Log in

NO Biomarker: Transmission and Emission Methods for Its Potential Detection in Exoplanet Atmospheres with Spektr-UF (WSO-UV)

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Among all habitability factors for terrestrial exoplanets, one of the most important is the presence of a secondary N2–O2 dominant atmosphere on an exoplanet. This factor can potentially indicate the already existing geological and biological processes on the exoplanet. Meanwhile, direct characterization of the N2‒O2 atmospheres of terrestrial exoplanets is a difficult observational task. There are only a few indicators (molecules) of such an atmosphere, among which one can single out a potential biomarker—a molecule of nitric oxide NO. The strongest spectral features of this molecule in the ultraviolet range are γ-bands (203‒248 nm). An important role in the search for potential biomarkers on exoplanets, including the detection of NO γ-bands, can be played by planned for the launch Spectr-UF (WSO-UV) space observatory. Estimates of the possibility of detecting the transmission of light in γ-bands in the atmospheres of exoplanets with this observatory are presented in this paper. The methods of emission and transmission spectroscopy are compared as applied to the detection of NO. Based on the results of this study, it is shown that there is a potential possibility of detecting a transmission signal in the NO γ-bands in the atmospheres of nearby exoplanets (<10 pc) using the LSS spectrograph of the Spectr-UF (WSO-UV) observatory. At the same time, the imposed restrictions for the detection of this signal on more distant exoplanets are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. https://www.uv-vis-spectral-atlas-mainz.org/uvvis/.

  2. https://hitran.org/.

  3. This study used the NASA Exoplanet Archive, which is operated by the California Institute of Technology under contract to the National Aeronautics and Space Administration as part of the Exoplanet Research Program.

  4. https://vpl.astro.washington.edu/spectra/stellar/.

  5. Version 2.2 of the adapted panchromatic spectrum of the star with a resolution of 1 Å from the MUSCLES database was used.

  6. https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/890/23.

  7. https://github.com/parkus/galex_motion.

  8. https://asd.gsfc.nasa.gov/archive/galex/FAQ/counts_background.html.

  9. https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs/pickles-atlas.

  10. For a star of spectral type G8V in the considered spectral range of 180–250 nm, the Pickles atlas uses data from [67], in which, in turn, the spectrum of a given star is constructed based on a combination of stellar spectra: Tau Ceti [68], 61 Uma, HD 122742, HD 144287, HD 144579, HD 154345, HD 210612.

  11. https://github.com/VirtualPlanetaryLaboratory/vplanet.

