Log in

Formation and evolution of inclined accretion disks in intermediate polars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of 3D modeling of the formation of the accretion disks of intermediate polars are presented. A model with misaligned rotation axes of accretor and the orbit is onsidered, in which it is assumed that the white dwarf has a dipolar magnetic field with its symmetry axis inclined to the whitedwarf rotation and orbital axes. The computations show that, in the early stages of formation of the disk, the action of magnetic field is able to create the initial (seed) inclination of the disk. This inclination is then supported mainly by the dynamical pressure of the flow from the inner Lagrangian point L1. As themass of the disk increases, the inclination disappears. Under certain conditions, the disk inclination does not arise in systems with misaligned white-dwarf rotation and orbital axes. The influence of the magnetic field and asynchronous rotation of the accretor may result in the formation of spiral waves in the disk with amplitudes sufficient to be detected observationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  2. A. J. Norton, G. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  3. V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).

    Google Scholar 

  4. C. G. Campbell, Magnetohydrodynamics in Binary Stars (Kluwer Academic, Dordrecht, Boston, London, 1997).

    Google Scholar 

  5. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, and V. M. Chechetkin, Astron. Rep. 44, 26 (2000).

    Article  ADS  Google Scholar 

  6. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 47, 809 (2003).

    Article  ADS  Google Scholar 

  7. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 48, 449 (2004).

    Article  ADS  Google Scholar 

  8. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Rep. 49, 701 (2005).

    Article  ADS  Google Scholar 

  9. T. S. Khruzina, A. M. Cherepashchuk, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 45, 538 (2001).

    Article  ADS  Google Scholar 

  10. T. S. Khruzina, A. M. Cherepashchuk, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 47, 621 (2003).

    Article  ADS  Google Scholar 

  11. T. S. Khruzina, A. M. Cherepashchuk, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 47, 848 (2003).

    Article  ADS  Google Scholar 

  12. T. S. Khruzina, A. M. Cherepashchuk, D. V. Bisikalo, A. A. Boyarchuk, and O. A. Kuznetsov, Astron. Rep. 49, 79 (2005).

    Article  ADS  Google Scholar 

  13. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 53, 436 (2009).

    Article  ADS  Google Scholar 

  14. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  15. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  16. P. Rodríguez-Gil and S. G. Potter, Mon. Not. R. Astron. Soc. 342, L1 (2003).

    Article  ADS  Google Scholar 

  17. P. Rodríguez-Gil and M. A. P. Torres, Astron. Astrophys. 431, 289 (2005).

    Article  ADS  Google Scholar 

  18. P. A. Evans, C. Hellier, G. Ramsay, and M. Cropper, Mon. Not. R. Astron. Soc. 349, 715 (2004).

    Article  ADS  Google Scholar 

  19. K. O. Mason, Mon. Not. R. Astron. Soc. 285, 493 (1997).

    Article  ADS  Google Scholar 

  20. S. B. Potter, M. Cropper, K. O. Mason, J. H. Hough, and J. A. Bailey, Mon. Not. R. Astron. Soc. 285, 82 (1997).

    Article  ADS  Google Scholar 

  21. R. K. Saito, R. Baptista, K. Horne, and P. Martell, Astrophys. J. 139, 2542 (2010).

    ADS  Google Scholar 

  22. P. E. Boynton, L. M. Crosa, and J. E. Deeter, Astrophys. J. 237, 169 (1980).

    Article  ADS  Google Scholar 

  23. S. H. Lubow, Astrophys. J. 398, 525 (1992).

    Article  ADS  Google Scholar 

  24. S. H. Lubow and J. E. Pringle, Astrophys. J. 409, 360 (1993).

    Article  ADS  Google Scholar 

  25. J. E. Pringle, Mon. Not. R. Astron. Soc. 281, 357 (1996).

    Article  ADS  Google Scholar 

  26. J. E. Pringle, Mon. Not. R. Astron. Soc. 292, 136 (1997).

    Article  ADS  Google Scholar 

  27. M. M. Montgomery and E. L. Martin, Astrophys. J. 722, 989 (2010).

    Article  ADS  Google Scholar 

  28. M. M. Montgomery, Astrophys. J. 745, L25 (2012).

    Article  ADS  Google Scholar 

  29. D. V. Bisikalo, A. G. Zhilkin, P. V. Kaigorodov, V. A. Ustyugov, and M. M. Montgomeri, Astron. Rep. 57, 327 (2013).

    Article  ADS  Google Scholar 

  30. D. M. Thomas and M. A. Wood, Astrophys. J. 803, 55 (2015).

    Article  ADS  Google Scholar 

  31. A. G. Zhilkin, Mat. Model. 22, 110 (2010).

    MATH  Google Scholar 

  32. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).

    Article  ADS  Google Scholar 

  33. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  34. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  ADS  MATH  Google Scholar 

  35. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).

    Article  ADS  MATH  Google Scholar 

  36. A. G. Zhilkin and D. V. Bisikalo, ASP Conf. Ser. 444, 91 (2011).

    ADS  Google Scholar 

  37. A. G. Zhilkin, D. V. Bisikalo, and V. A. Ustyugov, AIP Conf. Proc. 1551, 22 (2013).

    Article  ADS  Google Scholar 

  38. V. M. Lipunov and N. I. Shakura, Sov. Astron. Lett. 6, 14 (1980).

    ADS  Google Scholar 

  39. V. M. Lipunov, E. S. Semenov, and N. I. Shakura, Sov. Astron. 25, 439 (1981).

    ADS  Google Scholar 

  40. D. Lai, Astrophys. J. 524, 1030 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fateeva.

Additional information

Original Russian Text © A.M. Fateeva, A.G. Zhilkin, D.V. Bisikalo, 2015, published in Astronomicheskii Zhurnal, 2015, Vol. 92, No. 12, pp. 977–989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fateeva, A.M., Zhilkin, A.G. & Bisikalo, D.V. Formation and evolution of inclined accretion disks in intermediate polars. Astron. Rep. 60, 87–98 (2016). https://doi.org/10.1134/S1063772915120021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915120021

Keywords

Navigation