JCI59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ginhoux, F., and Guilliams, M. (2016) Tissue-resident macrophage ontogeny and homeostasis, Immunity, 44, 439-449, https://doi.org/10.1016/j.immuni.2016.02.024.

    Article  CAS  PubMed  Google Scholar 

  25. Hoeffel, G., and Ginhoux, F. (2015) Ontogeny of tissue-resident macrophages, Front. Immunol., 6, 486, https://doi.org/10.3389/fimmu.2015.00486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A., and Sancho, D. (2022) Metabolism of tissue macrophages in homeostasis and pathology, Cell. Mol. Immunol., 19, 384-408, https://doi.org/10.1038/s41423-021-00791-9.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, N., Liang, H., and Zen, K. (2014) Molecular mechanisms that influence the macrophage m1-m2 polarization balance, Front. Immunol., 5, 614, https://doi.org/10.3389/fimmu.2014.00614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., and Hill, A. M. (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm, J. Immunol., 164, 6166-6173, https://doi.org/10.4049/jimmunol.164.12.6166.

    Article  CAS  PubMed  Google Scholar 

  29. Biswas, S. K., and Mantovani, A. (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nat. Immunol., 11, 889-896, https://doi.org/10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  30. Geiss, C., Salas, E., Guevara-Coto, J., Regnier-Vigouroux, A., and Mora-Rodriguez, R. A. (2022) Multistability in macrophage activation pathways and metabolic implications, Cells, 11, 404, https://doi.org/10.3390/cells11030404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jha, A. K., Huang, S. C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., Chmielewski, K., Stewart, K. M., Ashall, J., Everts, B., Pearce, E. J., Driggers, E. M., and Artyomov, M. N. (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, 42, 419-430, https://doi.org/10.1016/j.immuni.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  32. Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., Frezza, C., Bernard, N. J., Kelly, B., Foley, N. H., Zheng, L., Gardet, A., Tong, Z., Jany, S. S., Corr, S. C., Haneklaus, M., Caffrey, B. E., Pierce, K., Walmsley, S., Beasley, F. C., et al. (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, 496, 238-242, https://doi.org/10.1038/nature11986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, J., Kong, Q., Hao, W., and Hu, W. (2020) High glucose contributes to the polarization of peritoneal macrophages to the M2 phenotype in vivo and in vitro, Mol. Med. Rep., 22, 127-134, https://doi.org/10.3892/mmr.2020.11130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fukuzumi, M., Shinomiya, H., Shimizu, Y., Ohishi, K., and Utsumi, S. (1996) Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1, Infect. Immun., 64, 108-112, https://doi.org/10.1128/iai.64.1.108-112.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez-Prados, J. C., Traves, P. G., Cuenca, J., Rico, D., Aragones, J., Martin-Sanz, P., Cascante, M., and Bosca, L. (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation, J. Immunol., 185, 605-614, https://doi.org/10.4049/jimmunol.0901698.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, F., Zhang, S., Vuckovic, I., Jeon, R., Lerman, A., Folmes, C. D., Dzeja, P. P., and Herrmann, J. (2018) Glycolytic stimulation is not a requirement for M2 macrophage differentiation, Cell Metab., 28, 463-475, https://doi.org/10.1016/j.cmet.2018.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hackett, E. E., Charles-Messance, H., O'Leary, S. M., Gleeson, L. E., Munoz-Wolf, N., Case, S., Wedderburn, A., Johnston, D. G. W., Williams, M. A., Smyth, A., Ouimet, M., Moore, K. J., Lavelle, E. C., Corr, S. C., Gordon, S. V., Keane, J., and Sheedy, F. J. (2020) Mycobacterium tuberculosis limits host glycolysis and IL-1beta by restriction of PFK-M via microRNA-21, Cell Rep., 30, 124-136, https://doi.org/10.1016/j.celrep.2019.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, R., Wang, J., Dai, X., Wu, S., Huang, Q., Jiang, L., and Kong, X. (2022) Augmented PFKFB3-mediated glycolysis by interferon-gamma promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis, Arthritis Res. Ther., 24, 266, https://doi.org/10.1186/s13075-022-02960-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Galvan-Pena, S., Carroll, R. G., Newman, C., Hinchy, E. C., Palsson-McDermott, E., Robinson, E. K., Covarrubias, S., Nadin, A., James, A. M., Haneklaus, M., Carpenter, S., Kelly, V. P., Murphy, M. P., Modis, L. K., and O'Neill, L. A. (2019) Malonylation of GAPDH is an inflammatory signal in macrophages, Nat. Commun., 10, 338, https://doi.org/10.1038/s41467-018-08187-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. **e, M., Yu, Y., Kang, R., Zhu, S., Yang, L., Zeng, L., Sun, X., Yang, M., Billiar, T. R., Wang, H., Cao, L., Jiang, J., and Tang, D. (2016) PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation, Nat. Commun., 7, 13280, https://doi.org/10.1038/ncomms13280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, T., Liu, H., Lian, G., Zhang, S. Y., Wang, X., and Jiang, C. (2017) HIF 1alpha-induced glycolysis metabolism is essential to the activation of inflammatory macrophages, Mediators Inflamm., 2017, 9029327, https://doi.org/10.1155/2017/9029327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Uden, P., Kenneth, N. S., and Rocha, S. (2008) Regulation of hypoxia-inducible factor-1α by NF-κB, Biochem. J., 412, 477-484, https://doi.org/10.1042/BJ20080476.

    Article  CAS  PubMed  Google Scholar 

  43. Blouin, C. C., Page, E. L., Soucy, G. M., and Richard, D. E. (2004) Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha, Blood, 103, 1124-1130, https://doi.org/10.1182/blood-2003-07-2427.

    Article  CAS  PubMed  Google Scholar 

  44. Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., Johnson, R. S., Haddad, G. G., and Karin, M. (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha, Nature, 453, 807-811, https://doi.org/10.1038/nature06905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joshi, S., Singh, A. R., Zulcic, M., and Durden, D. L. (2014) A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1alpha and HIF2alpha stability and tumor growth, angiogenesis, and metastasis, Mol. Cancer Res., 12, 1520-1531, https://doi.org/10.1158/1541-7786.MCR-13-0682.