REFERENCES

  1. J. Kasting, D. Whitmire, and R. Reynolds, Icarus 101, 108 (1993).

    Article  ADS  Google Scholar 

  2. A. Nakayama, M. Ikoma, and N. Terada, Astrophys. J. 937, 72 (2022).

    Article  ADS  Google Scholar 

  3. H. Lammer, L. Sproß, J. L. Grenfell, M. Scherf, et al., Astrobiology 19, 7 (2019).

    Article  Google Scholar 

  4. L. Sproß, M. Scherf, V. I. Shematovich, D. V. Bisikalo, and H. Lammer, Astron. Rep. 65, 275 (2021).

    Article  ADS  Google Scholar 

  5. Y. Betremieux and L. Kaltenegger, Astrophys. J. Lett. 772, L31 (2013).

    Article  ADS  Google Scholar 

  6. E. W. Schwieterman, S. L. Olson, D. Pidhorodetska, C. T. Reinhard, et al., Astrophys. J. 937, 109 (2022).

    Article  ADS  Google Scholar 

  7. S. Seager, M. Schrenk, and W. Bain, Astrobiology 12, 61 (2012).

    Article  ADS  Google Scholar 

  8. V. I. Shematovich, D. V. Bisikalo, and J. C. Gérard, Geophys. Res. Lett. 18, 1691 (1991).

    Article  ADS  Google Scholar 

  9. V. I. Shematovich, D. V. Bisikalo, and J. C. Gérard, Ann. Geophys. 10, 792 (1992).

    ADS  Google Scholar 

  10. V. Shematovich, D. Bisikalo, and G. Tsurikov, Atmosphere 14, 1092 (2023).

    Article  ADS  Google Scholar 

  11. D. V. Bisikalo, V. I. Shematovich, and B. Hubert, Universe 8, 437 (2022).

    Article  ADS  Google Scholar 

  12. J. C. Gérard, V.I. Shematovich, and D. V. Bisikalo, Geophys. Res. Lett. 18, 1695 (1991).

    Article  ADS  Google Scholar 

  13. J.-C. Gérard, V. I. Shematovich, and D. V. Bisikalo, The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Vol. 87 of Geophysical Monograph Series (Am. Geophys. Union, 1995).

  14. J.-C. Gérard, D. V. Bisikalo, V. I. Shematovich, and J. W. Duff, J. Geophys. Res. 102, A1 (1997).

    Article  Google Scholar 

  15. C. A. Barth, Piana Space Sci. 40 (24) (1992).

  16. C. A. Barth, K. D. Mankoff, S. M. Bailey, and S. C. Solomon, J. Geophys. Res. 108, A1 (2003).

    Google Scholar 

  17. B. F. Gordiets, Yu. N. Kulikov, M. N. Markov, and M. Ya. Marov, in Infrared Spectroscopy of Cosmic Matter and Properties of the Environment in Space, Vol. 130 of Collection of Scientific Articles of Physical Institute of RAS (Moscow, 1982) [in Russian].

  18. G. N. Tsurikov and D. V. Bisikalo, Astron. Rep. 67, 125 (2023).

    Article  ADS  Google Scholar 

  19. A. A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, D. V. Bisikalo, et al., Astron. Rep. 60, 1 (2016).

    Article  ADS  Google Scholar 

  20. B. M. Shustov, M. E. Sachkov, S. G. Sichevsky, R. N. Arkhangelsky, et al., Solar Syst. Res. 55, 677 (2021).

    Article  ADS  Google Scholar 

  21. M. Sachkov, A. I. Gómez de Castro, B. Shustov, et al., Proc. SPIE, 12181 (2022).

  22. F. Schreier, S. Gimeno García, P. Hochstaffl, and S. Städt, Atmosphere 10, 262 (2019).

    Article  ADS  Google Scholar 

  23. F. Schreier, S. G. Garcia, P. Hedelt, et al., J. Quant. Spectrosc. Rad. Transfer 137, 29 (2014).

    Article  ADS  Google Scholar 

  24. F. Schreier, S. Städt, P. Hedelt, and M. Godolt, Mol. Astrophys. 11, 1 (2018).

    Article  ADS  Google Scholar 

  25. H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen, Earth Syst. Sci. Data 5, 365 (2013).

    Article  ADS  Google Scholar 

  26. W. Schneider, G. K. Moortgat, J. P. Burrows, and G. S. Tyndall, J. Photochem. Photobiol. A 40, 195 (1987).

    Article  Google Scholar 

  27. G. Selwyn, J. Podolske, and H. S. Johnston, Geophys. Res. Lett. 4, 427 (1977).

    Article  ADS  Google Scholar 

  28. C. Y. R. Wu, B. W. Yang, F. Z. Chen, D. L. Judge, J. Caldwell, and L. M. Trafton, Icarus 145, 289 (2000).

    Article  ADS  Google Scholar 

  29. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, et al., J. Quant. Spectrosc. Rad. Transfer 277, 107949 (2022).

    Article  Google Scholar 

  30. M. W. P. Cann, R. W. Nicholls, W. F. J. Evans, J. L. Kohl, et al., Appl. Opt. 18, 964 (1979).

    Article  ADS  Google Scholar 

  31. D. R. Bates, Planel. Space Sci. 32 6, 7855790 (1984).

  32. H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, J. Quant. Spectrosc. Rad. Transfer 90, 275 (2005).

    ADS  Google Scholar 

  33. J. Luque and D. R. Crosley, SRI Int. Report MP 99-009 (SRI, 1999).

  34. A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant. Spectrosc. Rad. Transfer, 9 (1972).

  35. G. V. Marr, Proc. Phys. Soc. 83, 2 (1964).

    Article  Google Scholar 

  36. F. G. Eparvier and C. A. Barth, J. Geophys. Res. 97, A9 (1992).

    Article  Google Scholar 

  37. J. B. Tatum, Astrophys. J. Suppl. 14, 21 (1967).

    Article  Google Scholar 

  38. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, J. Quant. Spectrosc. Rad. Transfer 47, 1 (1992).

