Log in

On Magnetometric Determination of the Radiation Defect Concentration in a Superconducting GdBa2Cu3O7 – x Film

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An express magnetometric technique which enables the determination of inhomogeneities of changing the superconducting properties of a thin semiconductor layer due to a radiation irradiation is proposed and justified. This technique is numerically simulated for a superconducting GdBa2Cu3O7 – x layer irradiated with hydrogen and helium ions. The concentration profile of radiation defects is calculated using the SRIM program package. The distribution of the density of superconducting currents induced by an external magnetic field is calculated in terms of the critical state model. The model calculations demonstrate the efficiency of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 60, 470 (2018).

    Article  ADS  Google Scholar 

  2. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods Phys. Res., Sect. B 74, 257 (1980). WWW.srim.org.

  3. L. Kh. Antonova, A. V. Troitskii, G. N. Mikhailova, T. E. Demikhov, S. V. Samoilenkov, A. A. Molodyk, J. Noudem, and P. Bernstein, Bull. Lebedev Phys. Inst. 44, 61 (2017). https://doi.org/10.3103/S1068335617030034

    Article  ADS  Google Scholar 

  4. P. I. Bezotosnyi, S. Yu. Gavrilkin, K. A. Dmitrieva, A. N. Lykov, and A. Yu. Tsvetkov, Phys. Solid State 61, 94 (2019).

    Article  ADS  Google Scholar 

  5. V. F. Elesin and I. A. Rudnev, Sverkhprovodim.: Fiz., Khim., Tekh. 4, 2055 (1991).

    Google Scholar 

  6. Ch. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Krounmuller, Rep. Prog. Phys. 65, 651 (2012).

    Article  ADS  Google Scholar 

  7. Th. Schuster, H. Kuhn, E. H. Brandt, M. V. Indenbom, M. Kläser, G. Müller-Vogt, H. U. Habermeier, H. Kronmüller, and A. Forkl, Phys. Rev. B 52, 10375 (1995).

    Article  ADS  Google Scholar 

  8. A. Tikhanov, Sov. Math. Dokl. 4, 1035 (1963).

    Google Scholar 

  9. D. M. Feldman, Phys. Rev. B 69, 144515 (2004).

    Article  ADS  Google Scholar 

  10. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  11. Y. B. Kim, C. F. Hempstead, and A. R. Strand, Phys. Rev. Lett. 9, 306 (1962).

    Article  ADS  Google Scholar 

  12. A. I. Podlivaev, I. A. Rudnev, and N. P. Shabanova, Bull. Lebedev Phys. Inst. 41, 351 (2014).

    Article  ADS  Google Scholar 

  13. A. I. Podlivaev and I. F. Rudnev, Supercond. Sci. Technol. 30, 035021 (2017).https://doi.org/10.1088/1361-6668/aa55aa

    Article  ADS  Google Scholar 

  14. G. Iannone, S. Farinon, G. de Marzi, P. Fabricattore, and U. Gambardella, IEEE Trans. Appl. Supercond. 25, 8200107 (2015).

    Article  Google Scholar 

  15. I. A. Rudnev and A. I. Podlivaev, IEEE Trans. Appl. Supercond. 26, 8200104 (2016). https://doi.org/10.1109/TASC.2016.2516347

    Article  Google Scholar 

  16. A. I. Podlivaev, I. V. Anischenko, S. V. Pokrovskii, and I. A. Rudnev, IEEE Trans. Appl. Supercond. 28, 1 (2018).

    Article  Google Scholar 

  17. I. A. Rudnev, M. Osipov, S. Pokrovskii, and A. I. Podlivaev, Mater. Res. Express 6, 036001 (2019). https://doi.org/10.1088/2053-1591/aaf7ae

    Article  ADS  Google Scholar 

  18. D. V. Masterov, S. A. Pavlov, A. E. Parafin, E. V. Skorokhodov, and P. A. Yudin, Phys. Solid State 60, 2139 (2018).

    Article  ADS  Google Scholar 

  19. A. V. Antonov, A. V. Ikonnikov, D. V. Masterov, A. N. Mikhailov, S. V. Morozov, Yu. N. Nozdrin, S. A. Pavlov, A. E. Parafin, D. I. Tetel’baum, S. S. Ustavshchikov, P. A. Yunin, and D. A. Savinov, Phys. Solid State 61, 1523 (2019).

    Article  ADS  Google Scholar 

  20. A. N. Maksimova, V. A. Kashurnikov, A. N. Moroz, and I. A. Rudnev, Phys. Solid State 63, 64 (2021).

    Article  ADS  Google Scholar 

  21. A. N. Moroz, A. N. Maksimova, V. A. Kashurnikov, and I. A. Rudnev, IEEE Trans. Appl. Supercond. 28, 8000705 (2018).

    Article  Google Scholar 

  22. S. V. Pokrovskii, O. B. Mavritskii, A. N. Egorov, N. A. Mineev, A. A. Timofeev, and I. A. Rudnev, Supercond. Sci. Technol. 32, 075008 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and State Corporation ROSATOM, project no. 20-21-00085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Rudnev, I.A. On Magnetometric Determination of the Radiation Defect Concentration in a Superconducting GdBa2Cu3O7 – x Film. Phys. Solid State 63, 888–896 (2021). https://doi.org/10.1134/S1063783421060172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421060172

Keywords:

Navigation