    Article  CAS  PubMed  Google Scholar 

  46. Arranz, A., Doxaki, C., Vergadi, E., Martinez de la Torre, Y., Vaporidi, K., Lagoudaki, E. D., Ieronymaki, E., Androulidaki, A., Venihaki, M., Margioris, A. N., Stathopoulos, E. N., Tsichlis, P. N., and Tsatsanis, C. (2012) Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization, Proc. Natl. Acad. Sci. USA, 109, 9517-9522, https://doi.org/10.1073/pnas.1119038109.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cheng, S. C., Quintin, J., Cramer, R. A., Shepardson, K. M., Saeed, S., Kumar, V., Giamarellos-Bourboulis, E. J., Martens, J. H., Rao, N. A., Aghajanirefah, A., Manjeri, G. R., Li, Y., Ifrim, D. C., Arts, R. J., van der Veer, B. M., Deen, P. M., Logie, C., O'Neill, L. A., Willems, P., van de Veerdonk, F. L., et al. (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity, Science, 345, 1250684, https://doi.org/10.1126/science.1250684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelley, T. W., Graham, M. M., Doseff, A. I., Pomerantz, R. W., Lau, S. M., Ostrowski, M. C., Franke, T. F., and Marsh, C. B. (1999) Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B, J. Biol. Chem., 274, 26393-26398, https://doi.org/10.1074/jbc.274.37.26393.

    Article  CAS  PubMed  Google Scholar 

  49. Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K., and Tsatsanis, C. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization, J. Immunol., 198, 1006-1014, https://doi.org/10.4049/jimmunol.1601515.

    Article  CAS  PubMed  Google Scholar 

  50. Palsson-McDermott, E. M., Curtis, A. M., Goel, G., Lauterbach, M. A., Sheedy, F. J., Gleeson, L. E., van den Bosch, M. W., Quinn, S. R., Domingo-Fernandez, R., Johnston, D. G., Jiang, J. K., Israelsen, W. J., Keane, J., Thomas, C., Clish, C., Vander Heiden, M., Xavier, R. J., and O'Neill, L. A. (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages, Cell Metab., 21, 65-80, https://doi.org/10.1016/j.cmet.2014.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mills, E. L., and O'Neill, L. A. (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal, Eur. J. Immunol., 46, 13-21, https://doi.org/10.1002/eji.201445427.

    Article  CAS  PubMed  Google Scholar 

  52. Baardman, J., Verberk, S. G. S., Prange, K. H. M., van Weeghel, M., van der Velden, S., Ryan, D. G., Wust, R. C. I., Neele, A. E., Speijer, D., Denis, S. W., Witte, M. E., Houtkooper, R. H., O'Neill, L. A., Knatko, E. V., Dinkova-Kostova, A. T., Lutgens, E., de Winther, M. P. J., and Van den Bossche, J. (2018) A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia, Cell Rep., 25, 2044-2052, https://doi.org/10.1016/j.celrep.2018.10.092.

    Article  CAS  PubMed  Google Scholar 

  53. Yi, L., Liu, Q., Orandle, M. S., Sadiq-Ali, S., Koontz, S. M., Choi, U., Torres-Velez, F. J., and Jackson, S. H. (2012) p47(phox) directs murine macrophage cell fate decisions, Am. J. Pathol., 180, 1049-1058, https://doi.org/10.1016/j.ajpath.2011.11.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haschemi, A., Kosma, P., Gille, L., Evans, C. R., Burant, C. F., Starkl, P., Knapp, B., Haas, R., Schmid, J. A., Jandl, C., Amir, S., Lubec, G., Park, J., Esterbauer, H., Bilban, M., Brizuela, L., Pospisilik, J. A., Otterbein, L. E., and Wagner, O. (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism, Cell Metab., 15, 813-826, https://doi.org/10.1016/j.cmet.2012.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He, D., Mao, Q., Jia, J., Wang, Z., Liu, Y., Liu, T., Luo, B., and Zhang, Z. (2021) Pentose phosphate pathway regulates tolerogenic apoptotic cell clearance and immune tolerance, Front. Immunol., 12, 797091, https://doi.org/10.3389/fimmu.2021.797091.

    Article  CAS  PubMed  Google Scholar 

  56. Huang, S. C., Everts, B., Ivanova, Y., O'Sullivan, D., Nascimento, M., Smith, A. M., Beatty, W., Love-Gregory, L., Lam, W. Y., O'Neill, C. M., Yan, C., Du, H., Abumrad, N. A., Urban, J. F., Jr., Artyomov, M. N., Pearce, E. L., and Pearce, E. J. (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages, Nat. Immunol., 15, 846-855, https://doi.org/10.1038/ni.2956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van den Bossche, J., Baardman, J., Otto, N. A., van der Velden, S., Neele, A. E., van den Berg, S. M., Luque-Martin, R., Chen, H. J., Boshuizen, M. C., Ahmed, M., Hoeksema, M. A., de Vos, A. F., and de Winther, M. P. (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages, Cell Rep., 17, 684-696, https://doi.org/10.1016/j.celrep.2016.09.008.

    Article  CAS  PubMed  Google Scholar 

  58. Garaude, J., Acin-Perez, R., Martinez-Cano, S., Enamorado, M., Ugolini, M., Nistal-Villan, E., Hervas-Stubbs, S., Pelegrin, P., Sander, L. E., Enriquez, J. A., and Sancho, D. (2016) Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense, Nat. Immunol., 17, 1037-1045, https://doi.org/10.1038/ni.3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vats, D., Mukundan, L., Odegaard, J. I., Zhang, L., Smith, K. L., Morel, C. R., Wagner, R. A., Greaves, D. R., Murray, P. J., and Chawla, A. (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation, Cell Metab., 4, 13-24, https://doi.org/10.1016/j.cmet.2006.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Turrens, J. F. (2003) Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335-344, https://doi.org/10.1113/jphysiol.2003.049478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suski, J. M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J., and Wieckowski, M. R. (2012) Relation between mitochondrial membrane potential and ROS formation, Methods Mol. Biol., 810, 183-205, https://doi.org/10.1007/978-1-61779-382-0_12.

    Article  CAS  PubMed  Google Scholar 

  62. Bulua, A. C., Simon, A., Maddipati, R., Pelletier, M., Park, H., Kim, K. Y., Sack, M. N., Kastner, D. L., and Siegel, R. M. (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS), J. Exp. Med., 208, 519-533, https://doi.org/10.1084/jem.20102049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. West, A. P., Brodsky, I. E., Rahner, C., Woo, D. K., Erdjument-Bromage, H., Tempst, P., Walsh, M. C., Choi, Y., Shadel, G. S., and Ghosh, S. (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS, Nature, 472, 476-480, https://doi.org/10.1038/nature09973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agita, A., and Alsagaff, M. T. (2017) Inflammation, immunity, and hypertension, Acta Med. Indones., 49, 158-165.

    PubMed  Google Scholar 

  65. He, W., Miao, F. J., Lin, D. C., Schwandner, R. T., Wang, Z., Gao, J., Chen, J. L., Tian, H., and Ling, L. (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors, Nature, 429, 188-193, https://doi.org/10.1038/nature02488.

    Article  CAS  PubMed  Google Scholar 

  66. Hooftman, A., and O'Neill, L. A. J. (2019) The immunomodulatory potential of the metabolite itaconate, Trends Immunol., 40, 687-698, https://doi.org/10.1016/j.it.2019.05.007.

