Log in

PANI-Based Ternary Composite for Energy Storage Material

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical energy storage system has been a promising focus to tackle with the current energy crisis problem. Polyaniline (PANI) has been an attractive electrode material in energy storage devices, owning unique and excellent develo** prospects in the field of supercapacitors. In order to further improve its capacitive performance, composite materials of PANI blended with various carbon-based materials, metal oxides or metal sulfides are typically prepared. In this study, PANI-based ternary composite of PANI, molybdenum disulfide (MoS2) and graphite powder (Gr) was prepared electrochemically to afford the PANI/MoS2/Gr-modified electrode materials. Cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) and electrochemical impedance spectroscopy (EIS) methods were used to characterize and investigate the ternary composite’s supercapacitive performance. A high specific capacitance of 381.9 F/g was achieved under 1 A/g current density. When the applied current densities were increased from 1 to 8 A/g, a high specific capacitance of 322.0 F/g was still maintained, which corresponded to a good capacitance retention rate of 84.3%, showing the ternary composite’s excellent rate performance. The research results illustrated the great potential of the PANI/MoS2/Gr ternary composite as a promising supercapacitor energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Inzelt, G., Recent advances in the field of conducting polymers, J. Solid State Electrochem., 2017, vol. 21, p. 1965.

    Article  CAS  Google Scholar 

  2. Qu, K., Kondengaden, S.M., Li, J., Wang, X., Sevilla, M.D., Li, L., and Zeng, X., Carbohydrate-functionalized polythiophene biointerface: design, fabrication, characterization and application for protein analysis, Appl. Surf. Sci., 2019, vol. 486, p. 561.

    Article  CAS  Google Scholar 

  3. Tian, Y., Qu, K., and Zeng, X., Investigation into the ring-substituted polyanilines and their application for the detection and adsorption of sulfur dioxide, Sensors Actuat., B: Chem., 2017, vol. 249, p. 423.

    Article  CAS  Google Scholar 

  4. Qu, K., Fang, M., Zhang, S., Liu, H., and Zeng, X., A redox conjugated polymer-based all-solid-state reference electrode, Polymers, 2018, vol. 10, p. 1191.

    Article  Google Scholar 

  5. Qu, K., Bai, Y., Gao, X., and Deng, M., Application of poly (aniline-co-o-methoxyaniline) as energy storage material, Synth. Met., 2020, vol. 262, p. 116346.

    Article  CAS  Google Scholar 

  6. Qu, K., Bai, Y., Liu, X., Deng, M., Wu, L., and Chen, Z., Electro-catalytic behavior of multiwall carbon nanotube-doped poly (3,4-ethylenedioxythiophene) toward environmental pollutant bisphenol A, J. Electrochem. Soc., 2019, vol. 166, no. 15, p. H810.

    Article  Google Scholar 

  7. Broussea, T., Bélanger, D., and Long, J.W., To be or not to be pseudocapacitive?, J. Electrochem. Soc., 2015, vol. 162, no. 5, p. A5185.

    Article  Google Scholar 

  8. Eftekhari, A., Li, L., and Yang, Y., Polyaniline supercapacitors, J. Power Sources, 2017, vol. 347, p. 86.

    Article  CAS  Google Scholar 

  9. Wang, Z., Zhu, M., Pei, Z., Xue, Q., Li, H., Huang, Y., and Zhi, C., Polymers for supercapacitors: boosting the development of the flexible and wearable energy storage, Mater. Sci. Eng. R, 2020, vol. 139, p. 100520.

    Article  Google Scholar 

  10. Qu, K., Bai, Y., Chen, B., and Deng, M., Unique stabilizing effects of molybdenum disulfide and graphene oxide dual dopants toward polyaniline’s energy storage behavior, Synth. Met., 2020, vol. 269, p. 116527.

    Article  CAS  Google Scholar 

  11. Liu, P., Yan, J., Guang, Z., Huang, Y., Li, X., and Huang, W., Recent advancements of polyaniline-based nanocomposites for supercapacitors, J. Power Sources, 2019, vol. 424, p. 108.

    Article  CAS  Google Scholar 

  12. Zhao, C., Jia, X., Shu, K., Yu, C., Wallace, G.G., and Wang, C., Conducting polymer composites for unconventional solid-state supercapacitors, J. Mater. Chem. A, 2020, vol. 8, p. 4677.

    Article  CAS  Google Scholar 

  13. Yun, Q., Li, L., Hu, Z., Lu, Q., Chen, B., and Zhang, H., Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage, Adv. Mater., 2020, vol. 32, p. 1903826.

    Article  CAS  Google Scholar 

  14. Wazir, M.B., Daud, M., Ullah, N., Hai, A., Muhammad, A., Younas, M., and Rezakazemi, M., Synergistic properties of molybdenum disulfide (MoS2) with electro-active materials for high-performance supercapacitors, Int. J. Hydrogen Energy, 2019, vol. 44, p. 17470.

