Log in

Search for Dark Sector Physics with NA64

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The NA64 experiment consists of two detectors which are planned to be located at the electron (NA64e) and muon (NA64μ) beams of the CERN SPS and start operation after the LHC long-stop 2 in 2021. Its main goals include searches for dark sector physics—particularly light dark matter (LDM), visible and invisible decays of dark photons (\(A{\kern 1pt} '\)), and new light particles that could explain the 8Be and \({{g}_{\mu }} - 2\) anomalies. Here we review these physics goals, the current status of NA64 including recent results and perspectives of further searches, as well as other ongoing or planned experiments in this field. The main theoretical results on LDM, the problem of the origin of the \(\gamma {\text{ - }}A{\kern 1pt} '\) mixing term and its connection to loop corrections, possible existence of a new light \(Z{\kern 1pt} '\) coupled to \({{L}_{\mu }} - {{L}_{\tau }}\) current are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Here \({{B}_{\mu }}\) is the SM \(U(1)\) gauge field.

  2. For smaller values of \(\Lambda \) we shall have charged particles in the specrtrum with masses \( \leqslant 1\) TeV [36] that contradicts to the LHC bounds.

  3. Recent discussion of the \(\epsilon \) parameter origin is contained in ref. [38].

  4. Exact tree level calculations for the \({{e}^{ - }}Z \to {{e}^{ - }}ZA{\kern 1pt} '\) reaction have been performed in refs. [40, 41]. For a certain kinematic region of the parameters \({{m}_{{A{\kern 1pt} '}}},{{E}_{{A{\kern 1pt} '}}}\) the \(A{\kern 1pt} '\) yeld derived in the IWW approximation could differ significantly from the exact tree level calculations [40, 41].

  5. Here \({{F}_{{\mu \nu }}} = {{\partial }_{\mu }}{{A}_{\nu }} - {{\partial }_{\nu }}{{A}_{\mu }}\) and \(Z_{{\mu \nu }}^{'} = {{\partial }_{\mu }}Z_{\mu }^{'} - {{\partial }_{\nu }}Z_{\mu }^{'}\).

  6. The annihilation cross-section for scalar DM has \(p\)-wave suppressions that allows to escape CMB bound [74].

  7. Here we consider the case \({{m}_{{Z{\kern 1pt} '}}} > 2{{m}_{\chi }}\).

  8. In ref. [54] models with \(2{{g}_{{Vu}}} + {{g}_{{Vd}}} \approx 0\) have been suggested for an explanation of recent discovery claim [26] of \(17\,\,{\text{MeV}}\) narrow resonance observed as a peak in \({{e}^{ + }}{{e}^{ - }}\) invariant mass distribution in nuclear transitions.

  9. The assumption that \({\text{Br}}(A{\kern 1pt} ' \to {\text{invisible}}) = 1\) has been used.

  10. POT \( \equiv \) protons on target.

  11.  The values of \({{m}_{{A{\kern 1pt} '}}}\) and \({{m}_{\chi }}\) are arbitrary, so the case \({{m}_{{A{\kern 1pt} '}}} \approx 2{{m}_{\chi }}\) could be considered as some fine-tuning. It is natural to assume the absence of significant fine-tuning. In this paper we require that \(\left| {\tfrac{{{{m}_{{A{\kern 1pt} '}}}}}{{2{{m}_{\chi }}}} - 1} \right| \geqslant 0.25\).

  12.  The review of nonaccelerator bounds can be found in ref. [83].

  13.  As a review, see for example [1, 2].

  14.  For the Universe the effects of nonzero chemical potential are small so we shall use the approximation with zero chemical potentials \({{\mu }_{i}} = 0\).

  15.  Here \(n = 0\) corresponds to \(s\)-wave annihilation and \(n = 1\) corresponds to \(p\)-wave annihilation.

  16.  Here we assume that \({{m}_{\chi }} \gg {{m}_{e}}\).

REFERENCES

  1. E. W. Kolb and M. S. Turner, “The early Universe,” Front. Phys. 69, 1–547 (1990).

    MathSciNet  MATH  Google Scholar 

  2. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe (World Scientific Publishing Co. Pt. Ltd., 2011).

  3. C. Boehm and P. Fayet, “Scalar dark matter candidates,” Nucl. Phys. B 683, 219–263 (2004).

    Article  ADS  Google Scholar 

  4. J. Alexander et al. (Dark Sector Collab.), Dark Sectors 2016 Workshop: Community Report (2016); ar**v: 1608.08632.

  5. M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report (2017); ar**v: 1707.04591.

  6. H.-S. Lee, “Muon g – 2 anomaly and dark leptonic gauge boson,” Phys. Rev. D 90, 091702 (2014).

    Article  ADS  Google Scholar 

  7. A. Berlin, N. Blinov, G. Krnjaic, P. Schuster, and N. Toro, “Dark matter, millicharges, axion and scalar particles, gauge bosons, and other new physics with LDMX,” Phys. Rev. D 99, 075001 (2019).

    Article  ADS  Google Scholar 

  8. B. W. Lee and S. Weinberg, “Cosmological lower bound on heavy neutrino masses,” Phys. Rev. Lett. 39, 165–168 (1977).

    Article  ADS  Google Scholar 

  9. G. Patrignani et al. (Particle Data Group), “Particle data,” Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  10. E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, “Testing GeV-scale dark matter with fixed-target missing momentum experiments,” Phys. Rev. D 91, 094026 (2015).

    Article  ADS  Google Scholar 

  11. G. Krnjaic, “Probing light thermal dark-matter with a Higgs portal mediator,” Phys. Rev. D 94, 095019 (2016).

    Article  ADS  Google Scholar 

  12. L. B. Okun, “Limits of electrodynamics: Paraphotons?,” Sov. Phys. JETP 56, 502–510 (1982).

    Google Scholar 

  13. B. Holdom, “Two U(1)'s and epsilon charge shifts,” Phys. Lett. B 166, 196–198 (1986).

    Article  ADS  Google Scholar 

  14. G. W. Bennett et al. (Muon g - 2 Collab.), “Final report of the muon E821 anomalous magnetic moment measurement at BNL,” Phys. Rev. D 73, 072003 (2006).

    Article  ADS  Google Scholar 

  15. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic contributions to the muon g – 2 and to α(MZ),” Eur. Phys. J. C 71, 1515–1527 (2011); [Erratum]: Eur. Phys. J. C 72, 1874 (2012).

    Article  ADS  Google Scholar 

  16. F. Jegerlehner and R. Szafron, “\({{\rho }^{0}} - \gamma \) mixing in the neutral channel pion form factor and its role in comparing \({{e}^{ + }}{{e}^{ - }}\) with \(\tau \) spectral functions,” Eur. Phys. J. C 71, 1632–1641 (2011).

    Article  ADS  Google Scholar 

  17. K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and T. Teubner, “\({{(g - 2)}_{\mu }}\) and \(\alpha ({{M}_{Z}})\) reevaluated using new precise data,” J. Phys. G 38, 085003 (2011).

    Article  ADS  Google Scholar 

  18. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, “Complete tenth-order QED contribution to the muon g – 2,” Phys. Rev. Lett. 109, 111808 (2012).

    Article  ADS  Google Scholar 

  19. X.-G. He, G. C. Joshi, H. Lew, and R. Volkas, “New Z-prime phenomenology,” Phys. Rev. D 43, 22–24 (1991).

    Article  ADS  Google Scholar 

  20. R. Foot, “New physics from electric charge quantization?,” Mod. Phys. Lett. A 6, 527–530 (1991).

    Article  ADS  Google Scholar 

  21. X.-Ge. He, G. C. Joshi, H. Lew, and R. Volkas, “Simplest Z ' model,” Phys. Rev. D 44, 2118–2132 (1991).

    Article  ADS  Google Scholar 

  22. S. N. Gninenko and N. V. Krasnikov, “The muon anomalous magnetic moment and a new light gauge boson,” Phys. Lett. B 513, 119—123 (2001).

    Article  ADS  Google Scholar 

  23. S. Baek, N. G. Deshpande, and X. G. He, “Muon anomalous g – 2 and gauged \({{L}_{\mu }} - {{L}_{\tau }}\) models,” Phys. Rev. D 64, 055006 (2001).

    Article  ADS  Google Scholar 

  24. E. Ma, D. Roy, and S. Roy, “Gauged \({{L}_{\mu }} - {{L}_{\tau }}\) with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos,” Phys. Lett. B 525, 101–106 (2002).