    Article  CAS  PubMed  Google Scholar 

  67. Infantino, V., Iacobazzi, V., Menga, A., Avantaggiati, M. L., and Palmieri, F. (2014) A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation, Biochim. Biophys. Acta, 1839, 1217-1225, https://doi.org/10.1016/j.bbagrm.2014.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Icard, P., Coquerel, A., Wu, Z., Gligorov, J., Fuks, D., Fournel, L., Lincet, H., and Simula, L. (2021) Understanding the central role of citrate in the metabolism of cancer cells and tumors: An Update, Int. J. Mol. Sci., 22, 6587, https://doi.org/10.3390/ijms22126587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Infantino, V., Pierri, C. L., and Iacobazzi, V. (2019) Metabolic routes in inflammation: the citrate pathway and its potential as therapeutic target, Curr. Med. Chem., 26, 7104-7116, https://doi.org/10.2174/0929867325666180510124558.

    Article  CAS  PubMed  Google Scholar 

  70. Lampropoulou, V., Sergushichev, A., Bambouskova, M., Nair, S., Vincent, E. E., Loginicheva, E., Cervantes-Barragan, L., Ma, X., Huang, S. C., Griss, T., Weinheimer, C. J., Khader, S., Randolph, G. J., Pearce, E. J., Jones, R. G., Diwan, A., Diamond, M. S., and Artyomov, M. N. (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation, Cell Metab., 24, 158-166, https://doi.org/10.1016/j.cmet.2016.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nemeth, B., Doczi, J., Csete, D., Kacso, G., Ravasz, D., Adams, D., Kiss, G., Nagy, A. M., Horvath, G., Tretter, L., Mocsai, A., Csepanyi-Komi, R., Iordanov, I., Adam-Vizi, V., and Chinopoulos, C. (2016) Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage, FASEB J., 30, 286-300, https://doi.org/10.1096/fj.15-279398.

    Article  CAS  PubMed  Google Scholar 

  72. Qin, W., Qin, K., Zhang, Y., Jia, W., Chen, Y., Cheng, B., Peng, L., Chen, N., Liu, Y., Zhou, W., Wang, Y. L., Chen, X., and Wang, C. (2019) S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate, Nat. Chem. Biol., 15, 983-991, https://doi.org/10.1038/s41589-019-0323-5.

    Article  CAS  PubMed  Google Scholar 

  73. Mills, E. L., Ryan, D. G., Prag, H. A., Dikovskaya, D., Menon, D., Zaslona, Z., Jedrychowski, M. P., Costa, A. S. H., Higgins, M., Hams, E., Szpyt, J., Runtsch, M. C., King, M. S., McGouran, J. F., Fischer, R., Kessler, B. M., McGettrick, A. F., Hughes, M. M., Carroll, R. G., Booty, L. M., et al. (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1, Nature, 556, 113-117, https://doi.org/10.1038/nature25986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu, X., Guo, Y., Liu, Z., Yang, J., Tang, H., and Wang, Y. (2021) Itaconic acid exerts anti-inflammatory and antibacterial effects via promoting pentose phosphate pathway to produce ROS, Sci. Rep., 11, 18173, https://doi.org/10.1038/s41598-021-97352-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bambouskova, M., Gorvel, L., Lampropoulou, V., Sergushichev, A., Loginicheva, E., Johnson, K., Korenfeld, D., Mathyer, M. E., Kim, H., Huang, L. H., Duncan, D., Bregman, H., Keskin, A., Santeford, A., Apte, R. S., Sehgal, R., Johnson, B., Amarasinghe, G. K., Soares, M. P., Satoh, T., et al. (2018) Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis, Nature, 556, 501-504, https://doi.org/10.1038/s41586-018-0052-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bambouskova, M., Potuckova, L., Paulenda, T., Kerndl, M., Mogilenko, D. A., Lizotte, K., Swain, A., Hayes, S., Sheldon, R. D., Kim, H., Kapadnis, U., Ellis, A. E., Isaguirre, C., Burdess, S., Laha, A., Amarasinghe, G. K., Chubukov, V., Roddy, T. P., Diamond, M. S., Jones, R. G., et al. (2021) Itaconate confers tolerance to late NLRP3 inflammasome activation, Cell Rep., 34, 108756, https://doi.org/10.1016/j.celrep.2021.108756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hooftman, A., Angiari, S., Hester, S., Corcoran, S. E., Runtsch, M. C., Ling, C., Ruzek, M. C., Slivka, P. F., McGettrick, A. F., Banahan, K., Hughes, M. M., Irvine, A. D., Fischer, R., and O'Neill, L. A. J. (2020) The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation, Cell Metab., 32, 468-478, https://doi.org/10.1016/j.cmet.2020.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Puchalska, P., Huang, X., Martin, S. E., Han, X., Patti, G. J., and Crawford, P. A. (2018) Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments, iScience, 9, 298-313, https://doi.org/10.1016/j.isci.2018.10.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Runtsch, M. C., Angiari, S., Hooftman, A., Wadhwa, R., Zhang, Y., Zheng, Y., Spina, J. S., Ruzek, M. C., Argiriadi, M. A., McGettrick, A. F., Mendez, R. S., Zotta, A., Peace, C. G., Walsh, A., Chirillo, R., Hams, E., Fallon, P. G., Jayamaran, R., Dua, K., Brown, A. C., et al. (2022) Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages, Cell Metab., 34, 487-501, https://doi.org/10.1016/j.cmet.2022.02.002.

    Article  CAS  PubMed  Google Scholar 

  80. Weiss, J. M., Davies, L. C., Karwan, M., Ileva, L., Ozaki, M. K., Cheng, R. Y., Ridnour, L. A., Annunziata, C. M., Wink, D. A., and McVicar, D. W. (2018) Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors, J. Clin. Invest., 128, 3794-3805, https://doi.org/10.1172/JCI99169.

    Article  PubMed  PubMed Central  Google Scholar 

  81. (2023) Myeloid-derived itaconate suppresses antitumor immunity, Cancer Discov., 13, 255, https://doi.org/10.1158/2159-8290.CD-RW2022-213.

  82. Wang, F., Wang, K., Xu, W., Zhao, S., Ye, D., Wang, Y., Xu, Y., Zhou, L., Chu, Y., Zhang, C., Qin, X., Yang, P., and Yu, H. (2017) SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1beta production and to prevent DSS-induced colitis in mice, Cell Rep., 19, 2331-2344, https://doi.org/10.1016/j.celrep.2017.05.065.