    Article  Google Scholar 

  39. R. Engleman and P. E. Rouse, Jr., J. Mol. Spectrosc. 37 (1971).

  40. A. Garcia Munoz, M. R. Zapatero Osorio, R. Barrena, et al., Astrophys. J. 755, 103 (2012).

    Article  ADS  Google Scholar 

  41. U. S. Standard Atmosphere (U.S. Government Printing Office, Washington, D.C., 1976).

  42. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, Report TR-86-0110 (1986).

  43. J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones, M. G. Mlynczak, et al., Earth Space Sci. 8 (2021).

  44. A. Y. Chang, M. D. Di Rosa, and R. K. Hanson, J. Quant. Spectrosc. Rad. Transfer 47, 375 (1992).

    Article  ADS  Google Scholar 

  45. M. D. di Rosa and R. K. Hanson, J. Mol. Spectrosc. 164, 97 (1994).

    Article  ADS  Google Scholar 

  46. J. C. Gérard and C. A. Barth, J. Geophys. Res. 82, 4 (1977).

    Google Scholar 

  47. H. Rauer, S. Gebauer, P. v. Paris, J. Cabrera, et al., A-stron. Astrophys. 529, A8 (2011).

    Article  Google Scholar 

  48. L. Fossati, D. V. Bisikalo, H. Lammer, B. M. Shustov, M. E. Sachkov, et al., Astrophys. Space Sci. 354, 1 (2014).

    Article  ADS  Google Scholar 

  49. M. Sachkov, B. Shustov, and A. I. Gómez de Castro, Proc. SPIE 9144, 914402 (2014).

    Article  Google Scholar 

  50. A. Shugarov, I. Savanov, M. Sachkov, P. Jerram, et al., Astrophys. Space Sci. 2014, 354 (2014).

    Google Scholar 

  51. D. E. Siskind, C. A. Barth, and R. G. Roble, J. Geophys. Res. 94, A12 (1989a).

    Google Scholar 

  52. D. E. Siskind, C. A. Barth, D. S. Evans, and R. G. Roble, J. Geophys. Res. 94, A12 (1989b)

    Google Scholar 

  53. M. L. Hill, K. Bott, P. A. Dalba, T. Fetherolf, et al., Astron. J. 165, 2 (2023).

    Article  Google Scholar 

  54. L. Kaltenegger and W. A. Traub, Astrophys. J. 698, 519 (2009).

    Article  ADS  Google Scholar 

  55. A. Segura, K. Krelove, J. F. Kasting, D. Sommerlatt, et al., Astrobiology 3, 4 (2003).

    Article  Google Scholar 

  56. A. Segura, J. F. Kasting, V. Meadows, M. Cohen, et al., Astrobiology 5, 6 (2005).

    Article  Google Scholar 

  57. V. S. Meadows, G. N. Arney, E. W. Schwieterman, J. Lustig-Yaeger, et al., Astrobiology 18, 2 (2018).

    Google Scholar 

  58. R. O. P. Loyd, E. L. Shkolnik, A. C. Schneider, T. Richey-Yowell, et al., Astrophys. J. 890, 23 (2020).

    Article  ADS  Google Scholar 

  59. P. Morrissey, T. Conrow, T. A. Barlow, T. Small, et al., Astrophys. J. Suppl. Ser. 173, 2 (2007).

    Article  Google Scholar 

  60. J. L. Linsky and M. Güdel, in Characterizing Stellar and Exoplanetary Environments, Ed. by H. Lammer and M. Khodachenko, Vol. 411 of Astrophysics and Space Science Library (Springer, Cham, 2015).