    Article  ADS  Google Scholar 

  25. N. V. Krasnikov, The Muon (g - 2) Anomaly and a New Light Vector Boson (2017); ar**v:1702.04596.

  26. A. Krasznahorskay et al. (Atomki Collab.), “Observation of anomalous internal pair creation in Be8: A possible indication of a light, neutral boson,” Phys. Rev. Lett. 116, 042501 (2016).

    Article  ADS  Google Scholar 

  27. N. V. Krasnikov, Light Scalars, \({{g}_{\mu }} - 2\)Muon Anomaly and Dark Matter in a Model with a Higgs Democracy (2017); ar**v:1707.00508.

  28. S. N. Gninenko and N. V. Krasnikov, “Probing the muon \({{g}_{\mu }} - 2\) anomaly, \(L\mu - {{L}_{\tau }}\) gauge boson and Dark Matter in dark photon experiments,” Phys. Lett. B 783, 24–30 (2018).

    Article  ADS  Google Scholar 

  29. C.-Yu. Chen, J. Kozaczuk, and Yi-M. Zhong, “Exploring leptophilic dark matter with NA64 \(\mu \),” J. High Energy Phys., No. 10, 154–183 (2018).

  30. M. Escudero, D. Hopper, G. Krnjaic, and M. Pierre, “Cosmology with a very light \({{L}_{\mu }} - {{L}_{\tau }}\) gauge boson,” J. High Energy Phys., No. 03, 071–096 (2019).

  31. S. Andreas et al. (NA64 Collab.), Proposal for an Experiment to Search for Light Dark Matter at the SPS (2013); ar**v:1312.3309[hep-ph].

  32. D. Banerjee et al. (NA64 Collab.), “Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS,” Phys. Rev. Lett. 118, 011802 (2017).

    Article  ADS  Google Scholar 

  33. D. Banerjee et al. (NA64 Collab.), “Search for vector mediator of dark matter production in invisible decay mode,” Phys. Rev. D 97, 072002 (2018).

    Article  ADS  Google Scholar 

  34. D. Banerjee et al. (NA64 Collab.), “Dark matter search in the missing energy events with NA64,” Phys. Rev. Lett. 123, 121801 (2019).

    Article  ADS  Google Scholar 

  35. D. Banerjee et al. (NA64 Collab.), “Search for a hypothetical 16.7 MeV gauge boson and dark photons in the NA64 Experiment at CERN,” Phys. Rev. Lett. 120, 231802 (2018).

    Article  ADS  Google Scholar 

  36. H. Davoudiasl and W. I. Marciano, “Running of the U(1) coupling in the dark sector,” Phys. Rev. D 92, 035008 (2015).

    Article  ADS  Google Scholar 

  37. D. Tucker-Smith and N. Weiner, “Inelastic dark matter,” Phys. Rev. D 64, 043502 (2001).

    Article  ADS  Google Scholar 

  38. T. Cherghetta, J. Kersten, K. Olive, and M. Pospelov, The Price of Tiny Kinetic Mixing (2019); ar**v: 1909.00696.

  39. J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, “New fixed-target experiments to search for dark gauge forces,” Phys. Rev. D 80, 075018 (2009).

    Article  ADS  Google Scholar 

  40. Yu-S. Liu, D. McKeenn, and G. A. Miller, “Validity of the Weizsacker-Williams approximation and the analysis of beam dump experiments: Production of an axion, a dark photon, or a new axial-vector boson,” Phys. Rev. D 96, 01604 (2017).

    Google Scholar 

  41. S. N. Gninenko, D. V. Kirpichnikov, M. M. Kirsanov, and N. V. Krasnikov, “The exact tree-level calculation of the dark photon production in high-energy electron scattering at the CERN SPS,” Phys. Lett. B 782, 406–414 (2018).

    Article  ADS  Google Scholar 

  42. A. E. Dorokhov, A. E. Radzhabov, and A. S. Zhevlakov, “The muon g – 2: Retrospective and future,” EPJ Web Conf. 125, 02007–02016 (2016).

  43. F. Jegelehener and A. Nyffeler, “The muon g – 2,” Phys. Rep. 477, 1–134 (2009).

    Article  ADS  Google Scholar 

  44. S. N. Gninenko and N. V. Krasnikov, “The SM extensions with additional light scalar singlet, nonrenormalizable Yukawa interactions and \({{(g - 2)}_{\mu }}\),” EPJ Web Conf. 125, 02001 (2017).

  45. B. Aubert et al. (BaBar and Belle Collabs.), “The physics of the B factories,” Eur. Phys. J. C 74, 3026–3954 (2014).

    Article  ADS  Google Scholar 

  46. H. Davoudiasl and W. J. Marciano, “Tale of two anomalies,” Phys. Rev. D 98, 075011 (2018).

    Article  ADS  Google Scholar 

  47. M. Endo, K. Hamaguchi, and G. Mishima, “Constraints on hidden photon models from electron g – 2 and hydrogen spectroscopy,” Phys. Rev. D 86, 095029 (2012).

    Article  ADS  Google Scholar 

  48. S. Abrahamyan et al. (APEX Collab.), “Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment,” Phys. Rev. Lett. 107, 191804 (2011).

    Article  ADS  Google Scholar 

  49. H. Merkel et al. (A1 Collab.), “Search at the Mainz microtron for light massive gauge bosons relevant for the muon g – 2 anomaly,” Phys. Rev. Lett. 112, 2218002 (2014).

    Article  Google Scholar 

  50. J. P. Lees et al. (BaBar Collab.), “Search for a Dark Photon in \({{e}^{ + }}{{e}^{ - }}\) collisions at BaBar,” Phys. Rev. Lett. 113, 201801 (2014).

    Article  ADS  Google Scholar 

  51. E. Perez del Rio, “Dark forces searches at KLOE-2,” Acta Phys. Pol. B 47, 461–470 (2016).

    Article  ADS  Google Scholar 

  52. J. R. Batley et al. (NA48/2 Collab.), “Search for the dark photon in \({{\pi }^{0}}\) decays,” Phys. Lett. B 746, 178–188.

  53. J. P. Lees et al. (BaBar Collab.), “Search for a muonic dark force at BaBar,” Phys. Rev. D 94, 011102 (2016).

    Article  ADS  Google Scholar 

  54. J. L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T. M. P. Tait, and Ph. Tanedo, “Particle physics models for the 17 MeV anomaly in beryllium nuclear decays,” Phys. Rev. D 95, 035017 (2017).

    Article  ADS  Google Scholar 

  55. G. Aad et al. (ATLAS Collab.), “Dark-photon searches via Higgs-boson production,” J. High Energy Phys., No. 02, 062 (2016).

  56. V. Khachatryan et al. (CMS Collab.), “A search for pair production of new light bosons decaying into muons,” Phys. Lett. B 752, 146–168 (2016).

    Article  ADS  Google Scholar 

  57. R. Aaij et al. (LHCb Collab.), “Search for dark photons produced in 13 TeV collisions,” Phys. Rev. Lett. 120, 061801 (2018).

    Article  ADS  Google Scholar 

  58. A. V. Artamonov et al. (BNL-E249 Collab.), “New measurement of the \({{K}^{ + }} \to {{\pi }^{ + }}\nu \bar {\nu }\) branching ratio,” Phys. Rev. D. 79, 092004 (2009).

    Article  ADS  Google Scholar 

  59. M. Pospelov, “Secluded \(U(1)\) below the weak scale,” Phys. Rev. D 80, 095002 (2009).

    Article  ADS  Google Scholar 

  60. H. Davoudiasl, H.-S. Lee, and W. J. Marciano, “Muon \((g - 2)\), rare kaon decays, and parity violation from dark bosons,” Phys. Rev. D 89, 095006 (2014).

    Article  ADS  Google Scholar 

  61. R. Essig, K. Mardon, M. Papucci, T. Volansky, and Yi-M. Zhong, “Constraining light dark matter with low-energy \({{e}^{ + }}{{e}^{ - }}\) colliders,” J. High Energy Phys., No. 11, 167–196 (2013).

  62. J. P. Lees et al. (BaBar Collab.), “Search for invisible decays of a dark photon produced in \({{e}^{ + }}{{e}^{ - }}\) collisions at BaBar,” Phys. Rev. Lett. 119, 131804 (2017).

    Article  ADS  Google Scholar 

  63. J. D. Bjorken et al. (E 137 Collab.), “Search for neutral metastable penetrating particles produced in the SLAC beam dump,” Phys. Rev. D 38, 3375–3420 (1988).