    Article  CAS  PubMed  Google Scholar 

  83. Kelly, B., and O'Neill, L. A. (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity, Cell Res., 25, 771-784, https://doi.org/10.1038/cr.2015.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Littlewood-Evans, A., Sarret, S., Apfel, V., Loesle, P., Dawson, J., Zhang, J., Muller, A., Tigani, B., Kneuer, R., Patel, S., Valeaux, S., Gommermann, N., Rubic-Schneider, T., Junt, T., and Carballido, J. M. (2016) GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis, J. Exp. Med., 213, 1655-1662, https://doi.org/10.1084/jem.20160061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hooftman, A., Peace, C. G., Ryan, D. G., Day, E. A., Yang, M., McGettrick, A. F., Yin, M., Montano, E. N., Huo, L., Toller-Kawahisa, J. E., Zecchini, V., Ryan, T. A. J., Bolado-Carrancio, A., Casey, A. M., Prag, H. A., Costa, A. S. H., De Los Santos, G., Ishimori, M., Wallace, D. J., Venuturupalli, S., et al. (2023) Macrophage fumarate hydratase restrains mtRNA-mediated interferon production, Nature, 615, 490-498, https://doi.org/10.1038/s41586-023-05720-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zaslona, Z., and O'Neill, L. A. J. (2020) Cytokine-like roles for metabolites in immunity, Mol. Cell, 78, 814-823, https://doi.org/10.1016/j.molcel.2020.04.002.

    Article  CAS  PubMed  Google Scholar 

  87. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M. E., Borchers, C. H., Tempst, P., and Zhang, Y. (2006) Histone demethylation by a family of JmjC domain-containing proteins, Nature, 439, 811-816, https://doi.org/10.1038/nature04433.

    Article  CAS  PubMed  Google Scholar 

  88. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, 324, 930-935, https://doi.org/10.1126/science.1170116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, Z., Gan, L., Zhang, T., Ren, Q., and Sun, C. (2018) Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice, J. Pineal Res., 64, e12455, https://doi.org/10.1111/jpi.12455.

    Article  CAS  Google Scholar 

  90. Liu, P. S., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., Di Conza, G., Cheng, W. C., Chou, C. H., Vavakova, M., Muret, C., Debackere, K., Mazzone, M., Huang, H. D., Fendt, S. M., Ivanisevic, J., and Ho, P. C. (2017) alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming, Nat. Immunol., 18, 985-994, https://doi.org/10.1038/ni.3796.

    Article  CAS  PubMed  Google Scholar 

  91. Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., Fantin, V. R., Jang, H. G., **, S., Keenan, M. C., Marks, K. M., Prins, R. M., Ward, P. S., Yen, K. E., Liau, L. M., Rabinowitz, J. D., Cantley, L. C., Thompson, C. B., Vander Heiden, M. G., and Su, S. M. (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, 462, 739-744, https://doi.org/10.1038/nature08617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., Fantin, V. R., Jang, H. G., **, S., Keenan, M. C., Marks, K. M., Prins, R. M., Ward, P. S., Yen, K. E., Liau, L. M., Rabinowitz, J. D., Cantley, L. C., Thompson, C. B., Vander Heiden, M. G., and Su, S. M. (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, 465, 966, https://doi.org/10.1038/nature09132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D., and Thompson, C. B. (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells, Nature, 518, 413-416, https://doi.org/10.1038/nature13981.

    Article  CAS  PubMed  Google Scholar 

  94. Sciacovelli, M., Goncalves, E., Johnson, T. I., Zecchini, V. R., da Costa, A. S., Gaude, E., Drubbel, A. V., Theobald, S. J., Abbo, S. R., Tran, M. G., Rajeeve, V., Cardaci, S., Foster, S., Yun, H., Cutillas, P., Warren, A., Gnanapragasam, V., Gottlieb, E., Franze, K., Huntly, B., et al. (2016) Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition, Nature, 537, 544-547, https://doi.org/10.1038/nature19353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Du, X., and Hu, H. (2021) The roles of 2-hydroxyglutarate, Front. Cell Dev. Biol., 9, 651317, https://doi.org/10.3389/fcell.2021.651317.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Williams, N. C., Ryan, D. G., Costa, A. S. H., Mills, E. L., Jedrychowski, M. P., Cloonan, S. M., Frezza, C., and O'Neill, L. A. (2022) Signaling metabolite L-2-hydroxyglutarate activates the transcription factor HIF-1alpha in lipopolysaccharide-activated macrophages, J. Biol. Chem., 298, 101501, https://doi.org/10.1016/j.jbc.2021.101501.

    Article  CAS  PubMed  Google Scholar 

  97. de Goede, K. E., Harber, K. J., Gorki, F. S., Verberk, S. G. S., Groh, L. A., Keuning, E. D., Struys, E. A., van Weeghel, M., Haschemi, A., de Winther, M. P. J., van Dierendonck, X., and Van den Bossche, J. (2022) d-2-Hydroxyglutarate is an anti-inflammatory immunometabolite that accumulates in macrophages after TLR4 activation, Biochim. Biophys. Acta Mol. Basis. Dis., 1868, 166427, https://doi.org/10.1016/j.bbadis.2022.166427.

    Article  CAS  PubMed  Google Scholar 

  98. Kieler, M., Hofmann, M., and Schabbauer, G. (2021) More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization, FEBS J., 288, 3694-3714, https://doi.org/10.1111/febs.15715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sivangala Thandi, R., Radhakrishnan, R. K., Tripathi, D., Paidipally, P., Azad, A. K., Schlesinger, L. S., Samten, B., Mulik, S., and Vankayalapati, R. (2020) Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection, Nat. Commun., 11, 3535, https://doi.org/10.1038/s41467-020-17310-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., and Deretic, V. (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages, Cell, 119, 753-766, https://doi.org/10.1016/j.cell.2004.11.038.

    Article  CAS  PubMed  Google Scholar 

  101. Brown, G. C., and Cooper, C. E. (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase, FEBS Lett., 356, 295-298, https://doi.org/10.1016/0014-5793(94)01290-3.

    Article  CAS  PubMed  Google Scholar 

  102. Cleeter, M. W., Cooper, J. M., Darley-Usmar, V. M., Moncada, S., and Schapira, A. H. (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases, FEBS Lett., 345, 50-54, https://doi.org/10.1016/0014-5793(94)00424-2.

    Article  CAS  PubMed  Google Scholar 

  103. **, Z., Wei, W., Yang, M., Du, Y., and Wan, Y. (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization, Cell Metab., 20, 483-498, https://doi.org/10.1016/j.cmet.2014.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McNeill, E., Crabtree, M. J., Sahgal, N., Patel, J., Chuaiphichai, S., Iqbal, A. J., Hale, A. B., Greaves, D. R., and Channon, K. M. (2015) Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation, Free Radic. Biol. Med., 79, 206-216, https://doi.org/10.1016/j.freeradbiomed.2014.10.575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Seim, G. L., Britt, E. C., John, S. V., Yeo, F. J., Johnson, A. R., Eisenstein, R. S., Pagliarini, D. J., and Fan, J. (2019) Two-stage metabolic remodelling in macrophages in response to lipopolysaccharide and interferon-gamma stimulation, Nat. Metab., 1, 731-742, https://doi.org/10.1038/s42255-019-0083-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Palmieri, E. M., Gonzalez-Cotto, M., Baseler, W. A., Davies, L. C., Ghesquiere, B., Maio, N., Rice, C. M., Rouault, T. A., Cassel, T., Higashi, R. M., Lane, A. N., Fan, T. W., Wink, D. A., and McVicar, D. W. (2020) Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase, Nat. Commun., 11, 698, https://doi.org/10.1038/s41467-020-14433-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Byles, V., Covarrubias, A. J., Ben-Sahra, I., Lamming, D. W., Sabatini, D. M., Manning, B. D., and Horng, T. (2013) The TSC-mTOR pathway regulates macrophage polarization, Nat. Commun., 4, 2834, https://doi.org/10.1038/ncomms3834.

