Log in

Maximal Tori in Infinite-Dimensional Hamiltonian Systems: a Renormalisation Group Approach

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We study the existence of infinite-dimensional invariant tori in a mechanical system of infinitely many rotators weakly interacting with each other. We consider explicitly interactions depending only on the angles, with the aim of discussing in a simple case the analyticity properties to be required on the perturbation of the integrable system in order to ensure the persistence of a large measure set of invariant tori with finite energy. The proof we provide of the persistence of the invariant tori implements the renormalisation group scheme based on the tree formalism, i. e., the graphical representation of the solutions of the equations of motion in terms of trees, which has been widely used in finite-dimensional problems. The method is very effectual and flexible: it naturally extends, once the functional setting has been fixed, to the infinite-dimensional case with only minor technical-natured adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Here and in the following \(\|\cdot\|_{p}\) denotes as usual the \(\ell^{p}\) norm, while \(\|\cdot\|\) is the sup-norm.

  2. We mention also that, in the infinite-dimensional case, Berti and Biasco provided a super-exponential bound of the maximum size of the perturbation allowed for the persistence of finite-dimensional tori in terms of the dimensions of the tori [3]. The bound was slightly improved subsequently by Li and Liu [35].

  3. The subscript \(f\) stands for “finite support”, and it has nothing to do with the perturbation \(f\) we introduce in (2.4).

  4. Here and in the following \(\langle j\rangle=\max\{1,|j|\}\).

  5. In fact, the topology induced by the metric (2.2) makes \(\mathbb{T}^{\mathbb{Z}}\) a Banach manifold modeled on \(\ell^{\infty}(\mathbb{R})\).

  6. This is the model which is studied by Chierchia and Perfetti [16].

  7. In Lemma 4 we prove only \(s_{1}<s\) due to the fact that, merely to simplify the exposition, we arbitrarily fix the loss of regularity to be \(s\).

  8. This is an analytic change of variables provided one imposes some lower bounds on the sequence \(\{I_{j}\}_{j\in\mathbb{Z}}\) and assumes that \(u=\{u_{j}\}_{j\in\mathbb{Z}}\) lives in an \(\ell^{\infty}\)-based Banach space.

  9. The name is borrowed from quantum field theory [26, 28].

  10. Also called self-energy cluster or self-energy graph in the literature, again by analogy with quantum field theory.

  11. Given two Banach spaces \(X\) and \(Y\), \({\mathcal{L}}(X,Y)\) denotes the space of continuous linear operators \(L:X\to Y\).

References

  1. Arnol’d, V. I., Proof of a Theorem of A. N. Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13-40.

    Article  Google Scholar 

  2. Bambusi, D. and Grébert, B., Birfhoff Normal Form for PDEs with Tame Modulus, Duke Math. J., 2006, vol. 135, no. 3, pp. 507–567.

    Article  MathSciNet  Google Scholar 

  3. Berti, M. and Biasco, L., Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs, Comm. Math. Phys., 2011, vol. 305, no. 3, pp. 741–796.

    Article  MathSciNet  Google Scholar 

  4. Biasco, L. and Chierchia, L., Explicit Estimates on the Measure of Primary KAM Tori, Ann. Mat. Pura Appl. (4), 2018, vol. 197, no. 1, pp. 261–281.

    Article  MathSciNet  Google Scholar 

  5. Biasco, L. and Chierchia, L., Global Properties of Generic Real-Analytic Nearly-Integrable Hamiltonian Systems, J. Differential Equations, 2024, vol. 385, pp. 325–361.

    Article  MathSciNet  Google Scholar 

  6. Biasco, L. and Chierchia, L., Singular KAM Theory, https://arxiv.org/abs/2309.17041 (2023).

  7. Biasco, L., Massetti, J. E., and Procesi, M., Almost Periodic Invariant Tori for the NLS on the Circle, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2021, vol. 38, no. 3, pp. 711–758.

    Article  MathSciNet  Google Scholar 

  8. Biasco, L., Massetti, J. E., and Procesi, M., Small Amplitude Weak Almost Periodic Solutions for the \(1\)D NLS, Duke Math., 2023, vol. 172, no. 14, pp. 2643–2714.

    Article  MathSciNet  Google Scholar 

  9. Bourgain, J., On the Growth in Time of Higher Sobolev Norms of Smooth Solutions of Hamiltonian PDE, Internat. Math. Res. Notices, 1996, no. 6, pp. 277–304.

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J., Remarks on Stability and Diffusion in High-Dimensional Hamiltonian Systems and Partial Differential Equations, Ergodic Theory Dynam. Systems, 2004, vol. 24, no. 5, pp. 1331–1357.

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J., On Invariant Tori of Full Dimension for 1D Periodic NLS, J. Funct. Anal., 2005, vol. 229, no. 1, pp. 62–94.

    Article  MathSciNet  Google Scholar 

  12. Brjuno, A. D., Analytic Form of Differential Equations: 1, Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131–288; see also: Tr. Mosk. Mat. Obs., 1971, vol. 25, pp. 119–262. Brjuno, A.D., Analytic Form of Differential Equations: 2, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199–239; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 199-239.

