Log in

Influence of defects on anisotropy of electrical resistivity in \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of defects induced by irradiation with fast electrons on the anisotropy of the electrical resistance of \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) is investigated. The radiation exposure causes a decrease in the anisotropy of the electrical resistance in the normal state, thereby contributing to the isotropization of the quasiparticle spectrum due to the formation of a large number of defects in the form of Y, Ba, and Cu atoms displaced from their regular positions. The anisotropy is also expressed in the existence of various conductivity mechanisms along and across the layers. Thus, the anisotropy of the ideal phonon resistance, which exists both along and across the layers, increases with increasing temperature, tending to a constant value. In the region of the superconducting transition, a broadening of the transition due to the presence of microscopic inhomogeneities is observed in the plane of the layers, and several superconducting transitions are revealed across the layers due to the presence of macroscopic inhomogeneities in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986). https://doi.org/10.1007/BF01303701

    Article  CAS  Google Scholar 

  2. R.V. Vovk, A.L. Solovjov, Low Temp. Phys. 44(2), 81 (2018). https://doi.org/10.1063/1.5020905

    Article  CAS  Google Scholar 

  3. T. Timusk, B. Statt, Rep. Prog. Phys. 62(1), 61 (1999)

    Article  CAS  Google Scholar 

  4. R. Vovk, N. Vovk, G. Khadzhai, O. Dobrovolskiy, Z. Nazyrov, J. Mater. Sci. 25(12), 5226 (2014). https://doi.org/10.1007/s10854-014-2292-5

    Article  CAS  Google Scholar 

  5. T.A. Friedmann, J.P. Rice, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 39, 4258 (1989). https://doi.org/10.1103/PhysRevB.39.4258

    Article  CAS  Google Scholar 

  6. R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Alloys Compd. 509(13), 4553 (2011). https://doi.org/10.1016/j.jallcom.2011.01.102

    Article  CAS  Google Scholar 

  7. A.A. Kordyuk, Low Temp. Phys. 41(5), 319 (2015). https://doi.org/10.1063/1.4919371

    Article  CAS  Google Scholar 

  8. A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, R.V. Vovk, I.L. Goulatis, A. Chroneos, Sci. Rep. 9(1), 9274 (2019). https://doi.org/10.1038/s41598-019-45286-w

    Article  CAS  Google Scholar 

  9. K. Widder, D. Berner, H. Geserich, W. Widder, H. Braun, Physica C 251(3–4), 274 (1995). https://doi.org/10.1016/0921-4534(95)00423-8

    Article  CAS  Google Scholar 

  10. R.V. Vovk, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, Physica C 485, 89 (2013). https://doi.org/10.1016/j.physc.2012.09.017

    Article  CAS  Google Scholar 

  11. P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991). https://doi.org/10.1103/PhysRevLett.67.2092

    Article  CAS  Google Scholar 

  12. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A.I. Chroneos, V.M. Pinto Simoes, J. Mater. Sci. 20(9), 858 (2009). https://doi.org/10.1007/s10854-008-9806-y

    Article  CAS  Google Scholar 

  13. J. Ashkenazi, J. Supercond. Nov. Magn. 24(4), 1281 (2011). https://doi.org/10.1007/s10948-010-0823-8

    Article  CAS  Google Scholar 

  14. A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko, R.V. Vovk, V.V. Khotkevych, A. Chroneos, Sci. Rep. 9(1), 20424 (2019). https://doi.org/10.1038/s41598-019-55959-1

    Article  CAS  Google Scholar 

  15. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908

    Article  CAS  Google Scholar 

  16. R.V. Vovk, A.A. Zavgorodniy, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M.P. Simoes, Mod. Phys. Lett. B 24(22), 2295 (2010). https://doi.org/10.1142/S0217984910024675

    Article  CAS  Google Scholar 

  17. J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167(5–6), 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6

    Article  CAS  Google Scholar 

  18. A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.U. Habermeier, H. Lochmajer, P. Przysłupski, K. Rogacki, Phys. Rev. B 94, 224505 (2016). https://doi.org/10.1103/PhysRevB.94.224505

    Article  Google Scholar 

  19. D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)

    Google Scholar 

  20. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A. Chroneos, E.V. Biletskiy, J. Alloys Compd. 485, L21 (2009). https://doi.org/10.1016/j.jallcom.2009.05.132

