Log in

Hydrogenation of Furfural over Ruthenium Catalysts Supported on Porous Aromatic Frameworks

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper describes an investigation into hydrogenation of furfural over ruthenium catalysts supported on porous aromatic frameworks. The supports were designated as PAF-30-SO3H, PAF-30-NH2, and PAF-30. The synthesized catalysts were tested in furfural hydrogenation carried out in water and in tetrahydrofuran (with a concentration of 10 wt %) at 90–250°C and a hydrogen pressure of 3 MPa. Although the highest furfural conversion (96%) was achieved in the case of its hydrogenation in water at 250°C over Ru-PAF-30, these conditions did not favor product selectivity. The reaction products mainly consisted of furfuryl alcohol, tetrahydrofurfuryl alcohol, and cyclopentanone. The highest yield of cyclopentanone, 71% (with 80% conversion and 89% selectivity) was observed in furfural hydrogenation over Ru-PAF-30 at 200°C, whereas the conditions optimal for selective hydrogenation of furfural into furfuryl alcohol were found to include either tetrahydrofuran as a solvent or water as a solvent and low temperatures (90–150°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Namsaraev, Z.B., Gotovtsev, P.M., Komova, A.V., and Vasilov, R.G., Renew. Sustain. Energy Rev., 2018, vol. 81, pp. 625–634. https://doi.org/10.1016/j.rser.2017.08.045

    Article  Google Scholar 

  2. Kulikova, M.V., Krylova, A.Y., Krysanova, K.O., Kulikov, A.B., and Maximov, A.L., Petrol. Chem., 2023, vol. 63, no. 6, pp. 633–647. https://doi.org/10.1134/s0965544123040011

    Article  CAS  Google Scholar 

  3. Nekhaev, A.I. and Maximov, A.L., Petrol. Chem., 2021, vol. 61, no. 1, pp. 15–34. https://doi.org/10.1134/S0965544121010023

    Article  CAS  Google Scholar 

  4. Arapova, O.V., Chistyakov, A.V., Tsodikov, M.V., and Moiseev, I.I., Petrol. Chem., 2020, vol. 60, no. 3, pp. 227–243. https://doi.org/10.1134/S0965544120030044

    Article  CAS  Google Scholar 

  5. Kulikov, L.A., Makeeva, D.A., Kalinina, M.A., Cherednichenko, K.A., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, no. 7, pp. 711–720. https://doi.org/10.1134/S0965544121070045

    Article  CAS  Google Scholar 

  6. Sushkova, V.I., Khim. Rast. Syr’ya, 2023, vol. 2, pp. 27–54. https://doi.org/10.14258/jcprm.20230211880

    Article  CAS  Google Scholar 

  7. Šivec, R., Huš, M., Likozar, B., and Grilc, M., Chem. Eng. J., 2022, vol. 436, p. 135070. https://doi.org/10.1016/j.cej.2022.135070

    Article  CAS  Google Scholar 

  8. Mironenko, R.M., Bel’s kaya, O.B., and Likholobov, V.A., Doklady Ross. Akad. Nauk: Khim., Nauki o Mater., 2023, vol. 509, no. 1, pp. 41–60. https://doi.org/10.31857/S268695352260088X

    Article  Google Scholar 

  9. Duan, Y., Cheng, Y., Hu, Z., Wang, C., Sui, D., Yang, Y., and Lu, T., Molecules, 2023, vol. 28, no. 14, p. 5397. https://doi.org/10.3390/molecules28145397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roldugina, E.A., Shayakhmetov, N.N., Maximov, A.L., and Karakhanov, E.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 9, pp. 1306–1315. https://doi.org/10.1134/S1070427219090167

    Article  CAS  Google Scholar 

  11. Mironenko, R.M., Talsi, V.P., Gulyaeva, T.I., Trenikhin, M.V., and Belskaya, O.B., Mechan. Catal., 2019, vol. 126, no. 2, pp. 811–827. https://doi.org/10.1007/s11144-018-1505-y