    MathSciNet  Google Scholar 

  13. Chierchia, L. and Falcolini, C., Compensations in Small Divisor Problems, Comm. Math. Phys., 1996, vol. 175, no. 1, pp. 135–160.

    Article  MathSciNet  Google Scholar 

  14. Chierchia, L. and Koud**an, C., V. I. Arnold’s “Pointwise” KAM Theorem, Regul. Chaotic Dyn., 2019, vol. 24, no. 6, pp. 583–606.

    Article  MathSciNet  Google Scholar 

  15. Chierchia, L. and Koud**an, C. E., V. I. Arnold’s “Global” KAM Theorem and Geometric Measure Estimates, Regul. Chaotic Dyn., 2021, vol. 26, no. 1, pp. 61–88.

    Article  MathSciNet  Google Scholar 

  16. Chierchia, L. and Perfetti, P., Second Order Hamiltonian Equations on \({\bf T}^{\infty}\) and Almost-Periodic Solutions, J. Differential Equations, 1995, vol. 116, no. 1, pp. 172–201.

    Article  MathSciNet  Google Scholar 

  17. Cong, H., The Existence of Full Dimensional KAM Tori for Nonlinear Schrödinger Equation, Math. Ann., 2023 (in press).

  18. Cong, H., Liu, J., Shi, Y., and Yuan, X., The Stability of Full Dimensional KAM Tori for Nonlinear Schrödinger Equation, J. Differential Equations, 2018, vol. 264, no. 7, pp. 4504–4563.

    Article  MathSciNet  Google Scholar 

  19. Cong, H. and Yuan, X., The Existence of Full Dimensional Invariant Tori for \(1\)-Dimensional Nonlinear Wave Equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2021, vol. 38, no. 3, pp. 759–786.

    Article  MathSciNet  Google Scholar 

  20. Corsi, L., Gentile, G., and Procesi, M., KAM Theory in Configuration Space and Cancellations in the Lindstedt Series, Comm. Math. Phys., 2011, vol. 302, no. 2, pp. 359–402.

    Article  MathSciNet  Google Scholar 

  21. Corsi, L., Gentile, G., and Procesi, M., Almost-Periodic Solutions to the NLS Equation with Smooth Convolution Potentials, https://arxiv.org/abs/2309.14276 (2023).

  22. de la Llave, R., González, A., Jorba, À., and Villanueva, J., KAM Theory without Action-Angle Variables, Nonlinearity, 2005, vol. 18, no. 2, pp. 855–895.

    Article  MathSciNet  Google Scholar 

  23. Eliasson, L. H., Absolutely Convergent Series Expansions for Quasi Periodic Motions, Math. Phys. Electron. J., 1996, vol. 2, Paper 4, 33 pp.

    MathSciNet  Google Scholar 

  24. Faou, E. and Grébert, B., A Nekhoroshev-Type Theorem for the Nonlinear Schrödinger Equation on the Torus, Anal. PDE, 2013, vol. 6, no. 6, pp. 1243–1262.

    Article  MathSciNet  Google Scholar 

  25. Fröhlich, J., Spencer, Th., and Wayne, C. E., Localization in Disordered, Nonlinear Dynamical Systems, J. Statist. Phys., 1986, vol. 42, no. 3–4, pp. 247–274.

    Article  MathSciNet  Google Scholar 

  26. Gallavotti, G., Twistless KAM Tori, Comm. Math. Phys., 1994, vol. 164, no. 1, pp. 145–156.

    Article  MathSciNet  Google Scholar 

  27. Gallavotti, G. and Gentile, G., Majorant Series Convergence for Twistless KAM Tori, Ergodic Theory Dynam. Systems, 1995, vol. 15, no. 5, pp. 857–869.

    Article  MathSciNet  Google Scholar 

  28. Gallavotti, G., Gentile, G., and Mastropietro, V., Field Theory and KAM Tori, Math. Phys. Electron. J., 1995, vol. 1, Paper 5, 13 pp.

    MathSciNet  Google Scholar 

  29. Gentile, G., Introduzione ai sistemi dinamici: Vol. 2. Meccanica lagrangiana e hamiltoniana Unitext, vol. 133, Milan: Springer, 2022.

    Book  Google Scholar 

  30. Gentile, G. and Mastropietro, V., KAM Theorem Revisited, Phys. D, 1996, vol. 90, no. 3, pp. 225–234.

    Article  MathSciNet  Google Scholar 

  31. Gentile, G. and Mastropietro, V., Renormalization Group for One-Dimensional Fermions. A Review on Mathematical Results. Renormalization Group Theory in the New Millennium: 3, Phys. Rep., 2001, vol. 352, no. 4–6, pp. 273–437.