    Article  CAS  Google Scholar 

  21. D.A. Lotnyk, R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, J. Kovac, V. Antal, M. Kanuchova, M. Sefcikova, P. Diko, A. Feher, A. Chroneos, J. Low Temp. Phys. 161(3–4), 387 (2010). https://doi.org/10.1007/s10909-010-0198-z

    Article  CAS  Google Scholar 

  22. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Solid State Commun. 204, 64 (2015). https://doi.org/10.1016/j.ssc.2014.12.008

    Article  CAS  Google Scholar 

  23. T. Siegrist, S. Sunshine, D.W. Murphy, R.J. Cava, S.M. Zahurak, Phys. Rev. B 35, 7137 (1987). https://doi.org/10.1103/PhysRevB.35.7137

    Article  CAS  Google Scholar 

  24. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, A. Chroneos, Physica C 516, 58 (2015). https://doi.org/10.1016/j.physc.2015.06.011

    Article  CAS  Google Scholar 

  25. M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, Low Temp. Phys. 32(6), 571 (2006). https://doi.org/10.1063/1.2215373

    Article  CAS  Google Scholar 

  26. R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov, I.L. Goulatis, A. Chroneos, Supercond. Sci. Technol. 26(8), 085017 (2013)

    Article  Google Scholar 

  27. G.Ya. Khadzhai, R.V. Vovk, N.R. Vovk, S.N. Kamchatnaya, O.V. Dobrovolskiy, Physica C 545, 14 (2018). https://doi.org/10.1016/j.physc.2017.11.015

    Article  CAS  Google Scholar 

  28. H. Shaked, B.W. Veal, J. Faber, R.L. Hitterman, U. Balachandran, G. Tomlins, H. Shi, L. Morss, A.P. Paulikas, Phys. Rev. B 41, 4173 (1990). https://doi.org/10.1103/PhysRevB.41.4173

    Article  CAS  Google Scholar 

  29. R.V. Vovk, M.A. Obolenskii, A.V. Bondarenko, I.L. Goulatis, A.V. Samoilov, A. Chroneos, V.M.P. Simoes, J. Alloys Compd. 464(1–2), 58 (2008). https://doi.org/10.1016/j.jallcom.2007.10.040

    Article  CAS  Google Scholar 

  30. G.Y. Khadzhai, N.R. Vovk, R.V. Vovk, Low Temp. Phys. 40(6), 488 (2014). https://doi.org/10.1063/1.4881197

    Article  CAS  Google Scholar 

  31. M.R. Trunin, Usp. Fiz. Nauk 175, 1017 (2005)

    Article  Google Scholar 

  32. A.A. Abrikosov, Usp. Fiz. Nauk 168, 683 (1998)

    Article  CAS  Google Scholar 

  33. V.N. Zverev, D.V. Shovkun, J. Exp. Theor. Phys. Lett. 72, 73 (2000)

    Article  CAS  Google Scholar 

  34. V.N. Zverev, D.V. Shovkun, Physica C 391(4), 315 (2003). https://doi.org/10.1016/S0921-4534(03)00957-2

    Article  CAS  Google Scholar 

  35. D.X. Chen, J.J. Moreno, A. Hernando, A. Sanchez, B.Z. Li, Phys. Rev. B 57, 5059 (1998). https://doi.org/10.1103/PhysRevB.57.5059

    Article  CAS  Google Scholar 

  36. C.N. Jiang, A.R. Baldwin, G.A. Levin, T. Stein, C.C. Almasan, D.A. Gajewski, S.H. Han, M.B. Maple, Phys. Rev. B 55, R3390 (1997). https://doi.org/10.1103/PhysRevB.55.R3390

    Article  CAS  Google Scholar 

  37. R. Vovk, N. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Solid State Commun. 190, 18 (2014). https://doi.org/10.1016/j.ssc.2014.04.004

    Article  CAS  Google Scholar 

  38. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, I.L. Goulatis, Mater. Res. Expr. 1(2), 026303 (2014)

    Article  Google Scholar 

  39. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, J. Mater. Sci. 30(1), 241 (2019). https://doi.org/10.1007/s10854-018-0286-4

    Article  CAS  Google Scholar 

  40. A.V. Bondarenko, A.A. Prodan, Y.T. Petrusenko, V.N. Borisenko, F. Dworschak, U. Dedek, Phys. Rev. B 64, 092513 (2001). https://doi.org/10.1103/PhysRevB.64.092513

    Article  CAS  Google Scholar 

  41. J. Giapintzakis, W.C. Lee, J.P. Rice, D.M. Ginsberg, I.M. Robertson, R. Wheeler, M.A. Kirk, M.O. Ruault, Phys. Rev. B 45, 10677 (1992). https://doi.org/10.1103/PhysRevB.45.10677