    Article  CAS  Google Scholar 

  12. Byun, M.Y., Park, D.W., and Lee, M.S., Catalysts, 2020, vol. 10, no. 8, p. 837. https://doi.org/10.3390/catal10080837

    Article  CAS  Google Scholar 

  13. Šivec, R., Likozar, B., and Grilc, M., Appl. Surf. Sci., 2021, vol. 541, 148485. https://doi.org/10.1016/j.apsusc.2020.148485

  14. Chen, X., Zhang, L., Zhang, B., Guo, X., and Mu, X., Sci. Rep., 2016, vol. 6, no. 1, pp. 1–13. https://doi.org/10.1038/srep28558

    Article  CAS  Google Scholar 

  15. Roldugina, E.A., Boronoev, M.P., Shakirov, I.I., Kardasheva, Y.S., Kardashev, S.V., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2023, vol. 63, no. 6, pp. 655–662. https://doi.org/10.1134/S0965544123040072

    Article  CAS  Google Scholar 

  16. Akram, M., Bhutto, S.U.A., Aftab, S., Wang, F., Xu, X., and **a, M., Nano Energy, 2023, vol. 117, p. 108808. https://doi.org/10.1016/j.nanoen.2023.108808

    Article  CAS  Google Scholar 

  17. Wang, Y., Zhao, D., Rodríguez-Padrón, D., and Len, C., Catalyst., 2019, vol. 9, no. 10, p. 796. https://doi.org/10.3390/catal9100796

    Article  CAS  Google Scholar 

  18. Bhogeswararao, S. and Srinivas, D., J. Catal., 2015, vol. 327, pp. 65–77. https://doi.org/10.1016/j.jcat.2015.04.018

    Article  CAS  Google Scholar 

  19. Ben, T. and Qiu, S., CrystEngComm., 2013, vol. 15, no. 1, pp. 17–26. https://doi.org/10.1039/C2CE25409C

    Article  CAS  Google Scholar 

  20. Yuan, Y. and Zhu, G., ACS Cent. Sci., 2019, vol. 5, no. 3, pp. 409–418. https://doi.org/10.1021/acscentsci.9b00047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian, Y. and Zhu, G., Chem. Rev., 2020, vol. 120, no. 16, pp. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687

    Article  CAS  PubMed  Google Scholar 

  22. Kalinina, M.A., Kulikov, L.A., Cherednichenko, K.A., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, no. 9, pp. 1061–1070. https://doi.org/10.1134/S0965544121090115

    Article  CAS  Google Scholar 

  23. Bazhenova, M.A., Kulikov, L.A., Makeeva, D.A., Maximov, A.L., and Karakhanov, E.A., Polymers, 2023, vol. 15, no. 23, p. 4618. https://doi.org/10.3390/polym15234618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kulikov, L., Dubiniak, A., Makeeva, D., Egazar’yants, S., Maximov, A., and Karakhanov, E., Materials Today Sustainab., 2024, vol. 5, 100637. https://doi.org/10.1016/j.mtsust.2023.100637

  25. Maximov, A., Zolotukhina, A., Kulikov, L., Kardasheva, Y., and Karakhanov, E., React. Kinet. Mechan. Catal., 2016, vol. 117, no. 2, pp. 729–743. https://doi.org/10.1007/s11144-015-0956-7

    Article  CAS  Google Scholar 

  26. Karakhanov, E., Maximov, A., Terenina, M., Vinokurov, V., Kulikov, L., Makeeva, D., and Glotov, A., Catal. Today, 2020, vol. 357, pp. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028

    Article  CAS  Google Scholar 

  27. Makeeva, D., Kulikov, L., Zolotukhina, A., Maximov, A., and Karakhanov, E., Molecular Catal., 2022, vol. 517, p. 112012. https://doi.org/10.1016/j.mcat.2021.112012