    Article  ADS  Google Scholar 

  64. A. Bross et al. (E774 Collab.), “A search for shortlived particles produced in an electron beam dump,” Phys. Rev. Lett. 67, 2942–2945 (1991).

    Article  ADS  Google Scholar 

  65. J. Batell, R. Essig, and Z. Surujon, “Strong constraints on sub-GeV dark sectors from SLAC beam dump E137,” Phys. Rev. Lett. 113, 061801 (2014).

    Article  Google Scholar 

  66. S. N. Gninenko, “Stringent limits on the \({{\pi }^{0}} - > \gamma X;X \to {{e}^{ + }}{{e}^{ - }}\) decay from neutrino experiments and constraints on new light gauge bosons,” Phys. Rev. D 85, 055027 (2017).

    Article  ADS  Google Scholar 

  67. S. N. Gninenko, “Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays,” Phys. Lett. B 713, 244–248 (2012).

    Article  ADS  Google Scholar 

  68. L. B. Auerbach et al. (LSND Collab.), “Measurement of electron-neutrino-electron elastic scattering,” Phys. Rev. D 63, 112001 (2001).

    Article  ADS  Google Scholar 

  69. A. A. Aguilar-Arevalo et al. (MiniBoone Collab.), “Dark matter search in a proton beam dump with MiniBooNE,” Phys. Rev. Lett. 118, 221803 (2017).

    Article  ADS  Google Scholar 

  70. D. Akimov et al. (COHERENT Collab.), “COHERENT 2018 at the Spallation Neutron Source” (2018); ar**v:1803.09183.

  71. D. Akimov et al. (COHERENT Collab.), “Observation of coherent elastic neutrino-nucleus scattering,” Science 357, 1123–1126 (2017).

    Article  ADS  Google Scholar 

  72. A.-F. Ge and I. M. Shoemaker, “Constraining photon portal dark matter with TEXONO and COHERENT data,” J. High Energy Phys., No. 11, 066–079 (2018).

  73. W. Almannsofer, S. Gori, M. Pospelov, and I. Yavin, “Neutrino trident production: A powerful probe of new physics with neutrino beams,” Phys. Rev. Lett. 113, 091801 (2014).

    Article  ADS  Google Scholar 

  74. P. A. R. Ade et al. (Planck Collab.), “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. A 13, 594–656 (2016).

    Google Scholar 

  75. J. Redondo and G. Raffelt, “Solar constraints on hidden photons re-visited,” J. Cosmol. Astropart. Phys., No. 08, 034–061 (2013).

  76. H. An, M. Pospelov, and J. Pradler, “New stellar constraints on dark photons,” Phys. Lett. B 725, 190–195 (2013).

    Article  ADS  MATH  Google Scholar 

  77. J. N. Chang, R. Essig, and S. M. McDermott, “Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle,” J. High Energy Phys., No. 09, 051–080 (2018).

  78. R. V. Wagoner, W. A. Fowler, and F. Hoyle, “On the synthesis of elements at very high temperatures,” Astrophys. J. 148, 3–49 (1967).

    Article  ADS  Google Scholar 

  79. B. Ahlgren, T. Ohlsson, and S. Zhou, “Comment on ‘Is dark matter with long-range interactions a solution to all small-scale problems of cold dark matter cosmology?’,” Phys. Rev. Lett. 111, 199001 (2013).

    Article  ADS  Google Scholar 

  80. C. Boehm, M. J. Dolan, and C. McCabe, “A lower bound on the mass of cold thermal dark matter from Planck,” J. Cosmol. Astropart. Phys., No. 08, 041–053 (2013).

  81. A. Fradette, M. Pospelov, J. Pradler, and A. Ritz, “Cosmological constraints on very dark photons,” Phys. Rev. D 90, 035022 (2014).

    Article  ADS  Google Scholar 

  82. C. Boehm, M. J. Dolan, and C. McCabe, “A lower bound on the mass of cold thermal dark matter from Planck,” J. Cosmol. Astropart. Phys., No. 08, 041–053 (2013).

  83. Y. S. Jeong, C. S. Kim, and H.-S. Lee, “Constraints on the \(U{{(1)}_{L}}\) gauge boson in a wide mass range,” Int. J. Mod. Phys. A 31, 1650059 (2016).

    Article  ADS  Google Scholar 

  84. R. Essig, J. Mandon, and T. Volansku, “Direct detection of sub-GeV dark matter,” Phys. Rev. D 85, 076007 (2012).

    Article  ADS  Google Scholar 

  85. E. Aprile et al. (XENON1T Collab.), “Light dark matter search with ionization signals in XENON1T,” Phys. Rev. Lett. 122, 141301 (2019).

    Article  ADS  Google Scholar 

  86. S. N. Gninenko, “Search for MeV dark matter photons in a light-shining-through-walls experiment at CERN,” Phys. Rev. D 89, 075008 (2014).

    Article  ADS  Google Scholar 

  87. D. Banerjee, P. Crivelli, and A. Rubbia, “Beam purity for light dark matter search in beam dump experiments,” Adv. High Energy Phys. 2015, 105730 (2015).

    Article  Google Scholar 

  88. S. N. Gninenko, N. V. Krasnikov, M. M. Kirsanov, and D. V. Kirpichnikov, “Missing energy signature from invisible decays of dark photons at the CERN SPS,” Phys. Rev. D 94, 095025 (2016).

    Article  ADS  Google Scholar 

  89. G. S. Atoian, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, and I. N. Semenyuk, “A lead scintillation electromagnetic calorimeter with wavelength fiber readout,” Nucl. Instrum. Methods, Sect. A 320, 144–154 (1992).

    Google Scholar 

  90. S. Agostinelli et al. (GEANT4 Collab.), “Geant4 manual,” Nucl. Instrum. Methods, Sect. A 506, 250–303 (2003).

    Google Scholar 

  91. S. N. Gninenko, D. V. Kirpichnikov, M. M. Kirsanov, and N. V. Krasnikov, “Combined search for light dark matter with electron and muon beams at NA64,” Phys. Lett. B 796, 117–122 (2019).

    Article  ADS  Google Scholar 

  92. J. L. Feng and J. Smolinsky, “Impact of a resonance on thermal targets for invisible dark photon searches,” Phys. Rev. D 96, 095022 (2017).

    Article  ADS  Google Scholar 

  93. J. Kozaczuk, “Dark photons from nuclear transitions,” Phys. Rev D 97, 015014 (2018).

    Article  ADS  Google Scholar 

  94. Ch.-W. Chiang and P.-Y. Tseng, “Probing a dark photon using rare leptonic kaon and pion decays,” Phys. Lett. B 767, 289–294 (2017).

    Article  ADS  Google Scholar 

  95. X. Zhang and G. A. Miller, “Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?,” Phys. Lett. B 773, 159–163 (2017).

    Article  ADS  Google Scholar 

  96. I. Alikhanov and E. A. Paschos, “Searching for new light gauge boson at \({{e}^{ + }}{{e}^{ - }}\) colliders,” Phys. Rev. D 97, 115004 (2018).

    Article  ADS  Google Scholar 

  97. Y. Liang, L.-B. Chen, and C.-F. Qiao, “X(16.7) as the solution of the NuTev anomaly,” Chin. Phys. C 41, 063105–063111 (2017).

    Article  ADS  Google Scholar 

  98. B. Fornal, “Is there a sign of new physics in Beryllium transitions?,” Int. J. Mod. Phys. A 32, 1730020 (2017).

    Article  ADS  Google Scholar 

  99. P. Fayet, “The light U boson as the mediator of new force coupled to a combination of Q, B, K and dark matter,” Eur. Phys. J. C 77, 53–66 (2017).

    Article  ADS  Google Scholar 

  100. D. Banerjee et al. (NA64 Collab.), Improved Limits on a Hypothetical X(16.7) Boson and a Dark Photon Decaying into \({{e}^{ + }}{{e}^{ - }}\)Pairs (2019); ar**v:1912.11389.

  101. N. V. Krasnikov, Implications of Last NA64 Results and the Electron \({{g}_{e}} - 2\)Anomaly for the X(16.7) Boson Survival (2019); ar**v:1912.11689.

  102. A. J. Krasznahorkay et al. (Atomki Collab.), New Evidence Supporting the Existence of the Hypothetic X17 Particle (2019); ar**v:1910.10459v1.

  103. T. Araki, F. Kaneko, T. Ota, J. Sato, and T. Shimomura, “MeV scale leptonic force for cosmic neutrino and muon anomalous magnetic moment,” Phys. Rev. D 93, 01304 (2016).