    Article  CAS  Google Scholar 

  15. Sun, G., Zhang, X., Lin, R., Yang, J., Zhang, H., and Chen, P., Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-wall carbon nanotubes for solid-state, flexible, asymmetric supercapacitors, Angew. Chem., Int. Ed., 2015, vol. 54, p. 4651.

    Article  CAS  Google Scholar 

  16. Sadak, O., Prathap, M.U.A., and Gunasekaran, S., Facile fabrication of highly ordered polyaniline-exfoliated graphite composite for enhanced charge storage, Carbon, 2019, vol. 144, p. 756.

    Article  CAS  Google Scholar 

  17. Ghanashyam, G. and Jeong, H.K., Synthesis of nitrogen-doped plasma treated graphite for supercapacitor applications, Chem. Phys. Lett., 2019, vol. 725, p. 31.

    Article  CAS  Google Scholar 

  18. Qu, K. and Zeng, X., Ionic liquid-doped polyaniline and its redox activities in the zwitterionic biological buffer MOPS, Electrochim. Acta, 2016, vol. 202, p. 73.

    Article  CAS  Google Scholar 

  19. Arslan, A. and Hur, E., Electrochemical characterization of poly(aniline-co-N-methylaniline) and poly(aniline-co-N-ethylaniline) films on pencil graphite electrode for supercapacitor applications, Aust. J. Chem., 2013, vol. 66, p. 825.

    Article  CAS  Google Scholar 

  20. Abalyaeva, V.V. and Efimov, O.N., Effect of the do** anion replacement on the polyaniline electrochemical behavior, Russ. J. Electrochem., 2019, vol. 55, p. 953.

    Article  CAS  Google Scholar 

  21. Gu, D., Ding, C., Qin, Y., Jiang, H., Wang, L., and Shen, L., Behavior of electrical charge storage/release in polyaniline electrodes of symmetric supercapacitor, Electrochim. Acta, 2017, vol. 245, p. 146.

    Article  CAS  Google Scholar 

  22. Ćirić-Marjanović, G., Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications, Synth. Met., 2013, vol. 177, p. 1.

    Article  Google Scholar 

  23. Zhang, B., Ji, X., Xu, K., Chen, C., **ong, X., **ong, J., Yao, Y., Miao, L., and Jiang, J., Unraveling the different charge storage mechanism in T and H phases of MoS2, Electrochim. Acta, 2016, vol. 217, p. 1.

    Article  CAS  Google Scholar 

  24. Iamprasertkun, P., Hirunpinyopas, W., Tripathi, A.M., Bissett, M.A., and Dryfe, R.A.W., Electrochemical intercalation of MoO3–MoS2 composite electrodes: charge storage mechanism of non-hydrated cations, Electrochim. Acta, 2019, vol. 307, p. 176.

    Article  CAS  Google Scholar 

  25. Wang, J., Wu, Z., Hu, K., Chen, X., and Yin, H., High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor, J. Alloys Compd., 2015, vol. 619, p. 38.

    Article  CAS  Google Scholar 

  26. Zhao, X., Grätz, O., and Pionteck, J., Effect of dopant and oxidant on the electrochemical properties of polyaniline/graphite nanoplate composites, Polym. Int., 2018, vol. 67, p. 1429.

    Article  CAS  Google Scholar 

  27. Wang, T., Wang, W., Dai, Y., Zhang, H., Shen, Z., Chen, Y., and Hu, X., Electrochemical synthesis of polyaniline films on activated carbon for supercapacitor application, Russ. J. Electrochem., 2015, vol. 51, p. 743.

    Article  CAS  Google Scholar 

  28. Zhang, S., Song, X., Liu, S., Sun, F., Liu, G., and Tan, Z., Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercapacitors, Electrochim. Acta, 2019, vol. 312, p. 1.

    Article  CAS  Google Scholar 

  29. Thakur, A.K., Deshmukh, A.B., Choudhary, R.B., Karbhal, I., Majumder, M., and Shelke, M.V., Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor, Mater. Sci. Eng. B, 2017, vol. 223, p. 24.

    Article  CAS  Google Scholar 

Download references

Funding

We thank financial support from Sichuan Provincial Human Resources and Social Security Department (10900-19BZ08-012) and Chengdu University of Technology Development Funding Program for Young and Middle-aged Key Teachers (10912-JXGG2020-07362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Qu.

Ethics declarations

Authors announce that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke Qu, Deng, M. & Tang, W. PANI-Based Ternary Composite for Energy Storage Material. Russ J Electrochem 57, 852–857 (2021). https://doi.org/10.1134/S1023193521080103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521080103

Keywords:

Navigation