    Article  CAS  PubMed  Google Scholar 

  108. Newsholme, P., Gordon, S., and Newsholme, E. A. (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages, Biochem. J., 242, 631-636, https://doi.org/10.1042/bj2420631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meiser, J., Kramer, L., Sapcariu, S. C., Battello, N., Ghelfi, J., D'Herouel, A. F., Skupin, A., and Hiller, K. (2016) Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression, J. Biol. Chem., 291, 3932-3946, https://doi.org/10.1074/jbc.M115.676817.

    Article  CAS  PubMed  Google Scholar 

  110. Funk, J. L., Feingold, K. R., Moser, A. H., and Grunfeld, C. (1993) Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation, Atherosclerosis, 98, 67-82, https://doi.org/10.1016/0021-9150(93)90224-i.

    Article  CAS  PubMed  Google Scholar 

  111. Hu, L., Yu, Y., Huang, H., Fan, H., Hu, L., Yin, C., Li, K., Fulton, D. J., and Chen, F. (2016) Epigenetic rRegulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis, Front. Immunol., 7, 696, https://doi.org/10.3389/fimmu.2016.00696.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, Q., Zhao, K., Shen, Q., Han, Y., Gu, Y., Li, X., Zhao, D., Liu, Y., Wang, C., Zhang, X., Su, X., Liu, J., Ge, W., Levine, R. L., Li, N., and Cao, X. (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6, Nature, 525, 389-393, https://doi.org/10.1038/nature15252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Biswas, S. K., and Lopez-Collazo, E. (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance, Trends Immunol., 30, 475-487, https://doi.org/10.1016/j.it.2009.07.009.

    Article  CAS  PubMed  Google Scholar 

  114. Palmieri, E. M., Menga, A., Martin-Perez, R., Quinto, A., Riera-Domingo, C., De Tullio, G., Hooper, D. C., Lamers, W. H., Ghesquiere, B., McVicar, D. W., Guarini, A., Mazzone, M., and Castegna, A. (2017) Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis, Cell Rep., 20, 1654-1666, https://doi.org/10.1016/j.celrep.2017.07.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kelly, B., Tannahill, G. M., Murphy, M. P., and O'Neill, L. A. (2015) Metformin inhibits the production of reactive oxygen species from NADH:Ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages, J. Biol. Chem., 290, 20348-20359, https://doi.org/10.1074/jbc.M115.662114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in NLRP3 inflammasome activation, Nature, 469, 221-225, https://doi.org/10.1038/nature09663.

    Article  CAS  PubMed  Google Scholar 

  117. Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W., and Biswal, S. (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, J. Clin. Invest., 116, 984-995, https://doi.org/10.1172/JCI25790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K., and Yamamoto, M. (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription, Nat. Commun., 7, 11624, https://doi.org/10.1038/ncomms11624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu, W., Wang, Z., Zhang, K., Chi, Z., Xu, T., Jiang, D., Chen, S., Li, W., Yang, X., Zhang, X., Wu, Y., and Wang, D. (2019) One-carbon metabolism supports S-adenosylmethionine and histone nethylation to drive inflammatory macrophages, Mol. Cell, 75, 1147-1160, https://doi.org/10.1016/j.molcel.2019.06.039.

    Article  CAS  PubMed  Google Scholar 

  120. Castoldi, A., Monteiro, L. B., van Teijlingen Bakker, N., Sanin, D. E., Rana, N., Corrado, M., Cameron, A. M., Hassler, F., Matsushita, M., Caputa, G., Klein Geltink, R. I., Buscher, J., Edwards-Hicks, J., Pearce, E. L., and Pearce, E. J. (2020) Triacylglycerol synthesis enhances macrophage inflammatory function, Nat. Commun., 11, 4107, https://doi.org/10.1038/s41467-020-17881-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morgan, P. K., Huynh, K., Pernes, G., Miotto, P. M., Mellett, N. A., Giles, C., Meikle, P. J., Murphy, A. J., and Lancaster, G. I. (2021) Macrophage polarization state affects lipid composition and the channeling of exogenous fatty acids into endogenous lipid pools, J. Biol. Chem., 297, 101341, https://doi.org/10.1016/j.jbc.2021.101341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guerrini, V., and Gennaro, M. L. (2019) Foam cells: one size doesn't fit all, Trends Immunol., 40, 1163-1179, https://doi.org/10.1016/j.it.2019.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Im, S. S., Yousef, L., Blaschitz, C., Liu, J. Z., Edwards, R. A., Young, S. G., Raffatellu, M., and Osborne, T. F. (2011) Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a, Cell Metab., 13, 540-549, https://doi.org/10.1016/j.cmet.2011.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Batista-Gonzalez, A., Vidal, R., Criollo, A., and Carreno, L. J. (2019) New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages, Front. Immunol., 10, 2993, https://doi.org/10.3389/fimmu.2019.02993.

    Article  CAS  PubMed  Google Scholar 

  125. van Dierendonck, X., Sancerni, T., Alves-Guerra, M. C., and Stienstra, R. (2020) The role of uncoupling protein 2 in macrophages and its impact on obesity-induced adipose tissue inflammation and insulin resistance, J. Biol. Chem., 295, 17535-17548, https://doi.org/10.1074/jbc.RA120.014868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yeudall, S., Upchurch, C. M., Seegren, P. V., Pavelec, C. M., Greulich, J., Lemke, M. C., Harris, T. E., Desai, B. N., Hoehn, K. L., and Leitinger, N. (2022) Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism, Sci. Adv., 8, eabq1984, https://doi.org/10.1126/sciadv.abq1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nomura, M., Liu, J., Rovira, II, Gonzalez-Hurtado, E., Lee, J., Wolfgang, M. J., and Finkel, T. (2016) Fatty acid oxidation in macrophage polarization, Nat. Immunol., 17, 216-217, https://doi.org/10.1038/ni.3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Divakaruni, A. S., Hsieh, W. Y., Minarrieta, L., Duong, T. N., Kim, K. K. O., Desousa, B. R., Andreyev, A. Y., Bowman, C. E., Caradonna, K., Dranka, B. P., Ferrick, D. A., Liesa, M., Stiles, L., Rogers, G. W., Braas, D., Ciaraldi, T. P., Wolfgang, M. J., Sparwasser, T., Berod, L., Bensinger, S. J., et al. (2018) Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis, Cell Metab., 28, 490-503, https://doi.org/10.1016/j.cmet.2018.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Van den Bossche, J., O'Neill, L. A., and Menon, D. (2017) Macrophage immunometabolism: where are we (going)? Trends Immunol., 38, 395-406, https://doi.org/10.1016/j.it.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  130. Moon, J. S., Nakahira, K., Chung, K. P., DeNicola, G. M., Koo, M. J., Pabon, M. A., Rooney, K. T., Yoon, J. H., Ryter, S. W., Stout-Delgado, H., and Choi, A. M. (2016) NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages, Nat. Med., 22, 1002-1012, https://doi.org/10.1038/nm.4153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Olona, A., Leishman, S., and Anand, P. K. (2022) The NLRP3 inflammasome: regulation by metabolic signals, Trends Immunol., 43, 978-989, https://doi.org/10.1016/j.it.2022.10.003.

