Log in

Dynamics of Rye Translocation Frequency in Genotypes of Cultivars of Russian Common Wheat Triticum aestivum L.

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In wheat breeding, cultivars with 1RS/1BL and 1RS/1AL translocations have been widely used due to their high complex resistance owing to resistance genes on 1RS chromosomes. Abundant data on the emergence of new virulent pathogen types and on 1RS-localized genes losing their protective properties made it relevant to address the issue of the prospects of using both rye translocations in modern breeding programs. In addition, the use of different genetic sources of rye chromosome 1RS in introgressive hybridization created a need to study the diversity of 1RS linkage groups. We investigated the dynamics of the rye translocation frequency in genotypes of 240 Russian common wheat cultivars from three breeding centers in Russia. Multiple alleles of the 1RS-specific genes of storage proteins were used to mark 1RS chromosome. It was revealed that 1RS resistance genes were still effective against a number of pathogens, in particular, against powdery mildew and stem rust agents. The dynamics of changes in grain quality of cultivars with TR:1RS/1BL were assessed. It was confirmed that grain quality of winter cultivars has been significantly improving since 2000s and that the presence of TR:1RS/1BL in genotypes of spring cultivars does not prevent the production of high-quality grain. It was shown that, as a result of these processes, accumulation of TR:1RS/1BL over time was occurring in all three breeding centers. High allelic diversity of the secalin-coding locus (Gli-B1) on rye chromosome 1RS was shown. However, all wheat cultivars with TR:1RS/1BL, regardless of the origin of 1RS, carried the same allele. Possible reasons for this uniformity are discussed. No 1RS/1AL translocation was detected in the varieties we studied, and possible causes of this are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Notes

  1. Lr26, Sr31, Yr9, Pm8, and Dn7, genes controlling immunity to wheat leaf rust Puccinia triticina f. sp. tritici, stem rust P. graminis f. sp. tritici, stripe rust P. striiformis f. sp. tritici, powdery mildew Blumeria graminis f. sp. tritici, and Russian wheat aphid Diuraphis noxia, respectively [5].

  2. Pm17 and SrAmi are resistance genes to stem rust and powdery mildew; Gb2, Gb6, and Cmc3 are resistance genes to wheat aphid Schizaphis graminum and wheat curl mite Aceria tosicheilla, respectively [5].

  3. The genetic control of components controlled by the Gli-B1l locus was determined using a hybridization study [17].

REFERENCES

  1. Rabinovich, S.V., Importance of wheat—rye translocations for breeding modern cultivar of Triticum aestivum L., Euphytica, 1998, vol. 100, pp. 323—340. https://doi.org/10.1023/A:10183618192

    Article  Google Scholar 

  2. Bauer, E., Schmutzer, T., Barilar, I., et al., Towards a whole-genome sequence for rye (Secale cereale L.), Plant J., 2017, vol. 89, pp. 853—869. https://doi.org/10.1111/tpj.13436

    Article  CAS  PubMed  Google Scholar 

  3. Dorofeev, V.F., Yakubtsiner, M.M., Rudenko, M.I., et al., Pshenitsy mira (Wheats of the World), Brezhnev, D.D., Ed., Leningrad: Kolos, 1976.

    Google Scholar 

  4. Schlegel, R., Current list of wheats with rye and alien introgression, V. 01.22, 2022. http://rye-genemap.de/rye-introgression.

  5. McIntosh, R.A., Hart, G., and Gale, M., Catalog of gene symbols for wheat, Proceedings of 8th International Wheat Genetics Symposium, Li, Z.S. and **n, Z.Y., Eds., Bei**g, 1993, pp. 1333—1500.