    Article  Google Scholar 

  104. G. Bellini et al. (Borexino Collab.), “Precision measurement of 7Be solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107, 141302 (2011).

    Article  ADS  Google Scholar 

  105. W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Neutrino trident production: A powerful probe of new physics with neutrino beams,” Phys. Rev. Lett. 113, 091801 (2014).

    Article  ADS  Google Scholar 

  106. A. Kamada and H.-B. Yu, “Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube,” Phys. Rev. D 92, 113004 (2015).

    Article  ADS  Google Scholar 

  107. T. Araki, S. Hoshino, T. Ota, J. Sato, and T. Shimomura, “Detecting the \({{L}_{\mu }} - {{L}_{\tau }}\) gauge boson at Belle2,” Phys. Rev. D 95, 055006 (2017).

    Article  ADS  Google Scholar 

  108. M. Battaglieri et al. (BDX Collab.), Dark Matter Search in a Beam-Dump eXperiment(BDX) (2017); ar**v: 1712.0518.

  109. A. Celentano, “Dark sector searches at Jefferson laboratory,” J. Phys.: Conf. Ser. 770, 012040 (2016).

    Google Scholar 

  110. T. Akesson et al. (LDMX Collab.), Light Dark Matter Experiment (LDMX) (2018); ar**v:1808.05219.

  111. S. N. Gninenko, N. V. Krasnikov, and V. A. Matveev, “Muon g – 2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN,” Phys. Rev. D 91, 095015 (2015).

    Article  ADS  Google Scholar 

  112. D. Banerjee et al. (NA64 Collab.), Proposal for an Experiment to Search for Dark Sector Particles Weakly Coupled to Muon at the SPS (2019);

  113. CERN-SPSC-2019-002/SPSC-P-359.

  114. C. Chen, M. Pospelov, and Y. Zhong, “Muon beam dump experiments to probe the dark sector,” Phys. Rev. D 95, 11505 (2017).

    Google Scholar 

  115. Y. Kahn, G. Krnjaic, and N. Tran, “\({{M}^{3}}\): A new muon missing experiment to probe \({{(g - 2)}_{\mu }}\) and dark matter at Fermilab,” J. High Energy Phys., No. 09, 153–181 (2018).

  116. Chien-Yi. Chen, J. Kozaczuk, and Zhong Yi-Ming, “Exploring leptophilic dark matter with NA64-\(\mu \),” J. High Energy Phys., No. 10, 154–173 (2018).

  117. S. Alekhin et al. (SHiP Collab.), “A facility to search for hidden particles at the CERN SPS: The SHiP physics case,” Rep. Progr. Phys. 79, 124201 (2016).

    Article  ADS  Google Scholar 

  118. E. Kou et al. (Belle-2 Collab.), The Belle II Physics Book (2018); ar**v:1808.10567[hep-ex]; Belle-II collaboration. https://www.belle2.org.

  119. L. Doria, P. Achenbach, M. Christmann, A. Denig, P. Gulker, and H. Merkel, Search for Light Dark Matter with the MESA Accelerator (2018); ar**v:1809.07168.

  120. V. Kozhuharov et al. (PADME Collab.), “PADME: Searching for dark mediator at the Frascati BTF,” Nuovo Cimento 40, 192–208 (2017).

    Google Scholar 

  121. B. Wojtsekhowski et al. (VEPP-3 Collab.), “Searching for a dark photon: Project of the experiment at VEPP-3,” J. Instrum. 13, P02021 (2018).

    Article  Google Scholar 

  122. J. Balewski et al. (Darklight Collab.), The DarkLight Experiment: A Precision Search for New Physics at Low Energies (2014); ar**v:1412.4717.

  123. P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles; improved analysis,” Nucl. Phys. B 360, 145–187 (1991).

    Article  ADS  Google Scholar 

  124. G. Mohlabeng, “Revisiting the dark photon explanation of the muon anomalous magnetic moment,” Phys. Rev. D 99, 115001 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are indebted to our colleagues from the NA64 Collaborations, in particular to P. Crivelli, D.V. Kirpichnikov, M.M. Kirsanov and V. Lyubovitsky, for many useful discussions and comments. We would also like to thank R. Dusaev for his help in designing and preparing several figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Krasnikov.

Appendices

APPENDIX A: DM Density Calculations

The observed homogeneity and isotropy of the Universe enable us to describe the overall geometry and evolution of the Universe in terms of two cosmological parameters accounting for the spatial curvature and the overall expansion (or contraction) of the Universe that is realized in the Freedman–Robertson–Walker metricFootnote 13

$$d{{s}^{2}} = d{{t}^{2}} - {{R}^{2}}(t)\left[ {\frac{{d{{r}^{2}}}}{{1 - k{{r}^{2}}}} + {{r}^{2}}(d{{\theta }^{2}} + si{{n}^{2}}\theta d{{\Phi }^{2}})} \right].$$
(58)

The curvature constant \(k\) takes three values \(k = 1, - 1,0\) that corresponds to closed, open and spationally flat geometries. The cosmological equations are derived from Einstein’s equations

$${{R}_{{\mu \nu }}} - \frac{1}{2}{{g}_{{\mu \nu }}} = 8\pi {{G}_{N}}{{T}_{{\mu \nu }}} + \Lambda {{g}_{{\mu \nu }}}.$$
(59)

We shall use the standard assumption that an effective energy-momentum tensor \({{T}_{{\mu \nu }}}\) is a perfect fluid, for which

$$T\mu \nu = - p{{g}_{{\mu \nu }}} + (p + \rho ){{u}_{\mu }}{{u}_{\nu }},$$
(60)

where \(p\) is the pressure, \(\rho \) is the energy-density and \(u = (1,0,0,0)\) is the velocity vector for the isotropic fluid in co-moving coordinates. For the metric (58) and the energy-momentum tensor (60) the Einstein equations (59) lead to Friedman–Lemaitre equations

$${{H}^{2}} = \frac{{8\pi {{G}_{N}}\rho }}{3} - \frac{k}{{{{R}^{2}}}} + \frac{\Lambda }{3},$$
(61)
$$\frac{1}{{{{a}^{2}}(t)}}\frac{{{{d}^{2}}a}}{{d{{t}^{2}}}} = \frac{\Lambda }{3} - \frac{{4\pi {{G}_{N}}}}{3}(\rho + 3p),$$
(62)
$$H(t) \equiv \frac{1}{{R(t)}}\frac{{dR}}{{dt}},$$
(63)

where \(H(t)\) is the Hubble parameter and \(\Lambda \) is cosmological constant. Energy conservation \(T_{{;\nu }}^{{\mu \nu }} = 0\) leads to the equation

$$\frac{{d\rho }}{{dt}} = - 3H(\rho + p).$$
(64)

The equation (64) allows to determine today critical density \({{\rho }_{c}}\) that corresponds to flat Universe with \(k = 0\) and \(\Lambda = 0\) in the equations (61), (62), namely

$${{\rho }_{c}} = \frac{{3{{H}^{2}}}}{{8\pi {{G}_{N}}}} = 1.05 \times {{10}^{{ - 5}}}{{h}^{2}}\,\,{\text{GeV}}\,\,{\text{c}}{{{\text{m}}}^{{ - 3}}}$$
(65)

Here the parameter \(h\) is defined by

$$H \equiv 100\,\,{\text{h}}\,\,{\text{km}}\,\,{{{\text{s}}}^{{ - 1}}}\,\,{\text{Mp}}{{{\text{c}}}^{{ - 1}}}$$
(66)

and its experimental value is \(h = 0.72 \pm 0.03\) [9]. The cosmological density parameter \({{\Omega }_{{{\text{tot}}}}}\) is defined as the energy density relative to the critical density

$${{\Omega }_{{{\text{tot}}}}} = {\rho \mathord{\left/ {\vphantom {\rho {{{\rho }_{c}}}}} \right. \kern-0em} {{{\rho }_{c}}}}.$$
(67)

One can rewrite the equation (61) in the form

$$\frac{k}{{{{R}^{2}}}} = {{H}^{2}}({{\Omega }_{{{\text{tot}}}}} - 1).$$
(68)

