Log in

A possible mechanism for the formation of tilted disks in intermediate polars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Using 3D gas dynamics, we numerically simulate accretion-disk formation in typical cataclysmic variable intermediate polars with dipolar magnetic fields (B a = 105−5 × 105 G) and misaligned white-dwarf magnetic and rotation axes. Our simulations confirm that a significant misalignment of the axes results in a significant misalignment of the disk to the orbital plane. However, over time, this disk tilt disappears: early in the simulation, the initial particle positions in the rarefied tilted disk are governed solely by the magnetic field of the white dwarf. Due to the increasing disk mass and hence increasing disk gas pressure, the tilted disk eventually becomes decoupled from the magnetic field. The tidal action of the donor leads to a retrograde (i.e., nodal) precession of the tilted disk’s streamlines, and the disk becomes twisted. When the disk tilt is greater than 4°, the incoming gas stream no longer strikes the disk rim (i.e., bright shocked region). Matter is now transported over and under the disk rim to the inner regions of the disk. Over time, the increased mass of inner parts of the disk due to the action of the colinear gas stream returns the inner-disk regions to a colinear configuration. Meanwhile, the outer regions of the tilted, twisted disk become warped. Our simulations suggest that the lifetime of an intermediate polar’s tilted disk could be several tens to thousands of orbital periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  2. J. Patterson, Publ. Astron. Soc. Pacif. 106, 209 (1994).

    Article  ADS  Google Scholar 

  3. A. J. Norton, G. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  4. A. R. King, Mon. Not. R. Astron. Soc. 261, 144 (1993).

    ADS  Google Scholar 

  5. G. A. Wynn and A. R. King, Mon. Not. R. Astron. Soc. 275, 9 (1995).

    ADS  Google Scholar 

  6. G. A. Wynn, A. R. King, and K. Horne, Mon. Not. R. Astron. Soc. 286, 436 (1997).

    Article  ADS  Google Scholar 

  7. A. R. King and G. A. Wynn, Mon. Not. R. Astron. Soc. 310, 203 (1999).

    Article  ADS  Google Scholar 

  8. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Astrophys. 421, 1131 (2004).

    Article  ADS  Google Scholar 

  9. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  10. A. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. Lett. 576, L53 (2002).

    Article  ADS  Google Scholar 

  11. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 595, 1009 (2003).

    Article  ADS  Google Scholar 

  12. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  13. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. Lett. 616, L151 (2004).

    Article  ADS  Google Scholar 

  14. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 53, 436 (2009).

    Article  ADS  Google Scholar 

  15. A. G. Zhilkin and D. V. Bisikalo, Adv. Space Res. 45, 437 (2010).

    Article  ADS  Google Scholar 

  16. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).

    Article  ADS  Google Scholar 

  17. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  18. A. G. Zhilkin and D. V. Bisikalo, in Proceedings of the 5th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2010), Ed. by N. Pogorelov, ASP Conf. Ser. 444, 91 (2011).

  19. D. V. Bisikalo and A. G. Zhilkin, Proc. IAU Symp. 282, 509 (2012).

    ADS  Google Scholar 

  20. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  21. A. A. Boyarchuk, D.V. Bisikalo, O. A. Kuznetsov, and V. M. Chechetkin, Mass Transfer in Close Binary Stars (Taylor and Francis, London, 2002).

    Google Scholar 

  22. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 47, 809 (2003).