  6. Lee, J.H., Graybosch, R.A., and Peterson, C.J., Quality and biochemical effects of a 1RS.1BL wheat—rye translocation in wheat, Theor. Appl. Genet., 1995, vol. 90, pp. 105—112. https://doi.org/10.1007/BF00221002

    Article  CAS  PubMed  Google Scholar 

  7. Kumlay, A.M., Baenziger, P.S., Gill, K.S., et al., Understanding the effect of rye chromatin in bread wheat, Crop Sci., 2003, vol. 43, no. 5, pp. 1643—1651. https://doi.org/10.2135/cropsci2003.1643

    Article  Google Scholar 

  8. Chumanova, E.V., Efremova, T.T., Trubacheeva, N.V., et al., Chromosome composition of wheat—rye lines and the influence of rye chromosomes on disease resistance and agronomic traits, Russ. J. Genet., 2014, vol. 50, no. 11, pp. 1169—1178. https://doi.org/10.1134/S1022795414110039

    Article  CAS  Google Scholar 

  9. Sebesta, E.E. and Wood, E.F., Transfer of greenbug resistance from rye to wheat with X-rays, Agron. Abstr., 1978, pp. 61—62.

    Google Scholar 

  10. Burnett, C.J., Lorenz, K.J., and Carver, B.F., Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour, Euphytica, 1995, vol. 86, pp. 159—166. https://doi.org/10.1007/BF00016353

    Article  Google Scholar 

  11. Li, Z., Ren, T., Yan, B., et al., A mutant with expression deletion of gene Sec-1 in a 1RS.1BL line and its effect on production quality of wheat, PLoS One, 2016, vol. 11, no. 1, р. e0146943. https://doi.org/10.1371/journal.pone.014694

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lundh, G. and MacRitchie, F., Size exclusion HPLC characterization of gluten protein fractions varying in breadmaking potential, J. Cereal Sci., 1989, vol. 10, pp. 247—253.

    Article  CAS  Google Scholar 

  13. Liu, C.-Y. and Shepherd, K.W., Inheritance of B subunits of glutenin and ω- and γ-gliadins in tetraploid wheats, Theor. Appl. Genet., 1995, vol. 90, pp. 1149—1157. https://doi.org/10.1007/BF00222936

    Article  CAS  PubMed  Google Scholar 

  14. Novoselskaya-Dragovich, A.Y., Genetics and genomics of wheat: storage proteins, ecological plasticity, and immunity, Russ. J. Genet., 2015, vol. 51, no. 5, pp. 476—490. https://doi.org/10.1134/S102279541505004X

    Article  CAS  Google Scholar 

  15. Upelniek, V.P., Novoselskaya-Dragovich, A.Yu., Shishkina, A.A., et al., Laboratornyi analiz belkov semyan pshenitsy (Laboratory Analysis of Wheat Seed Proteins), Moscow: Vash Format, 2013.

  16. Novoselskaya-Dragovich, A.Y., Yankovskaya, A.A., and Badaeva, E.D., Alien introgressions and chromosomal rearrangements do not affect the activity of gliadin-coding genes in hybrid lines of Triticum aestivum L. × Aegilops columnaris Zhuk., Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 5, pp. 507—514. https://doi.org/10.18699/VJ18.388

    Article  Google Scholar 

  17. Metakovsky, E.V., Gliadin allele identification in common wheat: II. Catalogue of gliadin alleles in common wheat, J. Genet. Breed., 1991, vol. 45, pp. 325—344.

    Google Scholar 

  18. Kozub, N.A., Sozinov, I.A., Sobko, T.A., et al., Identification of rye translocations in the varieties Bogdanka and Synthetic of winter common wheat, Nauchn. Vedomosti Belgorod. Univ., Ser. Estestv. Nauki, 2010, vol. 15, no. 12, pp. 47—54.

    Google Scholar 

  19. Singh, N.K., Shepherd, K.W., and McIntosh, R.A., Linkage map** of genes for resistance to leaf, steam and stripe rust and ω-secalins on the short arm of rye chromosome 1R, Theor. Appl. Genet., 1990, vol. 80, pp. 609—616. https://doi.org/10.1007/s00122-004-1807-5

    Article  CAS  PubMed  Google Scholar 

  20. Mel’nikova, E.E., Bukreeva, G.I., Bespalova, L.A., et al., Dynamics of genetic diversity of Krasnodar bred common wheat cultivars and lines at the alleles of gliadin-coding loci, Dostizh. Nauki Tekh. Agroprom. Kompleksa, 2016, vol. 30, no. 3, pp. 51—53.