As a consequence of the equation (68) we see that for \({{\Omega }_{{{\text{tot}}}}} > 1\) the Universe is closed, for \({{\Omega }_{{{\text{tot}}}}} < 1\) the Universe is open and for \({{\Omega }_{{{\text{tot}}}}} = 1\) the Universe is spatially flat. It is often necessary to distinguish different contributions to the density \({{\Omega }_{{{\text{tot}}}}}\). It is convenient to define present-day density parameters for pressureless matter \({{\Omega }_{m}}\) and relativistic particles \({{\Omega }_{r}}\) plus the vacuum dark energy density \({{\Omega }_{V}}\) and the dark matter density \({{\Omega }_{d}}\). Current data give [9]

$${{\Omega }_{V}} = 0.73 \pm 0.01,$$
(69)
$${{\Omega }_{d}} = 0.23 \pm 0.01.$$
(70)

It is expected that the early Universe can be described by a radiation-dominated equation of state. In addition it is assumed that through much of the radiation-dominated period, thermal equillibrium is established by the rapid rate of particle interactions relative to the expansion rate of the Universe. In equilibrium thermodynamic quantities like energy density, pressure and entropy are calculable quantities in the ideal gas approximation. The density of states for particle \(i\) is given by

$$d{{n}_{i}} = \frac{{{{g}_{i}}{{d}^{3}}\vec {p}}}{{{{{(2\pi )}}^{3}}}}{{\left( {exp\left[ {\frac{{{{E}_{i}} - {{\mu }_{i}}}}{{{{T}_{i}}}}} \right] \pm 1} \right)}^{{ - 1}}}.$$
(71)

Here \({{g}_{i}}\) counts the number of degrees of freedom of particle \(i\), \(E_{i}^{2} = \mathop {\vec {p}}\nolimits^2 + m_{i}^{2}\), \( \pm \) corresponds to either Fermi or Bose statistics, \({{\mu }_{i}}\) is the chemical potentialFootnote 14 and \({{T}_{i}}\) is the temperature. The energy density, the pressure, the number density and the entropy density are given by the formulae

$${{\rho }_{i}} = \int {{{E}_{i}}d{{n}_{i}}} ,$$
(72)
$${{p}_{i}} = \frac{1}{3}\int {\frac{{\vec {p}_{i}^{2}}}{{{{E}_{i}}}}} d{{n}_{i}},$$
(73)
$${{n}_{i}} = \int {d{{n}_{i}}} ,$$
(74)
$${{s}_{i}} = \frac{{{{\rho }_{i}} + {{p}_{i}} - {{\mu }_{i}}{{n}_{i}}}}{{{{T}_{i}}}}.$$
(75)

For instance, for photons with \({{g}_{\gamma }} = 2\) polarization states the energy density, pressure, density of the number of photons and the entropy density are given by the formulae

$${{\rho }_{\gamma }} = \frac{{{{\pi }^{2}}}}{{15}}{{T}^{4}},$$
(76)
$${{p}_{\gamma }} = \frac{1}{3}{{\rho }_{\gamma }},$$
(77)
$${{s}_{\gamma }} = \frac{{4{{\rho }_{\gamma }}}}{{3T}},$$
(78)
$${{n}_{\gamma }} = 0.243{{T}^{3}}.$$
(79)

The number density of nonrelativistic particles is given by the formula

$${{n}_{{{\text{nonrel}}}}} = g\frac{1}{{{{{(2\pi )}}^{{3/2}}}}}{{(mT)}^{{3/2}}}{\text{exp}}\left( { - \frac{m}{T}} \right),$$
(80)

where \(g\) is the number of polarizations. As a consequence of the equations (61), (62) and the definition (75) of the entropy density one can find that the total entropy is conserved, namely

$$\frac{{d(s{{R}^{3}})}}{{dt}} = 0.$$
(81)

At the very high temperatures associated with the early Universe, massive particles are pair produced, and are part of the thermal bath. At high temperature \(T \gg {{m}_{i}}\) we can neglect masses and approximate the energy density by including those particles with \({{m}_{i}} \ll T\), namely

$$\rho = \left( {\sum\limits_B {{{g}_{B}}} + \frac{7}{8}\sum\limits_F {{{g}_{F}}} } \right)\frac{{{{\pi }^{2}}}}{{30}}{{T}^{4}} \equiv {{g}_{\rho }}{{T}^{4}},$$
(82)

where \({{g}_{{B(F)}}}\) is the number of degrees of freedom of each boson (fermion) and the sum runs over all bosons and fermions with \(m \ll T\). The factor \({7 \mathord{\left/ {\vphantom {7 8}} \right. \kern-0em} 8}\) is due to the difference between \({\text{the}}\) Fermi and Bose integrals (71)–(75). The equation (82) defines the effective number of degrees of freedom. For instance, for temperature \({{m}_{e}} < T < {{m}_{\mu }}\) the effective number \({{g}_{\rho }} = {{43} \mathord{\left/ {\vphantom {{43} 4}} \right. \kern-0em} 4}\).

To obtain estimate of dark matter density we have to solve the Boltzmann equation

$$\frac{{d{{n}_{d}}}}{{dt}} + 3H(T){{n}_{d}} = - \left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle (n_{d}^{2} - n_{{d,{\text{eq}}}}^{2}).$$
(83)

Here

$${{n}_{d}}(T) = \int {\frac{{{{d}^{3}}p}}{{2{{\pi }^{3}}}}} {{f}_{d}}(p,T),$$
(84)

and \({{f}_{d}}(p,T)\) is DM distribution function. The equilibrium nonrelativistic DM density is

$${{n}_{{d,{\text{eq}}}}} = {{g}_{d}}\frac{1}{{{{{(2\pi )}}^{{3/2}}}}}{{({{m}_{\chi }}T)}^{{3/2}}}{\text{exp}}\left( { - \frac{{{{m}_{\chi }}}}{T}} \right),$$
(85)

where \({{m}_{\chi }}\) is the mass of DM particle. The \(\left\langle {\sigma v} \right\rangle \) is thermally pair averaged cross section [1, 122]

$$\begin{gathered} \left\langle {\sigma v} \right\rangle = \frac{1}{{8m_{\chi }^{4}T{{K}_{2}}{{{\left( {\tfrac{{{{m}_{\chi }}}}{T}} \right)}}^{2}}}} \\ \times \,\,\int\limits_{4m_{\chi }^{2}}^\infty {ds\sigma } (s)\sqrt s (s - 4m_{\chi }^{2}){{K}_{1}}\left( {\frac{{\sqrt s }}{T}} \right). \\ \end{gathered} $$
(86)

In nonrelativistic approximation \(\left\langle {\tfrac{{{{m}_{\chi }}{{{\vec {v}}}^{2}}}}{2}} \right\rangle = \tfrac{{3T}}{2}\).

The DM relative density parameter \({{\Omega }_{d}}\) is represented in the form

$${{\Omega }_{d}} = \frac{{{{m}_{\chi }}{{s}_{o}}{{Y}_{0}}}}{{{{\rho }_{c}}}},$$
(87)

where \({{s}_{0}} \equiv s({{T}_{0}})\) is today dark entropy density and \(Y \equiv \tfrac{{{{n}_{d}}}}{s}\) is approximately constant for iso-entropic Universe \((Y({{t}_{d}}) \approx Y({{t}_{0}}))\). The evolution equation for \(Y(t)\) reads

$$\frac{{dY}}{{dt}} = - s\left\langle {{{\sigma }_{{{\text{rel}}}}}} \right\rangle ({{Y}^{2}} - Y_{{{\text{eq}}}}^{2}).$$
(88)

The equation (88) can be rewritten in the form

$$\frac{{dY}}{{dx}} = \frac{1}{{3H}}\frac{{ds}}{{dx}}\left\langle {{{\sigma }_{{{\text{rel}}}}}} \right\rangle ({{Y}^{2}} - Y_{{{\text{eq}}}}^{2}).$$
(89)

Here \(x = \tfrac{{{{m}_{\chi }}}}{T}\) and \(T\) is photon temperature. Note that for the flat Universe the Hubble parameter \(H = {{\left( {\tfrac{8}{3}\pi G\rho } \right)}^{{1/2}}}\). The effective degrees of freedom for the energy and entropy densities are defined by

$$\rho = {{g}_{{{\text{eff}}}}}(T)\frac{{{{\pi }^{2}}}}{{30}}{{T}^{4}},$$
(90)
$$s = {{h}_{{{\text{eff}}}}}(T)\frac{{2{{\pi }^{2}}}}{{45}}{{T}^{3}}$$
(91)

respectively, in such a way that the \({{g}_{{{\text{eff}}}}}(T) = {{h}_{{{\text{eff}}}}}(T) = 1\) for a relativistic species with one internal or spin degree of freedom. Taking into account (91) equation (89) takes the form

$$\frac{{dY}}{{dx}} = - {{\left( {\frac{{45}}{\pi }G} \right)}^{{ - 1/2}}}\frac{{g_{ * }^{{1/2}}{{m}_{\chi }}}}{{{{x}^{2}}}}\left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle ({{Y}^{2}} - Y_{{{\text{eq}}}}^{2}),$$
(92)

where

$$g_{ * }^{{1/2}} = \frac{{{{h}_{{{\text{eff}}}}}}}{{g_{{{\text{eff}}}}^{{1/2}}}}\left( {1 + \frac{1}{3}\frac{T}{{{{h}_{{{\text{eff}}}}}}}\frac{{d{{h}_{{{\text{eff}}}}}}}{{dT}}} \right).$$
(93)