    Article  MathSciNet  Google Scholar 

  32. Kolmogorov, A. N., Preservation of Conditionally Periodic Movements with Small Change in the Hamilton Function, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems (Volta Memorial Conference, Como, 1977), G. Casati, J. Ford (Eds.), Lect. Notes Phys. Monogr., vol. 93, Berlin: Springer, 1979, pp. 51-56; see also: Dokl. Akad. Nauk SSSR (N. S.), 1954, vol. 98, pp. 527-530 (Russian).

    Chapter  Google Scholar 

  33. Koud**an, C. E., A KAM Theorem for Finitely Differentiable Hamiltonian Systems, J. Differential Equations, 2020, vol. 269, no. 6, pp. 4720–4750.

    Article  MathSciNet  Google Scholar 

  34. Kuksin, S. and Pöschel, J., Invariant Cantor Manifolds of Quasi-Periodic Oscillations for a Nonlinear Schrödinger Equation, Ann. of Math. (2), 1996, vol. 143, no. 1, pp. 149–179.

    Article  MathSciNet  Google Scholar 

  35. Li, X. and Liu, S., The Relation between the Size of Perturbations and the Dimension of Tori in an Infinite-Dimensional KAM Theorem of Pöschel, Nonlinear Anal., 2020, vol. 197, Art. 111754, 22 pp.

    Article  Google Scholar 

  36. Loomis, L. H., An Introduction to Abstract Harmonic Analysis, New York: D. Van Nostrand, 1953.

    Google Scholar 

  37. Montalto, R. and Procesi, M., Linear Schrödinger Equation with an Almost Periodic Potential, SIAM J. Math. Anal., 2021, vol. 53, no. 1, pp. 386–434.

    Article  MathSciNet  Google Scholar 

  38. Moser, J., On Invariant Curves of Area-Preserving Map**s of an Annulus, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1962, vol. 1962, no. 1, pp. 1–20.

    MathSciNet  Google Scholar 

  39. Mujica, J., Complex Analysis in Banach Spaces: Holomorphic Functions and Domains of Holomorphy in Finite and Infinite Dimensions, North-Holland Math. Stud., vol. 120, Notas de Matem., vol. 107, Amsterdam: North-Holland, 1986.

    Google Scholar 

  40. Pöschel, J., Small Divisors with Spatial Structure in Infinite-Dimensional Hamiltonian Systems, Comm. Math. Phys., 1990, vol. 127, no. 2, pp. 351–393.

    Article  MathSciNet  Google Scholar 

  41. Pöschel, J., On the Construction of Almost Periodic Solutions for a Nonlinear Schrödinger Equation, Ergodic Theory Dynam. Systems, 2002, vol. 22, no. 5, pp. 1537–1549.

    Article  MathSciNet  Google Scholar 

  42. Procesi, C. and Procesi, M., A KAM Algorithm for the Resonant Non-Linear Schrödinger Equation, Adv. Math., 2015, vol. 272, pp. 399–470.

    Article  MathSciNet  Google Scholar 

  43. Salamon, D. and Zehnder, E., KAM Theory in Configuration Space, Comment. Math. Helv., 1989, vol. 64, no. 1, pp. 84–132.

    Article  MathSciNet  Google Scholar 

  44. Stolovitch, L., Singular Complete Integrability, Inst. Hautes Études Sci. Publ. Math., 2000, no. 91, pp. 133–210.

    Article  MathSciNet  Google Scholar 

  45. Thirring, W., A Course in Mathematical Physics: Vol. 1. Classical Dynamical Systems, New York: Springer, 1978.

    Book  Google Scholar 

  46. Tong, Z. and Li, Y., Towards Sharp Regularity: Full Dimensional Tori in \(C^{\infty}\) Vector Fields over \(T^{\infty}\), https://arxiv.org/abs/2306.08211 (2023).

  47. Wayne, C. E., The KAM Theory of Systems with Short Range Interactions: 1, Comm. Math. Phys., 1984, vol. 96, no. 3, pp. 311–329. Wayne, C. E., The KAM Theory of Systems with Short Range Interactions: 2, Comm. Math. Phys., 1984, vol. 96, no. 3, pp. 331–344.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Luca Biasco, Ruben Bottini, Roberto Feola, Emanuele Haus and Jessica Elisa Massetti for useful discussions and comments.

Funding

L. C. has been supported by the research projects PRIN 2020XBFL “Hamiltonian and dispersive PDEs” and PRIN 2022HSSYPN “Turbulent Effects vs Stability in Equations from Oceanography” (TESEO) of the Italian Ministry of Education and Research (MIUR). G. G. has been supported by the research project PRIN 20223J85K3 “Mathematical Interacting Quantum Fields” of the Italian Ministry of Education and Research (MIUR). M. P. has been supported by the research projects PRIN 2020XBFL “Hamiltonian and Dispersive PDEs” and PRIN 2022FPZEES “Stability in Hamiltonian Dynamics and beyond” of the Italian Ministry of Education and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Livia Corsi, Guido Gentile or Michela Procesi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

37K55, 37K06

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsi, L., Gentile, G. & Procesi, M. Maximal Tori in Infinite-Dimensional Hamiltonian Systems: a Renormalisation Group Approach. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724540025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1560354724540025

Keywords

Navigation