  61. I. S. Savanov, Astrophys. Bull. 76, 157 (2021).

    Article  ADS  Google Scholar 

  62. S. R. Langhoff, C. W. Bauschlicher, and H. Partridge, J. Chem. Phys. 89, 8 (1988).

    Google Scholar 

  63. T. Holstein, Phys. Rev. 72, 12 (1947).

    Article  Google Scholar 

  64. V. I. Shematovich and M. Ya. Marov, Phys. Usp. 61, 217 (2018).

    Article  ADS  Google Scholar 

  65. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Book  Google Scholar 

  66. A. J. Pickles, Publ. Astron. Soc. Pacif. 110, 749 (1998).

    Article  Google Scholar 

  67. Z. Sviderskiene, Vilnius Astron. Observ. Biul. 80, 3 (1988).

    ADS  Google Scholar 

  68. C. C. Wu, T. B. Ake, A. Bogges, et al., NASA Newslett., No. 22 (1983).

  69. R. Barnes, R. Luger, R. Deitrick, P. Driscoll, et al., Publ. Astron. Soc. Pacif. 132, 024502 (2020).

    Article  ADS  Google Scholar 

  70. R. K. Kopparapu, R. Ramirez, J. F. Kasting, V. Eymet, et al., Astrophys. J. 765, 16 (2013).

    Article  Google Scholar 

  71. J.-C. Gérard, L. Soret, V. I. Shematovich, D. V. Bisikalo, and S. W. Bougher, Icarus 288, 284 (2017).

    Article  ADS  Google Scholar 

  72. C. P. Johnstone, M. L. Khodachenko, T. Lüftinger, K. G. Kislyakova, H. Lammer, and M. Güdel, Astron. Astrophys. 624, L10 (2019).

    Article  ADS  Google Scholar 

  73. C. P. Johnstone, H. Lammer, K. G. Kislyakova, M. Scherf, and M. Güdel, Earth Planet. Sci. Lett. 576, 117197 (2021).

    Article  Google Scholar 

  74. R. Luger and R. Barnes, Astrobiology 15, 2 (2015).

    Google Scholar 

  75. V. S. Airapetian, A. Glocer, G. V. Khazanov, R. O. P. Loyd, K. France, et al., Astrophys. J. Lett. 836, L3 (2017).

    Article  ADS  Google Scholar 

  76. O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, Astrophys. J. Suppl. Ser. 167, 81Y99 (2006).

  77. A. Tavrov, S. Kameda, A. Yudaev, I. Dzyuban, et al., J. Astron. Telesc. Instrum. Syst. 4 (04), 1 (2018).

    Article  Google Scholar 

  78. A. Tavrov, O. Korablev, L. Ksanfomaliti, A. Rodin, P. Frolov, et al., Opt. Lett. 36, 11 (2011).

    Article  Google Scholar 

  79. P. Frolov, I. Shashkova, Y. Bezymyannikova, A. Kiselev, and A. Tavrov, J. Astron. Telesc. Instrum. Syst. 2, 1 (2015).

    Article  Google Scholar 

  80. T. D. Robinson, K. R. Stapelfeldt, and M. S. Marley, Publ. Astron. Soc. Pacif. 128, 22 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors of the paper would like to thank Valerii Ivanovich Shematovich, Andrei Georgievich Zhilkin and Yurii Vasil’evich Pakhomov for helpful discussions. The authors of the paper also thank the reviewer for valuable comments.

Funding

The study was funded by the Russian Science Foundation (project no. 22-12-00364).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. N. Tsurikov or D. V. Bisikalo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurikov, G.N., Bisikalo, D.V. NO Biomarker: Transmission and Emission Methods for Its Potential Detection in Exoplanet Atmospheres with Spektr-UF (WSO-UV). Astron. Rep. 67, 1123–1138 (2023). https://doi.org/10.1134/S1063772923110100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923110100

Keywords:

Navigation