The equilibrium density \({{Y}_{{{\text{eq}}}}}\) is given by

$${{Y}_{{{\text{eq}}}}} = \frac{{45g}}{{4{{\pi }^{2}}}}\frac{{{{x}^{2}}{{K}_{2}}(x)}}{{{{h}_{{{\text{eff}}}}}\left( {\tfrac{{{{m}_{\chi }}}}{x}} \right)}}.$$
(94)

The solution of the equation (92) allows to determine the freeze-out temperature \({{T}_{d}}\). The decoupling temperature \({{T}_{d}}\) is usually defined by the equation

$$\Delta \equiv Y - {{Y}_{{{\text{eq}}}}} = \delta {{Y}_{{{\text{eq}}}}}.$$
(95)

In the approximation \(\tfrac{{d\Delta }}{{dx}} = 0\) the equation

$${{\left( {\frac{{45}}{\pi }G} \right)}^{{ - 1/2}}}\frac{{g_{ * }^{{1/2}}{{m}_{\chi }}}}{{{{x}^{2}}}}\left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle {{Y}_{{{\text{eq}}}}}\delta (\delta + 2) = - \frac{{dln{{Y}_{{{\text{eq}}}}}}}{{dx}}$$
(96)

allows to determine the decoupling temperature \({{T}_{d}}\). The parameter \(\delta \) is usually taken to be \(\delta = 1.5\). After the decoupling we can neglect \({{Y}_{{{\text{eq}}}}}\) in the equation (83) and the integration from \({{T}_{d}}\) to \({{T}_{0}}\) gives [1, 122]

$$\frac{1}{{{{Y}_{0}}}} = \frac{1}{{{{Y}_{d}}}} + {{\left( {\sqrt {\frac{\pi }{{45}}} {{M}_{{{\text{PL}}}}}} \right)}^{{ - 1}}}\left[ {\int\limits_{{{T}_{0}}}^{{{T}_{d}}} {(g_{ * }^{{1/2}}(\left\langle {\sigma v} \right\rangle )dT} } \right].$$
(97)

Numerically \({{Y}_{d}} \gg {{Y}_{o}}\) and we can neglect it, so we obtain [1, 122]

$${{Y}_{o}} \approx \sqrt {\frac{\pi }{{45}}} {{M}_{{{\text{PL}}}}}{{\left[ {\int\limits_{{{T}_{0}}}^{{{T}_{{{\text{dec}}}}}} {(g_{ * }^{{1/2}}(\left\langle {\sigma v} \right\rangle )dT} } \right]}^{{ - 1}}}.$$
(98)

The DM relic density can be numerically estimated as

$${{\Omega }_{d}}{{h}^{2}} = 8.76 \times {{10}^{{ - 11}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}}{{\left[ {\int\limits_{{{T}_{0}}}^{{{T}_{d}}} {(g_{ * }^{{1/2}}\left\langle {\sigma v} \right\rangle )\frac{{dT}}{{{{m}_{\chi }}}}} } \right]}^{{ - 1}}}.$$
(99)

In nonrelativistic approximation with \(\left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle = {{\sigma }_{o}}x_{f}^{{ - n}}\) one can find that the previous formula takes the form [1, 122]Footnote 15

$${{\Omega }_{{{\text{DM}}}}}{{h}^{2}} = 0.1\left( {\frac{{(n + 1)x_{f}^{{n + 1}}}}{{({{{{g}_{{ * s}}}} \mathord{\left/ {\vphantom {{{{g}_{{ * s}}}} {g_{ * }^{{1/2}}}}} \right. \kern-0em} {g_{ * }^{{1/2}}}})}}} \right)\frac{{0.876 \times {{{10}}^{{ - 9}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}}}}{{{{\sigma }_{0}}}},$$
(100)

where \({{x}_{f}} = \tfrac{{{{m}_{\chi }}}}{{{{T}_{d}}}}\). The following approximate formula [1] takes place for \({{x}_{f}}\):

$${{x}_{f}} = c - \left( {n + \frac{1}{2}} \right){\text{ln}}(c),$$
(101)
$$c = {\text{ln}}(0.038(n + 1)\frac{g}{{\sqrt {g_{{*}}} }}{{M}_{{{\text{Pl}}}}}{{m}_{\chi }}{{\sigma }_{0}}).$$
(102)

Here \(g_{{*}}\), \({{g}_{{ * s}}}\) are the effective relativistic energy and entropy degrees of freedom and g is an internal number of freedom degree. If DM particles differ from DM antiparticles \({{\sigma }_{o}} = \tfrac{{{{\sigma }_{{an}}}}}{2}\).

For s-wave annihilation cross-section with \(n = 0\)

$$\left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle = 7.3 \times {{10}^{{ - 10}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}} \times \frac{1}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}\left( {\frac{{{{m}_{\chi }}}}{{{{T}_{d}}}}} \right).$$
(103)

Here \(g_{{ * ,{\text{av}}}}^{{1/2}} = \tfrac{1}{{{{T}_{d}}}}\int_{{{T}_{o}}}^{{{T}_{d}}} {({{{{g}_{{ * s}}}} \mathord{\left/ {\vphantom {{{{g}_{{ * s}}}} {g_{ * }^{{1/2}}}}} \right. \kern-0em} {g_{ * }^{{1/2}}}})dT} \). The calculations show that \(1 \leqslant {{c}_{s}} \equiv \tfrac{{{{m}_{\chi }}}}{{10{{T}_{d}}}} \leqslant 1.5\) at 1 MeV ≤ mχ\(100\,\,{\text{MeV}}\). So we find that

$$\left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle = 7.3 \times {{10}^{{ - 9}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}} \times \frac{1}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}{{c}_{S}}.$$
(104)

For the Dirac fermion DM \(\chi \) with dark photon as a messenger between DM and SM sectors the nonrelativistic annihilation cross-section into electron positron pair isFootnote 16

$${{\sigma }_{{an}}}(\chi \bar {\chi } \to {{e}^{ - }}{{e}^{ + }}){{v}_{{{\text{rel}}}}} = \frac{{16\pi {{\varepsilon }^{2}}{{\alpha }_{{\text{D}}}}m_{\chi }^{2}}}{{{{{(m_{{A{\kern 1pt} '}}^{2} - 4m_{\chi }^{2})}}^{2}}}}.$$
(105)
$${{\epsilon }^{2}}{{\alpha }_{{\text{D}}}} = 2.0 \times {{10}^{{ - 8}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}} \times \frac{{{{{(m_{{A{\kern 1pt} '}}^{2} - 4m_{\chi }^{2})}}^{2}}}}{{m_{\chi }^{2}}}\frac{{2{{c}_{s}}}}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}.$$
(106)

For \({{m}_{{A{\kern 1pt} '}}} = 3{{m}_{\chi }}\) we find

$${{\epsilon }^{2}}{{\alpha }_{{\text{D}}}} = 0.5 \times {{10}^{{ - 12}}} \times {{\left( {\frac{{{{m}_{\chi }}}}{{{\text{MeV}}}}} \right)}^{2}} \times \frac{{2{{c}_{s}}}}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}.$$
(107)

At \(20\,\,{\text{MeV}} \leqslant {{m}_{\chi }} \leqslant 200\,\,{\text{MeV}}\) and \(T \leqslant 100\,\,{\text{MeV}}\) the effective value \(g_{{ * ,{\text{av}}}}^{{1/2}} \approx 3.3\), so we find that

$${{\epsilon }^{2}}{{\alpha }_{{\text{D}}}} \sim 0.4 \times {{10}^{{ - 12}}} \times {{\left( {\frac{{{{m}_{\chi }}}}{{{\text{MeV}}}}} \right)}^{2}}.$$
(108)