    Article  CAS  PubMed  Google Scholar 

  132. Kumar, S., Mittal, S., Gupta, P., Singh, M., Chaluvally-Raghavan, P., and Pradeep, S. (2022) Metabolic reprogramming in tumor-associated macrophages in the ovarian tumor microenvironment, Cancers (Basel), 14, 5224, https://doi.org/10.3390/cancers14215224.

    Article  CAS  PubMed  Google Scholar 

  133. Wu, L., Zhang, X., Zheng, L., Zhao, H., Yan, G., Zhang, Q., Zhou, Y., Lei, J., Zhang, J., Wang, J., **n, R., Jiang, L., Peng, J., Chen, Q., Lam, S. M., Shui, G., Miao, H., and Li, Y. (2020) RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis, Cancer Immunol. Res., 8, 710-721, https://doi.org/10.1158/2326-6066.CIR-19-0261.

    Article  CAS  PubMed  Google Scholar 

  134. Covarrubias, A. J., Aksoylar, H. I., and Horng, T. (2015) Control of macrophage metabolism and activation by mTOR and Akt signaling, Semin. Immunol., 27, 286-296, https://doi.org/10.1016/j.smim.2015.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kang, S., and Kumanogoh, A. (2020) The spectrum of macrophage activation by immunometabolism, Int. Immunol., 32, 467-473, https://doi.org/10.1093/intimm/dxaa017.

    Article  CAS  PubMed  Google Scholar 

  136. Dibble, C. C., and Manning, B. D. (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output, Nat. Cell Biol., 15, 555-564, https://doi.org/10.1038/ncb2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weichhart, T., Hengstschlager, M., and Linke, M. (2015) Regulation of innate immune cell function by mTOR, Nat. Rev. Immunol., 15, 599-614, https://doi.org/10.1038/nri3901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weichhart, T., Costantino, G., Poglitsch, M., Rosner, M., Zeyda, M., Stuhlmeier, K. M., Kolbe, T., Stulnig, T. M., Horl, W. H., Hengstschlager, M., Muller, M., and Saemann, M. D. (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response, Immunity, 29, 565-577, https://doi.org/10.1016/j.immuni.2008.08.012.

    Article  CAS  PubMed  Google Scholar 

  139. Robey, R. B., and Hay, N. (2009) Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis, Semin. Cancer Biol., 19, 25-31, https://doi.org/10.1016/j.semcancer.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  140. Huang, S. C., Smith, A. M., Everts, B., Colonna, M., Pearce, E. L., Schilling, J. D., and Pearce, E. J. (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation, Immunity, 45, 817-830, https://doi.org/10.1016/j.immuni.2016.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Biswas, S. K., and Mantovani, A. (2012) Orchestration of metabolism by macrophages, Cell Metab., 15, 432-437, https://doi.org/10.1016/j.cmet.2011.11.013.

    Article  CAS  PubMed  Google Scholar 

  142. Beltrao, P., Bork, P., Krogan, N. J., and van Noort, V. (2013) Evolution and functional cross-talk of protein post-translational modifications, Mol. Syst. Biol., 9, 714, https://doi.org/10.1002/msb.201304521.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Stein, S. C., Woods, A., Jones, N. A., Davison, M. D., and Carling, D. (2000) The regulation of AMP-activated protein kinase by phosphorylation, Biochem. J., 345, 437-443, https://doi.org/10.1042/bj3450437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. O'Neill, L. A., and Hardie, D. G. (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation, Nature, 493, 346-355, https://doi.org/10.1038/nature11862.

    Article  CAS  PubMed  Google Scholar 

  145. Nath, N., Khan, M., Rattan, R., Mangalam, A., Makkar, R. S., de Meester, C., Bertrand, L., Singh, I., Chen, Y., Viollet, B., and Giri, S. (2009) Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity, Biochem. Biophys. Res. Commun., 386, 16-20, https://doi.org/10.1016/j.bbrc.2009.05.106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mounier, R., Theret, M., Arnold, L., Cuvellier, S., Bultot, L., Goransson, O., Sanz, N., Ferry, A., Sakamoto, K., Foretz, M., Viollet, B., and Chazaud, B. (2013) AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration, Cell Metab., 18, 251-264, https://doi.org/10.1016/j.cmet.2013.06.017.

    Article  CAS  PubMed  Google Scholar 

  147. Sag, D., Carling, D., Stout, R. D., and Suttles, J. (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype, J. Immunol., 181, 8633-8641, https://doi.org/10.4049/jimmunol.181.12.8633.

    Article  CAS  PubMed  Google Scholar 

  148. Vasamsetti, S. B., Karnewar, S., Kanugula, A. K., Thatipalli, A. R., Kumar, J. M., and Kotamraju, S. (2015) Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis, Diabetes, 64, 2028-2041, https://doi.org/10.2337/db14-1225.

    Article  CAS  PubMed  Google Scholar 

  149. Seneviratne, A., Cave, L., Hyde, G., Moestrup, S. K., Carling, D., Mason, J. C., Haskard, D. O., and Boyle, J. J. (2021) Metformin directly suppresses atherosclerosis in normoglycaemic mice via haematopoietic adenosine monophosphate-activated protein kinase, Cardiovasc. Res., 117, 1295-1308, https://doi.org/10.1093/cvr/cvaa171.

    Article  CAS  PubMed  Google Scholar 

  150. Phair, I. R., Nisr, R. B., Howden, A. J. M., Sovakova, M., Alqurashi, N., Foretz, M., Lamont, D., Viollet, B., and Rena, G. (2023) AMPK integrates metabolite and kinase-based immunometabolic control in macrophages, Mol. Metab., 68, 101661, https://doi.org/10.1016/j.molmet.2022.101661.