    Article  CAS  Google Scholar 

  42. H.C. Montgomery, J. Appl. Phys. 42(7), 2971 (1971). https://doi.org/10.1063/1.1660656

    Article  CAS  Google Scholar 

  43. G.Y. Khadzhai, R.V. Vovk, Z. Nazyrov, O. Dobrovolskiy, Physica C 565, 1353507 (2019). https://doi.org/10.1016/j.physc.2019.1353507

    Article  CAS  Google Scholar 

  44. G. Khadzhai, Y. Litvinov, R. Vovk, Low Temp. Phys. 45, 916 (2019)

    Google Scholar 

  45. G.Y. Khadzhai, V.I. Beletskii, V. Vovk, Low Temp. Phys. 45, 1137 (2019)

    Article  CAS  Google Scholar 

  46. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Mod. Phys. Lett. B 28(17), 1450142 (2014). https://doi.org/10.1142/S0217984914501425

    Article  CAS  Google Scholar 

  47. M.A. Ivanov, V.M. Loktev, Low Temp. Phys. 25(12), 996 (1999). https://doi.org/10.1063/1.593854

    Article  CAS  Google Scholar 

  48. E.G. Maksimov, Usp. Fiz. Nauk 170, 1033 (2000)

    Article  Google Scholar 

  49. R. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Physica B 436, 88 (2014). https://doi.org/10.1016/j.physb.2013.11.056

    Article  CAS  Google Scholar 

  50. L. Colquitt, J. Appl. Phys. 36(8), 2454 (1965). https://doi.org/10.1063/1.1714510

    Article  CAS  Google Scholar 

  51. L. Alff, Y. Krockenberger, B. Welter, M. Schonecke, R. Gross, D. Manske, M. Naito, Nature 422(6933), 698 (2003). https://doi.org/10.1038/nature01488

    Article  CAS  Google Scholar 

  52. E.Z. Meilikhov, J. Exp. Theor. Phys. 88(4), 819 (1999). https://doi.org/10.1134/1.558861

    Article  CAS  Google Scholar 

  53. V. Mauchamp, W. Yu, L. Gence, L. Piraux, T. Cabioc’h, V. Gauthier, P. Eklund, S. Dubois, Phys. Rev. B 87, 235105 (2013). https://doi.org/10.1103/PhysRevB.87.235105

    Article  CAS  Google Scholar 

  54. V.I. Khotkevich, B.A. Merisov, M.A. Ermolaev, A.V. Krasnokutskiy, Fiz. Nizk. Temp. 9, 1056 (1983)

    CAS  Google Scholar 

  55. I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20(7), 498 (1994). https://doi.org/10.1063/1.592763

    Article  Google Scholar 

  56. P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011). https://doi.org/10.1103/PhysRevB.84.104507

    Article  CAS  Google Scholar 

  57. C.A. Downing, M.E. Portnoi, Nat. Commun. 8(1), 897 (2017). https://doi.org/10.1038/s41467-017-00949-y

    Article  CAS  Google Scholar 

  58. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, S.N. Kamchatnaya, A. Chroneos, Mod. Phys. Lett. B 30(17), 1650188 (2016). https://doi.org/10.1142/S0217984916501888

    Article  CAS  Google Scholar 

  59. B.N. Rolov, V.E. Yurkevich, Physics of Smeared Phase Transitions (RGU, Rostov-on-Don, 1983)

    Google Scholar 

  60. W. Känzig, Ferroelectrics and Antiferroeletrics (Academic Press, New York, 1957)

    Book  Google Scholar 

  61. S.A. Aliev, Smearing of Phase Transitions in Semiconductors and High-Temperature Superconductors (Baku, Elm, 2007)

    Google Scholar 

  62. O.V. Dobrovolskiy, V.M. Bevz, M.Yu. Mikhailov, O.I. Yuzephovich, V.A. Shklovskij, R.V. Vovk, M.I. Tsindlekht, R. Sachser, M. Huth, Nat. Commun. 9(1), 4927 (2018). https://doi.org/10.1038/s41467-018-07256-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dobrovolskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzhai, G.Y., Vovk, R.V., Goulatis, I.L. et al. Influence of defects on anisotropy of electrical resistivity in \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\). J Mater Sci: Mater Electron 31, 7708–7714 (2020). https://doi.org/10.1007/s10854-020-03306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03306-w

Navigation