Note that for pseudo-Dirac DM the predicted value for \({{\epsilon }^{2}}{{\alpha }_{{\text{D}}}}\) is bigger than the corresponding value for fermion DM. For the p-wave cross-section in nonrelativistic approximation \(\left\langle {\sigma {{v}_{{{\text{rel}}}}}} \right\rangle = \left\langle {Bv_{{{\text{rel}}}}^{2}} \right\rangle = 6B\left( {\frac{T}{{{{m}_{\chi }}}}} \right)\). An analog of the formula (103) is

$$6B = 14.6 \times {{10}^{{ - 10}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}} \times \frac{1}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}{{\left( {\frac{{{{m}_{\chi }}}}{{{{T}_{d}}}}} \right)}^{2}}.$$
(109)

Here \(g_{{ * ,{\text{av}}}}^{{1/2}} = \tfrac{2}{{T_{d}^{2}}}\int_{{{T}_{o}}}^{{{T}_{d}}} {T({{{{g}_{{ * s}}}} \mathord{\left/ {\vphantom {{{{g}_{{ * s}}}} {g_{ * }^{{1/2}}}}} \right. \kern-0em} {g_{ * }^{{1/2}}}})dT} \). For the p-wave annihilations the estimates are similar to the Dirac fermion case, namely for \(1\,\,{\text{MeV}} \leqslant {{m}_{\chi }} \leqslant 200\,\,{\text{MeV}}\) we find that \(\tfrac{{{{m}_{\chi }}}}{{{{T}_{d}}}} = 10 \times {{c}_{p}}\) with \(1 \leqslant {{c}_{p}} \leqslant 2\).

For the charged scalar DM the nonrelativistic annihilation cross-section into electron-positron pair is

$$\sigma {{v}_{{{\text{rel}}}}} = \frac{{8\pi }}{3}\frac{{{{\epsilon }^{2}}\alpha {{\alpha }_{{\text{D}}}}m_{\chi }^{2}v_{{{\text{rel}}}}^{2}}}{{{{{(m_{{A{\kern 1pt} '}}^{2} - 4m_{\chi }^{2})}}^{2}}}},$$
(110)

An analog of the formula (106) is

$${{\epsilon }^{2}}{{\alpha }_{{\text{D}}}} = 4.0 \times {{10}^{{ - 7}}}\,\,{\text{Ge}}{{{\text{V}}}^{{ - 2}}}\frac{{{{{(m_{{A{\kern 1pt} '}}^{2} - 4m_{\chi }^{2})}}^{2}}}}{{m_{\chi }^{2}}}\frac{{2c_{p}^{2}}}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}.$$
(111)

For \({{m}_{{A{\kern 1pt} '}}} = 3{{m}_{\chi }}\) we find

$${{\epsilon }^{2}}{{\alpha }_{{\text{D}}}} = {{10}^{{ - 11}}} \times {{\left( {\frac{{{{m}_{\chi }}}}{{{\text{MeV}}}}} \right)}^{2}}\frac{{2{{c}_{p}}}}{{g_{{ * ,{\text{av}}}}^{{1/2}}}}.$$
(112)

As a reasonable estimate we take

$${{\epsilon }^{2}}{{\alpha }_{{\text{D}}}} \sim {{10}^{{ - 11}}} \times {{\left( {\frac{{{{m}_{\chi }}}}{{{\text{MeV}}}}} \right)}^{2}}.$$
(113)

For Majorana fermions the typical estimate for \({{\epsilon }^{2}}{{\alpha }_{{\text{D}}}}\) has additional factor \( \approx 2\).

APPENDIX B: Detection of Long Lived Particles at NA64

In pseudo-Dirac scenario [4] the Majorana particles \({{\chi }_{1}}\) and \({{\chi }_{2}}\) are produced in the reactions

$$eZ \to eZA{\kern 1pt} ',$$
(114)
$$A{\kern 1pt} ' \to {{\chi }_{1}}{{\chi }_{2}}.$$
(115)

Here we assume that \({{m}_{{{{\chi }_{2}}}}} > {{m}_{{{{\chi }_{1}}}}}\). In pseudo-Dirac model the decay

$${{\chi }_{2}} \to {{\chi }_{1}}{{e}^{ + }}{{e}^{ - }}$$
(116)

allows to avoid GMB restrictions [74] on the \(s\)-wave DM annihilation cross-section. The decay width \({{\chi }_{2}} \to {{\chi }_{1}}{{e}^{ + }}{{e}^{ - }}\) is given by the formula [123]

$$\Gamma ({{\chi }_{2}} \to {{\chi }_{1}}{{e}^{ + }}{{e}^{ - }}) \approx \frac{{4{{\epsilon }^{2}}\alpha {{\alpha }_{{\text{D}}}}{{\Delta }^{5}}}}{{15\pi m_{{A{\kern 1pt} '}}^{4}}},$$
(117)

where \(\Delta = {{m}_{{{{\chi }_{2}}}}} - {{m}_{{{{\chi }_{1}}}}}\). For the case of dominant \(A{\kern 1pt} ' \to {{e}^{ + }}{{e}^{ - }}\) decay the dark photon decay length is given by the formula [39]

$$\begin{gathered} {{l}_{{A{\kern 1pt} '}}} = {{\gamma }_{{A{\kern 1pt} '}}}c\tau \\ \approx 0.8\,\,{\text{mm}} \times \left( {\frac{{{{\gamma }_{{A{\kern 1pt} '}}}}}{{10}}} \right) \times {{\left( {\frac{{{{{10}}^{{ - 4}}}}}{\epsilon }} \right)}^{2}} \times \frac{{100\,\,{\text{MeV}}}}{{{{m}_{{A{\kern 1pt} '}}}}}, \\ \end{gathered} $$
(118)

where \({{\gamma }_{{A{\kern 1pt} '}}} = \tfrac{{{{E}_{{A{\kern 1pt} '}}}}}{{{{m}_{{A{\kern 1pt} '}}}}}\). The analogous formula for \({{\chi }_{2}} \to {{\chi }_{1}}{{e}^{ + }}{{e}^{ - }}\) decay length is

$$\begin{gathered} {{l}_{{{{\chi }_{2}}}}} = {{\gamma }_{{{{\chi }_{2}}}}}c\tau \\ \approx 0.8\,\,{\text{mm}} \times \left( {\frac{{{{\gamma }_{{{{\chi }_{2}}}}}}}{{10}}} \right) \times {{\left( {\frac{{{{{10}}^{{ - 4}}}}}{\varepsilon }} \right)}^{2}} \times {{\kappa }^{{ - 1}}} \times \frac{{100\,\,{\text{MeV}}}}{{{{m}_{{A{\kern 1pt} '}}}}}. \\ \end{gathered} $$
(119)

Here \({{\gamma }_{{{{\chi }_{2}}}}} = \tfrac{{{{E}_{{{{\chi }_{2}}}}}}}{{{{m}_{{{{\chi }_{2}}}}}}}\) and \(\kappa = \tfrac{{4{{\alpha }_{{\text{D}}}}{{\Delta }^{5}}}}{{5\pi m_{A}^{5}}}\). As a numerical example we use the point [123] \({{m}_{{A{\kern 1pt} '}}} = 3{{m}_{{{{\chi }_{1}}}}}\), \(\Delta = 0.4{{m}_{{{{\chi }_{1}}}}}\) and \({{\alpha }_{{\text{D}}}} = 0.1\). For this point we find that

$$\begin{gathered} {{l}_{{{{\chi }_{2}}}}} = {{\gamma }_{{{{\chi }_{2}}}}}c\tau \approx 0.8\,\,{\text{mm}} \times \left( {\frac{{{{\gamma }_{{{{\chi }_{2}}}}}}}{{10}}} \right) \times {{\left( {\frac{{{{{10}}^{{ - 4}}}}}{\epsilon }} \right)}^{2}} \\ \times \frac{{100\,\,{\text{MeV}}}}{{{{m}_{{A{\kern 1pt} '}}}}} \times 0.43 \times {{10}^{6}}. \\ \end{gathered} $$
(120)

For NA64 experiment with \(100\,\,{\text{GeV}}\) electron beam the \(A{\kern 1pt} '\) energy is \( \sim 100\,\,{\text{GeV}}\) and approximately \({{E}_{{{{\chi }_{2}}}}} \sim \tfrac{{{{E}_{{A{\kern 1pt} '}}}}}{2} \approx 50\,\,{\text{GeV}}\). As a crude estimate we shall use \({{\gamma }_{{{{\chi }_{2}}}}} = \tfrac{{50\,\,{\text{GeV}}}}{{{{m}_{{{{\chi }_{2}}}}}}}\). As a result we find

$${{l}_{{{{\chi }_{2}}}}} \equiv {{\gamma }_{{{{\chi }_{2}}}}}c\tau \approx 7.6\,\,{\text{cm}}{{\left( {\frac{{{{{10}}^{{ - 1}}}}}{\epsilon }} \right)}^{2}} \times {{\left( {\frac{{100\,\,{\text{MeV}}}}{{{{m}_{{A{\kern 1pt} '}}}}}} \right)}^{2}}.$$
(121)