    Article  CAS  PubMed  Google Scholar 

  151. Kadomoto, S., Izumi, K., and Mizokami, A. (2021) Macrophage polarity and disease dontrol, Int. J. Mol. Sci., 23, 144, https://doi.org/10.3390/ijms23010144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, Z., Li, Y., Yang, X., Zhang, L., Shen, H., Xu, W., and Yuan, C. (2019) Protective effects of rapamycin induced autophagy on CLP septic mice, Comp. Immunol. Microbiol. Infect. Dis., 64, 47-52, https://doi.org/10.1016/j.cimid.2019.01.009.

    Article  PubMed  Google Scholar 

  153. Ko, J. H., Yoon, S. O., Lee, H. J., and Oh, J. Y. (2017) Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFkappaB pathways in autophagy- and p62-dependent manners, Oncotarget, 8, 40817-40831, https://doi.org/10.18632/oncotarget.17256.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wu, M. M., Wang, Q. M., Huang, B. Y., Mai, C. T., Wang, C. L., Wang, T. T., and Zhang, X. J. (2021) Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization, Pharmacol. Res., 172, 105796, https://doi.org/10.1016/j.phrs.2021.105796.

    Article  CAS  PubMed  Google Scholar 

  155. Hsu, S. P. C., Chen, Y. C., Chiang, H. C., Huang, Y. C., Huang, C. C., Wang, H. E., Wang, Y. S., and Chi, K. H. (2020) Rapamycin and hydroxychloroquine combination alters macrophage polarization and sensitizes glioblastoma to immune checkpoint inhibitors, J. Neurooncol., 146, 417-426, https://doi.org/10.1007/s11060-019-03360-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sun, R. Z., Fan, Y., Liang, X., Gong, T. T., Wang, Q., Liu, H., Shan, Z. Y., and Lei, L. (2018) Rapamycin and FTY720 alleviate atherosclerosis by cross talk of macrophage polarization and autophagy, Biomed. Res. Int., 2018, 1010248, https://doi.org/10.1155/2018/1010248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fang, S., Wan, X., Zou, X., Sun, S., Hao, X., Liang, C., Zhang, Z., Zhang, F., Sun, B., Li, H., and Yu, B. (2021) Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway, Cell Death Dis., 12, 88, https://doi.org/10.1038/s41419-020-03357-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ursini, F., Russo, E., Pellino, G., D'Angelo, S., Chiaravalloti, A., De Sarro, G., Manfredini, R., and De Giorgio, R. (2018) Metformin and autoimmunity: a "new deal" of an old drug, Front. Immunol., 9, 1236, https://doi.org/10.3389/fimmu.2018.01236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Feng, X., Chen, W., Ni, X., Little, P. J., Xu, S., Tang, L., and Weng, J. (2021) Metformin, macrophage dysfunction and atherosclerosis, Front. Immunol., 12, 682853, https://doi.org/10.3389/fimmu.2021.682853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pajak, B., Siwiak, E., Soltyka, M., Priebe, A., Zielinski, R., Fokt, I., Ziemniak, M., Jaskiewicz, A., Borowski, R., Domoradzki, T., and Priebe, W. (2019) 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents, Int. J. Mol. Sci., 21, 234, https://doi.org/10.3390/ijms21010234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O'Meally, R., Cole, R. N., Pandey, A., and Semenza, G. L. (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1, Cell, 145, 732-744, https://doi.org/10.1016/j.cell.2011.03.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Anastasiou, D., Yu, Y., Israelsen, W. J., Jiang, J. K., Boxer, M. B., Hong, B. S., Tempel, W., Dimov, S., Shen, M., Jha, A., Yang, H., Mattaini, K. R., Metallo, C. M., Fiske, B. P., Courtney, K. D., Malstrom, S., Khan, T. M., Kung, C., Skoumbourdis, A. P., Veith, H., et al. (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis, Nat. Chem. Biol., 8, 839-847, https://doi.org/10.1038/nchembio.1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yi, Z., Wu, Y., Zhang, W., Wang, T., Gong, J., Cheng, Y., and Miao, C. (2020) Activator-mediated pyruvate kinase M2 activation contributes to endotoxin tolerance by promoting mitochondrial biogenesis, Front. Immunol., 11, 595316, https://doi.org/10.3389/fimmu.2020.595316.

    Article  CAS  PubMed  Google Scholar 

  164. Welsh, S., Williams, R., Kirkpatrick, L., Paine-Murrieta, G., and Powis, G. (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha, Mol. Cancer Ther., 3, 233-244, https://doi.org/10.1158/1535-7163.233.3.3.

    Article  CAS  PubMed  Google Scholar 

  165. Villa-Roel, N., Ryu, K., Gu, L., Fernandez Esmerats, J., Kang, D. W., Kumar, S., and Jo, H. (2022) Hypoxia inducible factor 1alpha inhibitor PX-478 reduces atherosclerosis in mice, Atherosclerosis, 344, 20-30, https://doi.org/10.1016/j.atherosclerosis.2022.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mills, E. L., Kelly, B., Logan, A., Costa, A. S. H., Varma, M., Bryant, C. E., Tourlomousis, P., Dabritz, J. H. M., Gottlieb, E., Latorre, I., Corr, S. C., McManus, G., Ryan, D., Jacobs, H. T., Szibor, M., Xavier, R. J., Braun, T., Frezza, C., Murphy, M. P., and O'Neill, L. A. (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages, Cell, 167, 457-470, https://doi.org/10.1016/j.cell.2016.08.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yen, K. E., Bittinger, M. A., Su, S. M., and Fantin, V. R. (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities, Oncogene, 29, 6409-6417, https://doi.org/10.1038/onc.2010.444.

    Article  CAS  PubMed  Google Scholar 

  168. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N. J., Smith, A. C., Eyassu, F., Shirley, R., Hu, C. H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S. H., Brookes, P. S., et al. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431-435, https://doi.org/10.1038/nature13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gross, C. C., Schulte-Mecklenbeck, A., Klinsing, S., Posevitz-Fejfar, A., Wiendl, H., and Klotz, L. (2016) Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis, Neurol. Neuroimmunol. Neuroinflamm., 3, e183, https://doi.org/10.1212/NXI.0000000000000183.

    Article  PubMed  Google Scholar 

  170. Kornberg, M. D., Bhargava, P., Kim, P. M., Putluri, V., Snowman, A. M., Putluri, N., Calabresi, P. A., and Snyder, S. H. (2018) Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity, Science, 360, 449-453, https://doi.org/10.1126/science.aan4665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mrowietz, U., Szepietowski, J. C., Loewe, R., van de Kerkhof, P., Lamarca, R., Ocker, W. G., Tebbs, V. M., and Pau-Charles, I. (2017) Efficacy and safety of LAS41008 (dimethyl fumarate) in adults with moderate-to-severe chronic plaque psoriasis: a randomized, double-blind, Fumaderm((R)) - and placebo-controlled trial (BRIDGE), Br. J. Dermatol., 176, 615-623, https://doi.org/10.1111/bjd.14947.