    Article  ADS  Google Scholar 

  23. J. M. Bonnet-Bidaud, C. Motch, and M. Mouchet, Astron. Astrophys. 143, 313 (1985).

    ADS  Google Scholar 

  24. P. Rodríguez-Gil and S. G. Potter, Mon. Not. R. Astron. Soc. 342, L1 (2003).

    Article  ADS  Google Scholar 

  25. P. Rodríguez-Gil and M. A. P. Torres, Astron. Astrophys. 431, 289 (2005).

    Article  ADS  Google Scholar 

  26. P. A. Evans, C. Hellier, G. Ramsay, and M. Cropper, Mon. Not. R. Astron. Soc. 349, 715 (2004).

    Article  ADS  Google Scholar 

  27. K. O. Mason, Mon. Not. R. Astron. Soc. 285, 493 (1997).

    Article  ADS  Google Scholar 

  28. S. B. Potter, M. Cropper, K. O. Mason, et al., Mon. Not. R. Astron. Soc. 285, 82 (1997).

    Article  ADS  Google Scholar 

  29. R. K. Saito, R. Baptista, K. Horne, and P. Martell, Astrophys. J. 139, 2542 (2010).

    ADS  Google Scholar 

  30. P. E. Boynton, L. M. Crosa, and J. E. Deeter, Astrophys. J. 237, 169 (1980).

    Article  ADS  Google Scholar 

  31. S. H. Lubow, Astrophys. J. 398, 525 (1992).

    Article  ADS  Google Scholar 

  32. M. M. Montgomery, Astrophys. J. 745, L25 (2012).

    Article  ADS  Google Scholar 

  33. M. M. Montgomery and E. L. Martin, Astrophys. J. 722, 989 (2010).

    Article  ADS  Google Scholar 

  34. S. H. Lubow and J. E. Pringle, Astrophys. J. 409, 360 (1993).

    Article  ADS  Google Scholar 

  35. J. E. Pringle, Mon. Not. R. Astron. Soc. 281, 357 (1996).

    Article  ADS  Google Scholar 

  36. J. E. Pringle, Mon. Not. R. Astron. Soc. 292, 136 (1997).

    Article  ADS  Google Scholar 

  37. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  ADS  MATH  Google Scholar 

  38. K. G. Powell, P. L. Roe, T. J. Linde, et al., J. Comp. Phys. 154, 284 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Monographs and Surveys in Pure and Applied Mathematics (Chapman Hall, CRC, 2000; Fizmatlit, Moscow, 2001).

    Google Scholar 

  40. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  41. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, New York, 1984; Mir, Moscow, 1987).

    Book  Google Scholar 

  42. A. G. Zhilkin, Mat. Model. 22, 110 (2010).

    MATH  Google Scholar 

  43. A. G. Zhilkin, Comput. Math. Math. Phys. 47, 1819 (2007).

    Article  MathSciNet  Google Scholar 

  44. P. J. Dellar, J. Comput. Phys. 172, 392 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A. A. Samarskii, The Theory of Differential Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    Google Scholar 

  46. F. Giovannelli, S. Gaudenzi, C. Rossi, and A. Piccioni, Acta Astron. 33, 319 (1983).

    ADS  Google Scholar 

  47. V. M. Lipunov and N. I. Shakura, Sov. Astron. Lett. 6, 14 (1980).

    ADS  Google Scholar 

  48. V. M. Lipunov, E. S. Semenov, and N. I. Shakura, Sov. Astron. 25, 439 (1981).

    ADS  Google Scholar 

  49. M. M. Montgomery, Astrophys. J. 705, 603 (2009).

    Article  ADS  Google Scholar 

  50. A. M. Fridman and D. V. Bisikalo, Phys. Usp. 51, 551 (2008).

    Article  ADS  Google Scholar 

  51. S. H. Lubow and F. H. Shu, Astrophys. J. 198, 383 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bisikalo.

Additional information

Original Russian Text © D.V. Bisikalo, A.G. Zhilkin, P.V. Kaygorodov, V.A. Ustyugov, M.M. Montgomery, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 5, pp. 366–377.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisikalo, D.V., Zhilkin, A.G., Kaygorodov, P.V. et al. A possible mechanism for the formation of tilted disks in intermediate polars. Astron. Rep. 57, 327–337 (2013). https://doi.org/10.1134/S1063772913040021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913040021

Keywords

Navigation