For instance, for \({{m}_{{A{\kern 1pt} '}}} = 100\,\,{\text{MeV}}\) and \(\epsilon = {{10}^{{ - 2}}}\)

$${{l}_{{{{\chi }_{2}}}}} \approx 8\,\,{\text{m}}.$$
(122)

So the problem arises—is it possible to derive bounds on \({{\varepsilon }^{2}}\) at finite \({{l}_{{{{\chi }_{2}}}}}\) from NA64 data? The NA64 experiment for the search for invisible \(A{\kern 1pt} '\) decays consists of ECAL with the length \(60\,\,{\text{cm}}\). Also we have 3 HCAL modules each with \({{l}_{{{\text{HCAL}}}}} = 170\,\,{\text{cm}}\) and the distance between the end of the ECAL and the begining of the HCAL modules is \(80\,\,{\text{cm}}\). So the distance between the begining of ECAL and the end of the last HCAL section(the end of NA64 experiment) is \({{l}_{{{\text{exp}}}}} = 6.5\,\,{\text{m}}\). The active zone of ECAL is \({{l}_{{{\text{ECAL}}{\text{,act}}}}} \approx 45\,\,{\text{cm}}\). Suppose the \(A{\kern 1pt} '\) is produced in ECAL and immediately decays into \({{\chi }_{2}}{{\chi }_{1}}\)( this assumption is correct since \({{\alpha }_{{\text{D}}}} = 0.1\) and \(\Gamma (A{\kern 1pt} ' \to {{\chi }_{2}}{{\chi }_{1}})\) is not small) and \({{\chi }_{2}}\) decays into \({{\chi }_{1}}{{e}^{ + }}{{e}^{ - }}\) with the decay length \({{l}_{{{{\chi }_{2}}}}}\). The probability that \({{\chi }_{2}}\) does not decay within NA64, i.e. between the ECAL and the HCAL, is

$${{P}_{{{{\chi }_{2}}}}}({\text{outside}}\,\,{\text{decay}}) = {\text{exp}}\left( { - \frac{{{{l}_{{{\text{exp}}}}}}}{{{{l}_{{{{\chi }_{2}}}}}}}} \right),$$
(123)

where \({{l}_{{{{\chi }_{2}}}}}\) is the \({{\chi }_{2}}\) decay length. We can use the NA64 results on the search for invisible dark photon decays. The bound on mixing parameter is

$${{\epsilon }^{2}} \leqslant \epsilon _{{{\text{NA64}}{\text{,up}}}}^{2} \times {{({{P}_{{{{\chi }_{2}}}}}({\text{outside}}\,\,{\text{decay}}))}^{{ - 1}}},$$
(124)

where \(\epsilon _{{{\text{NA64}}{\text{,up}}}}^{2}\) is the NA64 upper bound [34] obtained in the assumption that \({\text{Br}}(A{\kern 1pt} ' \to {\text{invisible}}) = \) 100%. Also the situation with \({{\chi }_{2}}\) decaying withing the ECAL is possible. In this case we have missing energy due to decay chain \(A{\kern 1pt} ' \to {{\chi }_{1}}{{\chi }_{2}} \to {{\chi }_{1}}{{\chi }_{1}}{{e}^{ + }}{{e}^{ - }}\) and nonobservation of 2 \({{\chi }_{1}}\) particles. The average missing energy in this decay is \({{E}_{{{\text{miss}}}}} \approx 0.5{{E}_{{A{\kern 1pt} '}}} + \tfrac{1}{3}{{E}_{{A{\kern 1pt} '}}}\) and it is bigger than the used in NA64 missing energy cut \({{E}_{{{\text{miss}}}}} > {{E}_{{{\text{miss}}{\text{,cut}}}}} = 50\,\,{\text{GeV}}\). So we can detect the events related with the \({{\chi }_{2}}\) decay within ECAL by the measurement of missing energy. The probability that \({{\chi }_{2}}\) decays within ECAL active zone is

$${{P}_{{{{\chi }_{2}}}}}({\text{decaysin}}\,\,{\text{ECAL}}) = 1 - {\text{exp}}\left( { - \frac{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}{{{{l}_{{{{\chi }_{2}}}}}}}} \right).$$
(125)

So total probability of the \({{\chi }_{2}}\) detection with the use of energy missing cut is

$$\begin{gathered} {{P}_{{{{\chi }_{2}}}}} = {{P}_{{{{\chi }_{2}}}}}({\text{decaysin}}\,\,{\text{ECAL}}) + {{P}_{{{{\chi }_{2}}}}}({\text{outside}}\,\,{\text{decay}}) \\ \times \,\,\left( {1 - {\text{exp}}\left( { - \frac{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}{{{{l}_{{{{\chi }_{2}}}}}}}} \right)} \right) + {\text{exp}}\left( { - \frac{{{{l}_{{{\text{exp}}}}}}}{{{{l}_{{{{\chi }_{2}}}}}}}} \right). \\ \end{gathered} $$
(126)

For arbitrary \({{l}_{{{{\chi }_{2}}}}}\) the expression (126) for \({{P}_{{{{\chi }_{2}}}}}\) has minimal value at

$${{l}_{{\exp }}}\exp \left( { - \frac{{{{l}_{{\exp }}}}}{{{{l}_{{{{\chi }_{2}},\min }}}}}} \right) = {{l}_{{{\text{ECAL}}{\text{,act}}}}}\exp \left( { - \frac{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}{{{{l}_{{{{\chi }_{2}},\min }}}}}} \right),$$
(127)

or

$${{l}_{{{{\chi }_{2}},\min }}} = \frac{{{{l}_{{\exp }}} - {{l}_{{{\text{ECAL}}{\text{,act}}}}}}}{{\ln \left( {\frac{{{{l}_{{\exp }}}}}{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}} \right)}},$$
(128)

and \({{P}_{{{{\chi }_{2}},{\text{min}}}}}\) is

$$\begin{gathered} {{P}_{{{{\chi }_{2}},{\text{min}}}}} = \left( {1 - exp\left( { - \frac{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}{{{{l}_{{{\text{exp}}}}} - {{l}_{{{\text{ECAL}}{\text{,act}}}}}}}ln\frac{{{{l}_{{{\text{exp}}}}}}}{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}} \right)} \right. \\ \left. { + \,\,exp\left( { - \frac{{{{l}_{{{\text{exp}}}}}}}{{{{l}_{{{\text{exp}}}}} - {{l}_{{{\text{ECAL}}{\text{,act}}}}}}}ln\frac{{{{l}_{{{\text{exp}}}}}}}{{{{l}_{{{\text{ECAL}}{\text{,act}}}}}}}} \right)} \right). \\ \end{gathered} $$
(129)

Numerically for \({{l}_{{{\text{exp}}}}} = 650\,\,{\text{cm}}\) and \({{l}_{{{\text{ECAL}}{\text{,exp}}}}} = 40\,\,{\text{cm}}\) we find

$${{P}_{{{{\chi }_{2}},{\text{min}}}}} \approx 0.22.$$
(130)

The bound on \({{\epsilon }^{2}}\) reads

$${{\epsilon }^{2}} \leqslant \epsilon _{{{\text{NA64}}{\text{,up}}}}^{2} \times {{({{P}_{{{{\chi }_{2}},{\text{min}}}}})}^{{ - 1}}} \approx 4.5 \times \epsilon _{{{\text{NA64}}{\text{,up}}}}^{2}.$$
(131)

Here \(\epsilon _{{{\text{NA64}}{\text{,up}}}}^{2}\) is the NA64 bound for the case of invisible \(A{\kern 1pt} '\) decay. So we see that NA64 is able to obtain upper bound on \({{\epsilon }^{2}}\) parameter for the case of visible \(A{\kern 1pt} '\) decay with large missing energy in a model independent way. The knowledge of \({{l}_{{{{\chi }_{2}}}}}\) allows to improve the bound (131).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gninenko, S.N., Krasnikov, N.V. & Matveev, V.A. Search for Dark Sector Physics with NA64. Phys. Part. Nuclei 51, 829–858 (2020). https://doi.org/10.1134/S1063779620050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620050044

Navigation