    Article  CAS  PubMed  Google Scholar 

  172. Han, R., **ao, J., Zhai, H., and Hao, J. (2016) Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages, J. Neuroinflammation, 13, 97, https://doi.org/10.1186/s12974-016-0559-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cross, A. H., Misko, T. P., Lin, R. F., Hickey, W. F., Trotter, J. L., and Tilton, R. G. (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice, J. Clin. Invest., 93, 2684-2690, https://doi.org/10.1172/JCI117282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chatterjee, P. K., Patel, N. S., Sivarajah, A., Kvale, E. O., Dugo, L., Cuzzocrea, S., Brown, P. A., Stewart, K. N., Mota-Filipe, H., Britti, D., Yaqoob, M. M., and Thiemermann, C. (2003) GW274150, a potent and highly selective inhibitor of iNOS, reduces experimental renal ischemia/reperfusion injury, Kidney Int., 63, 853-865, https://doi.org/10.1046/j.1523-1755.2003.00802.x.

    Article  CAS  PubMed  Google Scholar 

  175. Dugo, L., Marzocco, S., Mazzon, E., Di Paola, R., Genovese, T., Caputi, A. P., and Cuzzocrea, S. (2004) Effects of GW274150, a novel and selective inhibitor of iNOS activity, in acute lung inflammation, Br. J. Pharmacol., 141, 979-987, https://doi.org/10.1038/sj.bjp.0705683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Miret, J. J., Kirschmeier, P., Koyama, S., Zhu, M., Li, Y. Y., Naito, Y., Wu, M., Malladi, V. S., Huang, W., Walker, W., Palakurthi, S., Dranoff, G., Hammerman, P. S., Pecot, C. V., Wong, K. K., and Akbay, E. A. (2019) Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor Immunity, J. Immunother. Cancer, 7, 32, https://doi.org/10.1186/s40425-019-0504-5.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Steggerda, S. M., Bennett, M. K., Chen, J., Emberley, E., Huang, T., Janes, J. R., Li, W., MacKinnon, A. L., Makkouk, A., Marguier, G., Murray, P. J., Neou, S., Pan, A., Parlati, F., Rodriguez, M. L. M., Van de Velde, L. A., Wang, T., Works, M., Zhang, J., Zhang, W., et al. (2017) Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment, J. Immunother. Cancer, 5, 101, https://doi.org/10.1186/s40425-017-0308-4.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kono, M., Yoshida, N., Maeda, K., and Tsokos, G. C. (2018) Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells, Proc. Natl. Acad. Sci. USA, 115, 2478-2483, https://doi.org/10.1073/pnas.1714717115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Takahashi, S., Saegusa, J., Sendo, S., Okano, T., Akashi, K., Irino, Y., and Morinobu, A. (2017) Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis, Arthritis Res. Ther., 19, 76, https://doi.org/10.1186/s13075-017-1283-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rodriguez, A. E., Ducker, G. S., Billingham, L. K., Martinez, C. A., Mainolfi, N., Suri, V., Friedman, A., Manfredi, M. G., Weinberg, S. E., Rabinowitz, J. D., and Chandel, N. S. (2019) Serine metabolism supports macrophage IL-1beta production, Cell Metab., 29, 1003-1011, https://doi.org/10.1016/j.cmet.2019.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ravindran, R., Loebbermann, J., Nakaya, H. I., Khan, N., Ma, H., Gama, L., Machiah, D. K., Lawson, B., Hakimpour, P., Wang, Y. C., Li, S., Sharma, P., Kaufman, R. J., Martinez, J., and Pulendran, B. (2016) The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation, Nature, 531, 523-527, https://doi.org/10.1038/nature17186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, G. Q., Gong, R. H., Yang, D. J., Zhang, G., Lu, A. P., Yan, S. C., Lin, S. H., and Bian, Z. X. (2017) Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer, Cell Death Dis., 8, e2789, https://doi.org/10.1038/cddis.2017.203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, M., Wang, K., Liao, X., Hu, H., Chen, L., Meng, L., Gao, W., and Li, Q. (2021) Carnitine palmitoyltransferase system: a new target for anti-inflammatory and anticancer therapy? Front. Pharmacol., 12, 760581, https://doi.org/10.3389/fphar.2021.760581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Qiao, S., Lv, C., Tao, Y., Miao, Y., Zhu, Y., Zhang, W., Sun, D., Yun, X., **a, Y., Wei, Z., and Dai, Y. (2020) Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer, Cancer Lett., 491, 162-179, https://doi.org/10.1016/j.canlet.2020.08.033.

    Article  CAS  PubMed  Google Scholar 

  185. Peng, S., Chen, D., Cai, J., Yuan, Z., Huang, B., Li, Y., Wang, H., Luo, Q., Kuang, Y., Liang, W., Liu, Z., Wang, Q., Cui, Y., Wang, H., and Liu, X. (2021) Enhancing cancer-associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis, Mol. Oncol., 15, 1391-1411, https://doi.org/10.1002/1878-0261.12917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Esteves, P., Blanc, L., Celle, A., Dupin, I., Maurat, E., Amoedo, N., Cardouat, G., Ousova, O., Gales, L., Bellvert, F., Begueret, H., Thumerel, M., Dupuy, J. W., Desbenoit, N., Marthan, R., Girodet, P. O., Rossignol, R., Berger, P., and Trian, T. (2021) Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling, Eur. Respir. J., 58, 2004252, https://doi.org/10.1183/13993003.04252-2020.

    Article  CAS  PubMed  Google Scholar 

  187. Jiang, Z., Knudsen, N. H., Wang, G., Qiu, W., Naing, Z. Z. C., Bai, Y., Ai, X., Lee, C. H., and Zhou, X. (2017) Genetic control of fatty acid beta-oxidation in chronic obstructive pulmonary disease, Am. J. Respir. Cell Mol. Biol., 56, 738-748, https://doi.org/10.1165/rcmb.2016-0282OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to D. Anisov for discussions and valuable remarks.

Funding

This work was supported by the Russian Science Foundation (project no. 19-75-30032).

Author information

Authors and Affiliations

Authors

Contributions

M.S.D. supervised the study and developed the concept of the review; T.R.Y., E.A.G., and M.A.N. carried out the search of literature sources and discussed the data; T.R.Y. and M.A.N. prepared the manuscript; M.S.D. and E.A.G. edited the manuscript; T.R.Y. prepared the images.

Corresponding author

Correspondence to Marina S. Drutskaya.

Ethics declarations

This work does not describe any studies involving humans or animals as objects performed by any of the authors. The authors of this work declare that they have no conflicts of interest in financial or any other sphere.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurakova, T.R., Gorshkova, E.A., Nosenko, M.A. et al. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. Biochemistry Moscow 89, 817–838 (2024). https://doi.org/10.1134/S0006297924050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924050043

Keywords

Navigation