    Google Scholar 

  21. Ren, T.H., Yang, Z.J., Yan, B.J., et al., Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat, Euphytica, 2009, vol. 169, pp. 207—213. https://doi.org/10.1007/s10681-009-9924-5

    Article  Google Scholar 

  22. Qi, W., Tang, Y., Zhu, W., et al., Molecular cytogenetic characterization of a new wheat—rye 1BL/1RS translocation line expressing superior stripe rust resistance and enhanced grain yield, Planta, 2016, vol. 244, pp. 405—416. https://doi.org/10.1094/PDIS-93-2-0124

    Article  CAS  PubMed  Google Scholar 

  23. Maraci, Ö., Özkan, H., and Bilgin, R., Phylogeny and genetic structure in the genus Secale, PLoS One, 2018, vol. 13, no. 7.https://doi.org/10.1371/journal.pone.0200825

  24. Landjeva, S., Korzun, V., Tsanev, V., et al., Distribution of the wheat—rye translocation 1RS.1BL among bread wheat varieties of Bulgaria, Plant Breed., 2006, vol. 125, pp. 102—104. https://doi.org/10.1111/j.1439-0523.2006.01142.x

    Article  CAS  Google Scholar 

  25. Yediay, F.E., Baloch, F.S., Kilian, B., and Özkan, H., Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL.RS and 1BL.RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces, Genet. Res. Crop Evol., 2010, vol. 57, pp. 119—129. https://doi.org/10.1007/s10722-009-94569

    Article  CAS  Google Scholar 

  26. Trubacheeva, N.V., Rosseeva, L.P., Belan, I.A., et al., Characteristics of common wheat cultivars of West Siberia carrying the wheat—rye 1RS.1BL translocation, Russ. J. Genet., 2011, vol. 47, no. 1, pp. 13—18. https://doi.org/10.1134/S1022795411010157

    Article  CAS  Google Scholar 

  27. GRIS: Genetic Resources Information System for Wheat and Triticale. http://wheatpedigree.net/ (Last update: 2017-01-09).

  28. Katalog: sorta i gibridy Krasodarskogo nauchno-issledovatel’skogo instituta sel’skogo khozyaistva imeni P.P. Luk’yanenko (Catalog: Varieties and Hybrids of Krasnodar Lukyanenko Research Institute of Agriculture), Krasnodar, 2009.

  29. Katalog: sorta i gibridy Nauchnogo Tsentra Zemledeliya imeni P.P. Luk’yanenko (Catalog: Varieties and Hybrids of Lukyanenko National Grain Center), Krasnodar, 2021.

  30. Gosudarstvennyi reestr selektsionnykh dostizhenii, dopushchennykh k ispol’zovaniyu (State Register of Breeding Achievements Approved for Use), vol. 1: Sorta rastenii (Plant Varieties), Moscow, 2009 and 2021. https://reestr.gossortrf.ru/.

  31. Ren, T.H., Chen, F., Yan, B.Ju., et al., Genetic diversity of wheat—rye 1BL.1RS translocation lines derived from different wheat and rye sources, Euphytica, 2012, vol. 183, pp. 133—146. https://doi.org/10.1007/s10681-011-0412-3

    Article  Google Scholar 

  32. Sozinov, A.A., Novosel’skaya, A.Yu., Lushnikova, A.A., and Bogdanov, Yu.F., Cytological and biochemical analysis of bread wheat variants with 1B/1R substitutions and translocations in the karyotype, Tsitol. Genet., 1987, vol. 21, no. 4, pp. 256—261.

    Google Scholar 

  33. McIntosh, R.A., Yamazaki, Y., and Dubcovsky, J., Catalogue of gene symbols for wheat, Proceedings of 11th International Wheat Genetics Symposium, Brisbane, Australia, 2008.