    Article  CAS  Google Scholar 

  28. Kulikov, L.A., Bazhenova, M.A., Bolnykh, Y.S., Makeeva, D.A., Terenina, M.V., Kardasheva, Yu.S., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2022, vol. 62, no. 6, pp. 1195–1203. https://doi.org/10.1134/S0965544122100012

    Article  CAS  Google Scholar 

  29. Bretzler, P., Huber, M., Nickl, S., and Köhler, K., RSC Adv., 2020, vol. 10, no. 46, pp. 27323–27330. https://doi.org/10.1039/D0RA02003F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fulajtárova, K., Soták, T., Hronec, M., Vávra, I., Dobročka, E., and Omastová, M., Appl. Catal. A: General, 2015, vol. 502, pp. 78–85. https://doi.org/10.1016/j.apcata.2015.05.031

    Article  CAS  Google Scholar 

  31. Taylor, M.J., Jiang, L., Reichert, J., Papageorgiou, A.C., Beaumont, S.K., Wilson, K., Lee, A.F., Barth, J.V., and Kyriakou, G., J. Phys. Chem. C, 2017, vol. 121, no. 15, pp. 8490–8497. https://doi.org/10.1021/acs.jpcc.7b01744

    Article  CAS  Google Scholar 

  32. Luo, J., Monai, M., Yun, H., Arroyo-Ramírez, L., Wang, C., Murray, C.B., Fornasiero, P., and Gorte, R.J., Catal. Lett., 2016, vol. 146, no. 4, pp. 711–717. https://doi.org/10.1007/s10562-016-1705-x

    Article  CAS  Google Scholar 

  33. Durndell, L.J., Zou, G., Shangguan, W., Lee, A.F., and Wilson, K., ChemCatChem., 2019, vol. 11, no. 16, pp. 3927–3932. https://doi.org/10.1002/cctc.201900481

    Article  CAS  Google Scholar 

  34. Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., and Royer, S., Chem. Rev., 2018, vol. 118, no. 22, pp. 11023–11117. https://doi.org/10.1021/acs.chemrev.8b00134

    Article  CAS  PubMed  Google Scholar 

  35. Pang, S.H. and Medlin, J.W., ACS Catal., 2011, vol. 1, no. 10, pp. 1272–1283. https://doi.org/10.1021/cs200226h

    Article  CAS  Google Scholar 

  36. Yu, W., **ong, K., Ji, N., Porosoff, M.D., and Chen, J.G., J. Catal., 2014, vol. 317, pp. 253–262. https://doi.org/10.1016/j.jcat.2014.06.025

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to Dr. R.S. Borisov and the Laboratory of Spectral Research of TIPS RAS for their technical and consulting assistance.

Funding

The study was supported by the Russian Science Foundation (RSF project no. 20-19-00380).

Author information

Authors and Affiliations

Authors

Contributions

L.A. Kulikov: development of test procedure and processing of experimental data; D.A. Makeeva: synthesis of supports and catalysts; A.M. Dubiniak and A.F. Bikbaeva: catalytic testing; M.V. Terenina and Yu.S. Kardasheva: processing of experimental data; S.V. Egazar’yants: identification of product composition and structure; A.L. Maximov and E.A. Karakhanov: conceptual development; All co-authors: discussion of results.

Corresponding author

Correspondence to A. M. Dubiniak.

Ethics declarations

A.L. Maksimov and E.A. Karakhanov, co-authors, are members of the editorial board of the journal Nanogeterogennyi kataliz (Nanoheterogeneous Catalysis). The other co-authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, L.A., Makeeva, D.A., Dubiniak, A.M. et al. Hydrogenation of Furfural over Ruthenium Catalysts Supported on Porous Aromatic Frameworks. Pet. Chem. (2024). https://doi.org/10.1134/S0965544124020191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544124020191

Keywords:

Navigation