  34. He, Zhong-Hu, High molecular weight glutenin subunit composition of Chinese bread wheats, Euphytica, 1992, vol. 64, no. 1, pp. 11—20. https://doi.org/10.1002/cche.10290

    Article  CAS  Google Scholar 

  35. Hazen, S.P., Zhu, L., Kim, H.-S., et al., Genetic diversity of winter wheat in Shaanxi province, China, and other common wheat germplasm pools, Genet. Resour. Crop Evol., 2002, vol. 49, no. 4, pp. 437—445. https://doi.org/10.1023/A:1020670013249

    Article  Google Scholar 

  36. Buloichik, A.A., Dolmatovich, T.V., Borzyak, V.S., and Voluevich, E.A., Molecular identification and effectiveness of the Lr26/Pm8 resistance genes in accessions of common wheat (Triticum aestivum), Vestsi Nats. Akad. Navuk Belarusi, Ser. Biyal. Navuk, 2014, vol. 2, pp. 60—63.

    Google Scholar 

  37. Kozub, N.A., Sozinov, I.A., and Sozinov, A.A., Association of 1BL/1RS translocation with qualitative and quantitative traits in common wheat T. aestivum, Tsitol. Genet., 2001, no. 5, pp. 74—80.

  38. Lukaszewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination, Crop Sci., 2000, vol. 40, pp. 216—225.

    Article  CAS  Google Scholar 

  39. Lukaszewski, A.J., Introgressions between wheat and rye, in Alien Introgression in Wheat, Cham, Switzerland: Springer-Verlag, 2015, pp. 163—189. https://doi.org/10.1007/978-3-319-23494-6_7

    Book  Google Scholar 

  40. Belan, I.A., Rosseeva, L.P., Rosseev, V.M., et al., Examination of adaptive and agronomic characters in lines of common wheat Omskaya 37 bearing translocations 1RS.1BL and 7DL-7Ai, Vavilovskii Zh. Genet. Sel., 2012, vol. 16, no. 1, pp. 178—186.

    Google Scholar 

  41. Shamanin, V.P., Morgunov, A.I., Petukhovskii, S.L., et al., Selektsiya yarovoi myagkoi pshenitsy na ustoichivost’ k steblevoi rzhavchine v Zapadnoi Sibiri (Breeding Spring Soft Wheat for Resistance to Stem Rust in Western Siberia), Omsk: Omsk. Gos. Agrar. Univ., im. P.A. Stolypina, 2015.

  42. Kozub, N.O., Sozinov, I.O., Chaika, V.M., et al., Changes in allele frequencies at storage protein loci of winter common wheat under climate change, Cytol. Genet., 2020, vol. 54, no. 4, pp. 305—317. https://doi.org/10.3103/S0095452720040076

    Article  Google Scholar 

  43. Kumlay, A.M., Baenziger, P.S., Gill, K.S., et al., Understanding the effect of rye chromatin in bread wheat, Crop Sci., 2003, vol. 43, no. 5, pp. 1643—1651. https://doi.org/10.2135/cropsci2003.1643

    Article  Google Scholar 

  44. Liu, H., Tang, H., Ding, P., et al., Effects of the 1BL/1RS translocation on 24 traits in a recombinant inbred line population, Cereal Res. Commun., 2020, vol. 48, pp. 225—232. https://doi.org/10.1007/s42976-020-00027-y

    Article  CAS  Google Scholar 

  45. Jang, J.H., Jung, W.J., Kim, D.Y., and Seo, Y.W., cDNA-AFLP analysis of 1BL.1RS under water-deficit stress and development of wheat—rye translocation-specific markers, N. Z. J. Crop Hortic. Sci., 2017, vol. 45, pp. 150—164. https://doi.org/10.1080/01140671.2016.1269018

    Article  CAS  Google Scholar 

  46. Moskal, K., Kowalik, S., Podyma, W., et al., The pros and cons of rye chromatin introgression into wheat genome, Agronomy, 2021, vol. 11, p. 456. https://doi.org/10.3390/agronomy11030456

Download references

Funding

The work was financed by the Federal Budget, state registration no. of RID and EGISU NIOCTR AAAA-A19-119022790099-9.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Fisenko or A. Yu. Novoselskaya-Dragovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies using animal or human subjects.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisenko, A.V., Lyapunova, O.A., Zuev, E.V. et al. Dynamics of Rye Translocation Frequency in Genotypes of Cultivars of Russian Common Wheat Triticum aestivum L.. Russ J Genet 59, 558–567 (2023). https://doi.org/10.1134/S1022795423050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423050058

Keywords:

Navigation